# Calculus of Variations Summer Term 2014 

## Lecture 2

25. April 2014

## Purpose of Lesson:

- To discuss the special cases of the E-L equation.
- To discuss the generalizations of the E-L equations to case of $n$ functions and to the ones of higher order derivatives.
- To show that the E-L equation is a necessary, but not sufficient condition for a local extremum.


# §2. Remarks on the Euler-Lagrange equation 

## The Euler-Lagrange Equation:

$$
\begin{gathered}
\text { If } y \text { minimizes } J[y]=\int_{a}^{b} F\left(x, y, y^{\prime}\right) d x \text {, then } y \text { must satisfy the equation } \\
\frac{\partial F}{\partial y}-\frac{d}{d x}\left[\frac{\partial F}{\partial y^{\prime}}\right]=0
\end{gathered}
$$

## History of Leonhard Euler and Joseph-Louis Lagrange



- Euler developed Euler's Equations for fluids flow ans Euler's formula

$$
e^{i x}=\cos x+i \sin x
$$

In 1744 Euler published the first book on Calculus of Variations.


- Lagrange developed Lagrange Mulipliers, Lagrangian Mechanics, and the Method of Variations of Parameters.
- In 1766 Lagrange succeeded Euler as the director of Mathematics at the Prussian Academy of Sciences in Berlin.
- In letters to Euler between 1754 and 1756 Lagrange shared his observation of a connection between minimizing functionals and finding extrema of a function.
- Euler was so impressed with Lagrange's simplification of his earlier analysis it is rumored he refrained from submitting a paper covering the same topics to give Lagrange more time.


## Generalization to $n$ functions:

- Let $F\left(x, y_{1}, \ldots, y_{n}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$ be a function with continuous first and second partial derivatives. Consider the problem of finding necessary conditions for finding the extremum of the following functional

$$
J\left[y_{1}, \ldots, y_{n}\right]=\int_{a}^{b} F\left(x, y_{1}, \ldots, y_{n}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) d x \rightarrow \min
$$

which depends continuously on $n$ continuously differentiable functions $y_{1}(x), \ldots, y_{n}(x)$ satisfying boundary conditions

$$
y_{i}(a)=A_{i}, \quad y_{i}(b)=B_{i} \quad \text { for } \quad i=1,2, \ldots n .
$$

- One can derive that the necessary condition is a system of Euler-Lagrange Equations

$$
\frac{\partial F}{\partial y_{i}}-\frac{d}{d x} \frac{\partial F}{\partial y_{i}^{\prime}}=0
$$

## Generalization to Higher Order Derivatives:

- Let $F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)$ be a function with continuous first and second derivatives with respect to all arguments, and consider a functional of the form

$$
J[y]=\int_{a}^{b} F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right) d x \rightarrow \min
$$

where the admissible class will be

$$
\begin{gathered}
\mathbb{A}=\left\{y(x) \in C^{n}[a, b]\right\} \\
y(a)=A_{0}, y^{\prime}(a)=A_{1}, \ldots, y^{(n-1)}(a)=A_{n-1} \\
y(b)=B_{0}, y^{\prime}(b)=B_{1}, \ldots, y^{(n-1)}(b)=B_{n-1}
\end{gathered}
$$

- The necessary condition is the Euler-Lagrange Equation

$$
F_{y}-\frac{d}{d x} F_{y^{\prime}}+\frac{d^{2}}{d x^{2}} F_{y^{\prime \prime}}-\cdots+(-1)^{n} \frac{d^{n}}{d x^{n}} F_{y^{(n)}}=0
$$

## Remark

For a functional of the form

$$
J[y]=\int_{a}^{b} F\left(x, y, y^{\prime}\right) d x
$$

the Euler-lagrange equation is in general a second-order differential equation, but it may turn out that the curve for which the functional has its extremum is not twice differentiable.

## Example 2.1

Consider the functional

$$
J[y]=\int_{-1}^{1} y^{2}\left(2 x-y^{\prime}\right)^{2} d x
$$

where

$$
y(-1)=0, \quad y(1)=1
$$

- The minimum of $J[y]$ equals zero and is achieved for the function

$$
y=y(x)=\left\{\begin{array}{llr}
0 & \text { for } & -1 \leqslant x \leqslant 0 \\
x^{2} & \text { for } & 0<x \leqslant 1
\end{array}\right.
$$

which has no second derivative for $x=0$.

- Nevertheless, $y(x)$ satisfies the appropriate E-L equation.
- In fact, since in this case

$$
F\left(x, y, y^{\prime}\right)=y^{2}\left(2 x-y^{\prime}\right)^{2}
$$

it follows that all the functions

$$
F_{y}=2 y\left(2 x-y^{\prime}\right)^{2}, \quad F_{y^{\prime}}=-2 y^{2}\left(2 x-y^{\prime}\right), \quad \frac{d}{d x} F_{y^{\prime}}
$$

vanish identically for $-1 \leqslant x \leqslant 1$.

- Thus, despite of the fact that the E-L equation is of the second order and $y^{\prime \prime}(x)$ does not exist everywhere in $[-1,1]$, substitution of $y(x)$ into E -L's equation converts it into an identity.

We now give conditions guaranteeing that a solution of the E-L equation has a second derivative:

Theorem 2.1
Suppose $y=y(x)$ has a continuous first derivative and satisfy the E-L equation

$$
F_{y}-\frac{d}{d x} F_{y^{\prime}}=0
$$

Then, if the function $F\left(x, y, y^{\prime}\right)$ has continuous first and second derivatives with respect to all its arguments, $y(x)$ has a continuous second derivative at all points $(x, y)$ where

$$
F_{y^{\prime} y^{\prime}}\left(x, y(x), y^{\prime}(x)\right) \neq 0
$$

We now indicate some special cases where the Euler-Lagrange equation can be reduced to a first-order differential equation, or where its solution can be obtained by evaluating integrals.

1. Suppose the integrand does not depend on $y$, i.e., let the functional under consideration have the form

$$
J[y]=\int_{a}^{b} F\left(x, y^{\prime}\right) d x
$$

where $F$ does not contain $y$ explicitly.

- In this case, the E-L equation becomes $\frac{d}{d x} F_{y^{\prime}}=0$, which obviously has the first integral

$$
\begin{equation*}
F_{y^{\prime}}=C, \tag{2.1}
\end{equation*}
$$

where $C$ is a constant. This is a first-oder ODE which does not contain $y$. Solving (2.1) for $y^{\prime}$, we obtain an equation of the form

$$
y^{\prime}=f(x, C) \text {. }
$$

2. If the integrand does not depend on $x$, i.e., if

$$
J[y]=\int_{a}^{b} F\left(y, y^{\prime}\right) d x
$$

then

$$
\begin{equation*}
F_{y}-\frac{d}{d x} F_{y^{\prime}}=F_{y}-F_{y^{\prime} y} y^{\prime}-F_{y^{\prime} y^{\prime}} y^{\prime \prime} \tag{2.2}
\end{equation*}
$$

Multiplying (2.2) by $y^{\prime}$, we obtain

$$
F_{y} y^{\prime}-F_{y^{\prime} y} y^{\prime 2}-F_{y^{\prime} y^{\prime}} y^{\prime} y^{\prime \prime}=\frac{d}{d x}\left(F-y^{\prime} F_{y^{\prime}}\right)
$$

Thus, in this case the E-L equation has the first integral

$$
F-y^{\prime} F_{y^{\prime}}=C
$$

where $C$ is a constant.
3. If $F$ does not depend on $y^{\prime}$, the $\mathrm{E}-\mathrm{L}$ equation takes the form

$$
F_{y}(x, y)=0
$$

and hence is not a differential equation, but a finite, whose solution consists of one or more curves $y=y(x)$
4. In a variety of problems, one encounters functionals of the form

$$
J[y]=\int_{a}^{b} f(x, y) \sqrt{1+y^{\prime 2}} d x
$$

representing the integral of a function $f(x, y)$ with respect to the arc length $s\left(d s=\sqrt{1+y^{\prime 2}} d x\right)$.

- In this case, the E-L equation can be transformed into

$$
\begin{aligned}
F_{y}-\frac{d}{d x} F_{y^{\prime}} & =f_{y}(x, y) \sqrt{1+y^{\prime 2}}-\frac{d}{d x}\left[f(x, y) \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right] \\
& =\frac{1}{\sqrt{1+y^{\prime 2}}}\left[f_{y}-f_{x} y^{\prime}-f \frac{y^{\prime \prime}}{1+y^{\prime 2}}\right]=0
\end{aligned}
$$

i.e.,

$$
f_{y}-f_{x} y^{\prime}-f \frac{y^{\prime \prime}}{1+y^{\prime 2}}=0
$$

## Remark <br> Note that the Euler-Lagrange Equation is a necessary, but not sufficient condition for a local extremum.

Next we will consider the famous example of the minimal surface area for a soap film.


## Example 2.2

We want to minimize the following functional

$$
J[y]=2 \pi \int_{x_{0}}^{x_{1}} y \sqrt{1+\left(y^{\prime}\right)^{2}} d x \rightarrow \min
$$

according to the boundary conditions $y\left(x_{0}\right)=y_{0}, y\left(x_{1}\right)=y_{1}$.

- If we use the Euler-Lagrange equation and solve it for $y(x)$ we find the Caternary function

$$
y(x)=C_{1} \cosh \left\{\left(\frac{x+C_{2}}{C_{1}}\right)\right\}
$$

- Consider the special case where $C_{2}=0$ and require that $y(x)=C_{1} \cosh \left\{\left(\frac{x}{C_{1}}\right)\right\}$ pass through $\left(-x_{1}, 1\right)$ and $\left(x_{1}, 1\right)$ where $x_{1}$ is a constant.
- So $C_{1}$ will satisfy

$$
\begin{equation*}
1=C_{1} \cosh \left\{\left(\frac{x}{C_{1}}\right)\right\} \tag{2.1}
\end{equation*}
$$

- Compare $y=1$ and (2.1) versus $C_{1}$
(1) For $x_{1}=1$ there is No Solutions;
(2) For $x_{1}=0.7$ there is exactly One Solutions;
(3) For $x_{1}=0.4$ there are Two Solutions.

