Calculus of Variations Summer Term 2014

Lecture 3
2. Mai 2014

Purpose of Lesson:

- To discuss the simplest variational problems involving undetermined end points.

Problem 3-1
We seek to minimize the integral

$$
J[y]=\int_{a}^{b} F\left(x, y, y^{\prime}\right) d x \rightarrow \min
$$

with respect to functions that attain the value A for $x=a$, but for which no value is prescribed at $x=b$.

Question:

What is the arc of quickest descent from a fixed point to a vertical line?

- To find the minimizing function, we as before introduce a small variation from $y(x)$, namely

$$
y(x)+\varepsilon \eta(x)
$$

where ε is a small parameter and $\eta(x)$ is a smooth curve satisfying the $B C$

$$
\eta(a)=0 .
$$

- We take the derivative of

$$
\phi(\varepsilon)=J[y+\varepsilon \eta]
$$

with respect to ε, evaluate it $\varepsilon=0$, and set this equal to zero; that is,

$$
\begin{aligned}
\frac{d \phi(\varepsilon)}{d \varepsilon} & =\left.\frac{d}{d \varepsilon} J[y+\varepsilon \eta]\right|_{\varepsilon=0} \\
& =\int_{a}^{b}\left[\frac{\partial F}{\partial y} \eta(x)+\frac{\partial F}{\partial y^{\prime}} \eta^{\prime}(x)\right] d x
\end{aligned}
$$

- Integration by parts gives

$$
\begin{equation*}
\left[\frac{\partial F}{\partial y^{\prime}} \eta(x)\right]^{x=b}+\int_{a}^{b}\left\{\frac{\partial F}{\partial y}-\frac{d}{d x}\left[\frac{\partial F}{\partial y^{\prime}}\right]\right\} \eta(x) d x=0 \tag{3.1}
\end{equation*}
$$

- Since (3.1) must hold for all choices of $\eta(x)$ satisfying

$$
\eta(a)=0
$$

it must in particular hold for those η for which $\eta(b)=0$. For such $\eta(x)$ the first term in (3.1) disappeared and as before we end up with

$$
\begin{equation*}
\frac{\partial F}{\partial y}-\frac{d}{d x}\left[\frac{\partial F}{\partial y^{\prime}}\right]=0 \tag{3.2}
\end{equation*}
$$

- So, with result (3.2), and for general $\eta(x)$ once again, the second member of (3.1) reduces to its first term

$$
\left[\frac{\partial F}{\partial y^{\prime}} \eta(x)\right]^{x=b}=0
$$

- Now, by choosing $\eta(b)=1$, the vanishing for all η of the term remaining requires fulfillment of the end-point condition

$$
\begin{equation*}
\left.\frac{\partial F}{\partial y^{\prime}}\right|_{x=b}=0 \tag{3.3}
\end{equation*}
$$

- The two constants of integration obtained in the solution of (3.2), a second-order equation, are determined by the end-point condition $y(a)=A$ and (3.3) - provided, of course, a solution of the problem exists.

Problem 3-2

We seek to minimize the integral

$$
J[y]=\int_{a}^{x^{*}} F\left(x, y, y^{\prime}\right) d x \rightarrow \min
$$

with respect to functions which attain the value A for $x=a$ and which satisfy the given relation

$$
g(x, y)=0
$$

at the upper limit of integration, as yet undetermined.

Question:

- What is the arc of quickest descent from a fixed point to a given curve?
- To find the minimizing function, we as before introduce a small variation from $y(x)$, namely

$$
y(x)+\varepsilon \eta(x)
$$

where ε is a small parameter and $\eta(x)$ is a smooth curve satisfying the BC

$$
\eta(a)=0 .
$$

- The point of intersection of our small variation $y(x)+\varepsilon \eta(x)$ with the given curve $g(x, y)=0$ is denoted by $\left(x^{*}, y^{*}\right)$. We thus have

$$
\begin{equation*}
g\left(x^{*}, y^{*}\right)=0, \quad y^{*}=y\left(x^{*}\right)+\varepsilon \eta\left(x^{*}\right) \text {. } \tag{3.4}
\end{equation*}
$$

- We take the derivative of

$$
\phi(\varepsilon)=J[y+\varepsilon \eta]
$$

with respect to ε, evaluate it $\varepsilon=0$, and set this equal to zero; that is,

$$
\begin{aligned}
\frac{d \phi(\varepsilon)}{d \varepsilon} & =\left.\frac{d}{d \varepsilon} J[y+\varepsilon \eta]\right|_{\varepsilon=0} \\
& =\int_{a}^{x^{*}}\left[\frac{\partial F}{\partial y} \eta(x)+\frac{\partial F}{\partial y^{\prime}} \eta^{\prime}(x)\right] d x+\left.F\left(x^{*}, y^{*},\left(y^{*}\right)^{\prime}\right) \frac{d x^{*}}{d \varepsilon}\right|_{\varepsilon=0}
\end{aligned}
$$

- Since relations (3.4) hold for all ε, we have that the total derivative of $g\left(x^{*}, y^{*}\right)$ with respect to ε must vanish.
- From (3.4) we therefore obtain, on noting that x^{*} is a function of ε for any given $\eta(x)$,

$$
\begin{aligned}
0 & =\frac{\partial g}{\partial x^{*}} \frac{d x^{*}}{d \varepsilon}+\frac{\partial g}{\partial y^{*}} \frac{d y^{*}}{d \varepsilon} \\
& =\frac{\partial g}{\partial x^{*}} \frac{d x^{*}}{d \varepsilon}+\frac{\partial g}{\partial y^{*}}\left[y^{\prime}\left(x^{*}\right) \frac{d x^{*}}{d \varepsilon}+\eta\left(x^{*}\right)+\varepsilon \eta^{\prime}\left(x^{*}\right) \frac{d x^{*}}{d \varepsilon}\right]
\end{aligned}
$$

- Solving the above equality, with $\varepsilon=0$, for $\left.\frac{d x^{*}}{d \varepsilon}\right|_{\varepsilon=0}$ we obtain

$$
\begin{equation*}
\left.\frac{d x^{*}}{d \varepsilon}\right|_{\varepsilon=0}=-\frac{\eta\left(x^{*}\right) \frac{\partial g}{\partial y^{*}}}{\frac{\partial g}{\partial x^{*}}+y^{\prime}\left(x^{*}\right) \frac{\partial g}{\partial y^{*}}} \tag{3.5}
\end{equation*}
$$

- With the aid of (3.5) and integration by parts we get

$$
\int_{a}^{x^{*}}\left[\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)\right] \eta d x+\eta\left(x^{*}\right)\left[\frac{\partial F}{\partial y^{\prime}}-\frac{F \frac{\partial g}{\partial y^{*}}}{\frac{\partial g}{\partial x^{*}}+\left(y^{*}\right)^{\prime} \frac{\partial g}{\partial y^{*}}}\right]^{x=x^{*}}=0
$$

- Repeating the line of arguments carried out in Problem 3-1 above we conclude that $y=y(x)$ satisfies the Euler-Lagrange equation

$$
\frac{\partial F}{\partial y}-\frac{d}{d x}\left[\frac{\partial F}{\partial y^{\prime}}\right]=0
$$

and, in addition to the $\mathrm{BC} y(a)=A$, the right-hand end-point condition

$$
\left[\frac{\partial F}{\partial y^{\prime}}-\frac{F \frac{\partial g}{\partial y^{*}}}{\frac{\partial g}{\partial x^{*}}+\left(y^{*}\right)^{\prime} \frac{\partial g}{\partial y^{*}}}\right]^{x=x^{*}}=0 \text {. }
$$

