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Purpose of Lesson

Purpose of Lesson:

To discuss the special cases of the E-L equation.

To discuss the generalizations of the E-L equations to case of n
functions and to the ones of higher order derivatives.

To show that the E-L equation is a necessary, but not sufficient
condition for a local extremum.
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Purpose of Lesson

§2. Remarks on the Euler-Lagrange equation
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The Euler-Lagrange Equation

The Euler–Lagrange Equation:

If y minimizes J[y ] =

b∫
a

F (x , y , y ′)dx , then y must satisfy the equation

∂F
∂y
− d

dx

[
∂F
∂y ′

]
= 0
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Historical Remarks

History of Leonhard Euler and Joseph-Louis
Lagrange

Leonhard Euler (1707-1783) Joseph-Louis Lagrange (1736-1813)
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Historical Remarks

Euler developed Euler’s Equations for fluids flow ans Euler’s
formula

eix = cosx + i sin x .

In 1744 Euler published the first book on Calculus of Variations.

Lagrange developed Lagrange Mulipliers, Lagrangian Mechanics,
and the Method of Variations of Parameters.
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Historical Remarks

In 1766 Lagrange succeeded Euler as the director of Mathematics
at the Prussian Academy of Sciences in Berlin.

In letters to Euler between 1754 and 1756 Lagrange shared his
observation of a connection between minimizing functionals and
finding extrema of a function.

Euler was so impressed with Lagrange’s simplification of his
earlier analysis it is rumored he refrained from submitting a paper
covering the same topics to give Lagrange more time.
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Generalizations ofthe E-L Equation Generalization to n functions

Generalization to n functions:
Let F (x , y1, . . . , yn, y ′1, . . . , y

′
n) be a function with continuous first

and second partial derivatives. Consider the problem of finding
necessary conditions for finding the extremum of the following
functional

J[y1, . . . , yn] =

b∫
a

F (x , y1, . . . , yn, y ′1, . . . , y
′
n)dx → min

which depends continuously on n continuously differentiable
functions y1(x), ..., yn(x) satisfying boundary conditions

yi(a) = Ai , yi(b) = Bi for i = 1,2, ...n.

One can derive that the necessary condition is a system of
Euler-Lagrange Equations

∂F
∂yi
− d

dx
∂F
∂y ′i

= 0
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Generalizations ofthe E-L Equation Generalization to Higher Order Derivatives

Generalization to Higher Order Derivatives:
Let F (x , y , y ′, y ′′, ..., y (n)) be a function with continuous first and
second derivatives with respect to all arguments, and consider a
functional of the form

J[y ] =

b∫
a

F (x , y , y ′, y ′′, ..., y (n))dx → min

where the admissible class will be

A = {y(x) ∈ Cn[a,b]}
y(a) = A0, y ′(a) = A1, . . . , y (n−1)(a) = An−1

y(b) = B0, y ′(b) = B1, . . . , y (n−1)(b) = Bn−1

The necessary condition is the Euler-Lagrange Equation

Fy −
d
dx

Fy ′ +
d2

dx2 Fy ′′ − · · ·+ (−1)n dn

dxn Fy (n) = 0
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Failure of Regularity

Remark
For a functional of the form

J[y ] =

b∫
a

F (x , y , y ′)dx

the Euler-lagrange equation is in general a second-order differential
equation, but it may turn out that the curve for which the functional has
its extremum is not twice differentiable.
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Failure of Regularity

Example 2.1
Consider the functional

J[y ] =

1∫
−1

y2(2x − y ′)2dx

where
y(−1) = 0, y(1) = 1.

The minimum of J[y ] equals zero and is achieved for the function

y = y(x) =

{
0 for − 1 6 x 6 0,

x2 for 0 < x 6 1,

which has no second derivative for x = 0.
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Failure of Regularity

Nevertheless, y(x) satisfies the appropriate E-L equation.

In fact, since in this case

F (x , y , y ′) = y2(2x − y ′)2

it follows that all the functions

Fy = 2y(2x − y ′)2, Fy ′ = −2y2(2x − y ′),
d
dx

Fy ′

vanish identically for −1 6 x 6 1.

Thus, despite of the fact that the E-L equation is of the second
order and y ′′(x) does not exist everywhere in [−1,1], substitution
of y(x) into E-L’s equation converts it into an identity.
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Failure of Regularity

We now give conditions guaranteeing that a solution of the E-L
equation has a second derivative:

Theorem 2.1
Suppose y = y(x) has a continuous first derivative and satisfy the E-L
equation

Fy −
d
dx

Fy ′ = 0.

Then, if the function F (x , y , y ′) has continuous first and second
derivatives with respect to all its arguments, y(x) has a continuous
second derivative at all points (x , y) where

Fy ′y ′(x , y(x), y ′(x)) 6= 0.
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Special Cases of the E-L Equation

We now indicate some special cases where the Euler-Lagrange
equation can be reduced to a first-order differential equation, or where
its solution can be obtained by evaluating integrals.

1. Suppose the integrand does not depend on y , i.e., let the
functional under consideration have the form

J[y ] =

b∫
a

F (x , y ′)dx ,

where F does not contain y explicitly.

In this case, the E-L equation becomes d
dx Fy ′ = 0, which obviously

has the first integral
Fy ′ = C, (2.1)

where C is a constant. This is a first-oder ODE which does not
contain y . Solving (2.1) for y ′, we obtain an equation of the form

y ′ = f (x ,C) .
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Special Cases of the E-L Equation

2. If the integrand does not depend on x , i.e., if

J[y ] =

b∫
a

F (y , y ′)dx ,

then
Fy −

d
dx

Fy ′ = Fy − Fy ′yy ′ − Fy ′y ′y ′′. (2.2)

Multiplying (2.2) by y ′, we obtain

Fyy ′ − Fy ′yy ′2 − Fy ′y ′y ′y ′′ =
d
dx

(F − y ′Fy ′).

Thus, in this case the E-L equation has the first integral

F − y ′Fy ′ = C

where C is a constant.
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Special Cases of the E-L Equation

3. If F does not depend on y ′, the E-L equation takes the form

Fy (x , y) = 0,

and hence is not a differential equation, but a finite, whose
solution consists of one or more curves y = y(x)

c© Daria Apushkinskaya 2014 () Calculus of variations lecture 2 25. April 2014 16 / 20



Special Cases of the E-L Equation

4. In a variety of problems, one encounters functionals of the form

J[y ] =

b∫
a

f (x , y)
√

1 + y ′2dx ,

representing the integral of a function f (x , y) with respect to the
arc length s (ds =

√
1 + y ′2dx).

In this case, the E-L equation can be transformed into

Fy −
d
dx

Fy ′ = fy (x , y)
√

1 + y ′2 − d
dx

[
f (x , y)

y ′√
1 + y ′2

]

=
1√

1 + y ′2

[
fy − fxy ′ − f

y ′′

1 + y ′2

]
= 0

i.e.,

fy − fxy ′ − f
y ′′

1 + y ′2 = 0 .
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Failure of Sufficiency Necessary Not Sufficient

Remark
Note that the Euler-Lagrange Equation is a necessary, but not
sufficient condition for a local extremum.

Next we will consider the famous example of the minimal surface area
for a soap film.
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Failure of Sufficiency Soap Film Problem

Example 2.2
We want to minimize the following functional

J[y ] = 2π

x1∫
x0

y
√

1 + (y ′)2dx → min

according to the boundary conditions y(x0) = y0, y(x1) = y1.

If we use the Euler-Lagrange equation and solve it for y(x) we find
the Caternary function

y(x) = C1 cosh
{(

x + C2

C1

)}
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Failure of Sufficiency Soap Film Problem

Consider the special case where C2 = 0 and require that
y(x) = C1 cosh

{(
x

C1

)}
pass through (−x1,1) and (x1,1) where

x1 is a constant.

So C1 will satisfy

1 = C1 cosh
{(

x
C1

)}
(2.1)

Compare y = 1 and (2.1) versus C1

1 For x1 = 1 there is No Solutions;

2 For x1 = 0.7 there is exactly One Solutions;

3 For x1 = 0.4 there are Two Solutions.
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