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Purpose of Lesson

Purpose of Lesson:

To discuss the generalization of the E-L equation to case of
several variables. To illustrate the correspondence between the
multivariable variational problems and PDEs.

To consider a class of problems in which the functionals are
required to conform with certain restrictions that are added to the
usual continuity requirements and possible end-points conditions.
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The Case of Several Variables

In this subsection we consider functionals of the type

J[u] =

∫
Ω

F (x ,u(x),Du(x))dx ,

where
Ω is a bounded open set in Rn,
u : Ω→ R is a function of class C2,
F (x ,u,p) is a real valued function of class C2 with respect of all its
arguments.

Remark
The integrand F (x ,u,p) is denoted as Lagrangian, or variational
integrand, or Lagrange function.
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The Case of Several Variables

Consequently, the function

Φ(ε) := J[u + εη]

is defined for each η ∈ C∞0 (Ω,R) and for sufficiently small ε.

Moreover, Φ is of class C2 on some interval (−ε0, ε0).

We will call its derivative Φ′(0) at ε = 0 the first variation of J at u
in direction of η and denote (sometimes)

δJ[u, η] = Φ′(0).

A stright-forward computation yields

δJ[u, η] = Φ′(0) =

∫
Ω

{Fu(x ,u,Du)η + Fp(x ,u,Du) · Dη}dx

=

∫
Ω

Fu(x ,u,Du)η +
n∑

j=1

∂F (x ,u,Du)

∂pj
Djη

dx
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The Case of Several Variables

Involving the integration by parts we end up with

0 = Fu(x ,u,Du)−
n∑

j=1

d
dxj

[
∂F (x ,u,Du)

∂pj

]

= Fu −
n∑

j=1

[
∂2F
∂pj∂xj

+
∂2F
∂pj∂u

Dju +
n∑

k=1

∂2F
∂pj∂pk

DkDju

] .
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Correspondence between Variational Integrals and PDEs

Example 4.1 (The Laplace equation)
Consider the Dirichlet integral defined by

D[u] :=
1
2

∫
Ω

|Du|2dx

The corresponding Euler-Lagrange equation has the form

∆u = 0 in Ω.
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Correspondence between Variational Integrals and PDEs

Example 4.2 (The Poisson equation)
The integral

J[u] =

∫
Ω

[
1
2
|Du|2 + f (x)u

]
dx

with the Lagrangian

F (x ,u,p) =
1
2
|p|2 + f (x)u

has the so-called The Poisson equation

∆u = f (x) in Ω

as the corresponding E-L equation.
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Correspondence between Variational Integrals and PDEs

Example 4.3 (The nonlinear Poisson equation)
The nonlinear Poisson equation

∆u = f (u) in Ω

is the Euler-Lagrange equation of the integral

J[u] =

∫
Ω

{
1
2
|Du|2 + g(u)

}
dx

where g is a primitive function of f , i.e., g′(z) = f (z).
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Correspondence between Variational Integrals and PDEs

Example 4.4 (The wave equation)

Interpret R4 as space-time continuum of points (x , t) ∈ R3 ×R where x
is the position vector in R3 and t denotes the time.

Let Ω be some bounded domain in R4, and consider the function
u(x , t) of x and t . Then the integral

J[u] =

∫
Ω

1
2

{
u2

t − |Du|2
}

dxdt

has the wave equation

�u := utt −∆u = 0 in Ω

as the Euler-Lagrange equation.
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Correspondence between Variational Integrals and PDEs

Example 4.5 (The minimal surface equation)
The area functional

A[u] =

∫
Ω

√
1 + |Du|2dx

for hypersurfaces z = u(x), x ∈ Ω ⊂ Rn, in Rn+1 yields the minimal
surface equation

div Tu = 0 in Ω, Tu :=
Du√

1 + |Du|2

as the Euler-Lagrange equation, which we can also write as

n∑
i=1

Di

(
Diu√

1 + |Du|2

)
= 0.
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Correspondence between Variational Integrals and PDEs

Example 4.6 (Digital Image Processing)
We consider a distorted Black-White-Image which is described by a
function f : R2 ⊃ Ω→ R, here Ω = [0,a]× [0,b].

The value f (x) corresponds the darkness of gray color in the image
point x (the brighter corresponds the greater value of f ). In order to
eliminate the interference as much as possible we minimize the
functional

Ef [u] :=

∫
Ω

{
(u − f )2 + α|Du|2

}
dx , α > 0.

Here (f − u)2 stands for the difference with the original image and |Du|
is a measure of the smoothness of the denoised image. The Integral
Ef [u] has the following E-L equation

u −∆u = f in Ω.
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Isoperimetric problems

§3. Isoperimetric problems
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Isoperimetric problems Constraints

We now include additional constarints into our minimizations problems:

Integral constraints of the form∫
G(x , y , y ′)dx = const

e.g., the Isoperimetric problem.

Holonimic constraints, e.g., G(x , y) = 0

Non-holonomic constraints, e.g., G(x , y , y ′) = 0

We won’t consider inequality constraints until later.
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Isoperimetric problems Dido’s problem

The standard example of a problem with integral constraints is Dido’s
problem.

Dido’s problem
This is probably one of the oldest problem in the Calculus of
Variations.

Dido (Carthaginian queen) founded the city of Carthage, in
Tunisia.

According to legend, she arrived at the site with her entourage, a
refugee from a power struggle with her brother in Tyre in the
Lebanon.

She asked the locals for as much land as could be bound by a
bull’s hide.

She cut the hide into a long thin strip and bounded the maximum
possible area with this.
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Isoperimetric problems Dido’s problem
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Isoperimetric problems Meaning of the word isoperimetric

Dido’s problem falls into the class of isoperimetric problems.

iso- (from same) and perimetric (from perimeter), roughly meaning
”same perimeter”.

In general, such problems involve a constraint

e.g., the length of the bull’s hide strip.

But the constraints is not always to fix the perimeter length.

Sometimes the constraint does not even involve a length.

But the term isoperimetric is still used.
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Isoperimetric problems Formulation of the soperimetric problems

We can write the isoperimetric problems in the following form:

The simple isoperimetric problem:
We are looking for the extremals of the functional

J[y ] =

b∫
a

F (x , y , y ′)dx → min

with all the usual conditions (e.g. on end points, and continuous
derivatives) but in addition we must satisfy the extra functional
constraint

G[y ] =

b∫
a

G(x , y , y ′)dx = L
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Isoperimetric problems A simplified form of Dido’s problem

A simplified form of Dido’s problem:
Imagine that the two end-points are fixed, along the cost (Carthage
was a great sea power), and we wish to encompass the largest
possible area inland with a fixed length L.

We can write this problem as maximize the area

J[y ] =

b∫
a

ydx → max

encompassed by the curve y , such that the curve y has the fixed
length L, e.g., as before the length of the curve is

G[y ] =

b∫
a

√
1 + y ′2dx = L

subject to the end-pont conditions y(a) = y(b) = 0.
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Isoperimetric problems A simplified form of Dido’s problem

A simplified form of Dido’s problem:

€ 

J[y] = ydx → max
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∫
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Isoperimetric problems Approach

As before

we perturb the curve, and consider the first variation

but we cannot perturb by an arbitrary function εη. because then
the constraint

G[y + εη] = L

might be violated.

solution: use the same approach as in constrained maximization,
e.g. use Lagrange multipliers
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Isoperimetric problems Lagrange multiplier refresher

Problem
To find the minimum (or maximum) of f (x) for x ∈ Rn subject the
constraints

gi(x) = 0, i = 1, . . . ,m < n (4.1)

Solution requires Lagrange Multipliers.

Minimize (ot maximize) a new function (of m + n variables)

h(x , λ) = f (x) +
m∑

i=1

λigi(x),

where λi are the undetermined Lagrange multipliers.

The constants λ1, . . . , λm are evaluated by means of the set of
equations consisting of (4.1) and

∂h(x , λ)

∂xj
= 0, j = 1, . . . ,n
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Isoperimetric problems Lagrange multipliers in functionals

To maximize

J[y ] =

b∫
a

F (x , y , y ′)dx

subject to

G[y ] =

b∫
a

G(x , y , y ′)dx = L

we instead consider the problem of finding extremals of

H[y ] =

b∫
a

H(x , y , y ′)dx =

b∫
a

{
F (x , y , y ′) + λG(x , y , y ′)

}
dx
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Isoperimetric problems The Euler-Lagrange equations

The Euler-Lagrange equations become

∂H
∂y
− d

dx

(
∂H
∂y ′

)
= 0

where H = F + λG, and λ is the unknown Lagrange multiplier.
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Isoperimetric problems Dido’s problem

Example 4.7 (Simple Dido’s problem)

H[y ] =

a∫
−a

(
y + λ

√
1 + (y ′)2

)
dx

so

∂H
∂y

= 1

d
dx

(
∂H
∂y ′

)
=

d
dx

(
λy ′√

1 + (y ′)2

)

and the Euler-Lagrange equation is

d
dx

λy ′√
1 + (y ′)2

= 1
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Isoperimetric problems Dido’s problem

Example 4.7 (Simple Dido’s problem)
Integrating with respect to x we get

x + C1 = λ sin (θ)

y = −λ cos (θ) + C2

where λ, C1 and C2 are determined by the two end-points, and the
length of the curve L.

We may draw a sketch of the solution, and clearly we can identify
−λ = r the radius of a circle, of which our region is a segment.

Note we deliberately started with

2a < L 6 πa.
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Isoperimetric problems Dido’s problem
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Isoperimetric problems Dido’s problem

Example 4.7 (Simple Dido’s problem)
We can see that the arc length of the enclosing curve will be

L = 2θ1r

and the the value on the right-end determines that

r =
a

sin (θ1)

Therefore, we have

L =
2aθ1

sin (θ1)

from which we may determine θ1.
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Isoperimetric problems Dido’s problem

Example 4.7 (Simple Dido’s problem)
Since we determine θ1 from

sin (θ1) =
2a
L
θ1

we may compute
r =

a
sin (θ1)

.
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Isoperimetric problems Dido’s problem

Example 4.7 (Simple Dido’s problem)

From the conditions y(±a) = 0 it follows that

C2 = − cos (θ1).

The maximum possible area bounded by a curve of fixed length is
a circle. So the city of Carthage is circular in shape.
The story of Carthage isn’t quite true (see picture below).
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Isoperimetric problems A realistic coast

What effect would a realistic coastline have?
Coast c(x).

Area =
a∫
−a

(y − c) dx
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€ 
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€ 

θ1
	
  

c(x)	
  

Note that c doesn’t depend on y or y ′, so the Euler-Lagrange
equations are unchanged, provided c(x) < y(x) for the extremal.
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Isoperimetric problems A realistic coast

What effect would a realistic coastline have?
If the condition c(x) < y(x) is not satisfied then the area integral
includes negative components, so the problem we are maximizing
is not really Dido’s problem any more (she can’t own negative
areas).

We really want to maximize

Area =

b∫
a

[y − c]+ dx

where

[x ]+ =

{
x , for x > 0
0, otherwise

Note that the function [x ]+ does not have a derivative at x = 0.
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