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Purpose of Lesson

Purpose of Lesson:

To discuss catenary of fixed length.

Consider possible pathologic cases, discuss rigid extremals and
give interpretation of the Lagrange multiplier λ

To solve the more general case of Dido’s problem with general
shape and parametrically described perimeter.
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Isoperimetric problems (continued) Catenary of fixed length

Example 5.1 (Catenary of fixed length)

In Example 2.2 we computed the shape of a suspended wire,
when we put no constraints on the length of the wire.

Picture: A hanging chain forms a catenary

What happens to the shape of the suspended wire when we fix
the length of the wire?
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Isoperimetric problems (continued) Catenary of fixed length

Example 5.1 (Catenary of fixed length)

As before we seek a minimum for the potential energy

J[y ] =

x1∫
x0

y
√

1 + (y ′)2dx → min

but now we include the constraint that the lentgh of the wire is L,
e.g.

G[y ] =

x1∫
x0

√
1 + (y ′)2dx = L
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Isoperimetric problems (continued) Catenary of fixed length

We seek extremals of the new functional

H[y ] =

x1∫
x0

(y + λ)
√

1 + (y ′)2dx .

Notice that H(x , y , y ′) = (y + λ)
√

1 + (y ′)2 has no explicit
dependence on x , and so we may compute

H − y ′Hy ′ =
(y + λ)(y ′)2√

1 + (y ′)2
− (y + λ)

√
1 + (y ′)2 = const

Perform the change of variables u = y + λ, and note that u′ = y ′

so that the above can be rewritten as

u(u′)2√
1 + (u′)2

− u
√

1 + (u′)2 = C1. (5.1)
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Isoperimetric problems (continued) Catenary of fixed length

It is easy to see that Eq. (5.1) reduces to

u2

1 + (u′)2 = C2
1 . (5.2)

Eq. (5.2) is exactly the same equation (in u) as we had previously
for the catenary in y . So, the result is a catenary also, but shifted
up or down by an amount such that the length of the wire is L.

y = u − λ = C1 cosh
(

x − C2

C1

)
− λ

So, we have three constants to determine

1 we have two end points

2 we have the length constraint

c© Daria Apushkinskaya 2014 () Calculus of variations lecture 5 7. Mai 2014 6 / 25



Isoperimetric problems (continued) Catenary of fixed length

As in Example 2.2 we put C2 = 0 and consider the even solution
with x0 = −1, y(x0) = 1, x1 = 1 and y(1) = 1.

L =

1∫
−1

√
1 + (y ′)2dx =

1∫
−1

cosh
(

x
C1

)
dx

= C1

[
sinh

(
x

C1

)]1

−1
= 2C1 sinh

(
1

C1

)
Now we can calculate C1 from the above equality.

Once we know C1 we can calculate λ to satisfy the end heights
y(−1) = y(1) = 1.
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Isoperimetric problems (continued) Catenary of fixed length

Example 5.2 (cf. Example 5.1)
From Example 5.1 we know that a solution of the catenary
problem with length constraint has the form

y = Ccosh
( x

C

)
− λ,

and y satisfy the additional conditions

y(−1) = y(1) = 2, L =

1∫
−1

√
1 + (y ′)2dx = 2C sinh

( x
C

)
.

Using Maple we calculate y for the natural catenary (without
length constraint), as well as for L = 2.05 L = 2.9 and L = 5. See
Worksheet 1 for the detailed calculation.
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Isoperimetric problems (continued) Catenary of fixed length

All catenaries are valid, but one is natural

The red curve shows the natural catenary (without length
constraint), and the green, yellow and blue curves show other
catenaries with different lengths.
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Isoperimetric problems (continued) Pathologies

Pathologies

Note that in both cases (”simple Dido’s problem” and ”catenary of fixed
length”)

the approach only works for certain ranges of L.

If L is too small, there is no physically possible solution

e.g., if wire length L < x1 − x0

e.g., if oxhide length L < x1 − x0

If L is too large in comparison to y1 = y(x1), the solution may have
our wire dragging on the ground.
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Isoperimetric problems (continued) Rigid Extremals

A particular problem to watch for are rigid extremals

Rigid extremals are extremals that cannot be perturbed, and stiil
satisfy the constraint.

Example 5.3
For example

G[y ] =

1∫
0

√
1 + (y ′)2dx =

√
2

with the boundary constraints y(0) = 0 and y(1) = 1.

The only possible y to satisfy this constraint is y(x) = x , so we
cannot perturb around this curve to find conditions for viable
extremals.
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Isoperimetric problems (continued) Rigid Extremals

Rigid extremals cases have some similarities to maximization of a
function, where the constraints specify a single point:

Example 5.4

Maximize f (x , y) = x + y , under the constraint that x2 + y2 = 0.

In Example 5.3, the constraint, and the end-point leave only one
choice of function, y(x) = x .
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Isoperimetric problems (continued) Interpretation of λ

Interpretation of λ:

Consider again to finding extremals for

H[y ] = J[y ] + λG[y ], (5.3)

where we include G to meet an isoperimetric constraint G[y ] = L.

One way to think about λ is to think of (5.3) as trying to minimize
J[y ] and G[y ]− L.

1 λ is a tradeoff between J and G.

2 If λ is big, we give a lot of weight to G.

3 If λ is small, then we give most weight to J.

So, λ might be thought of as how hard we have to ”pull” towards
the constraint in order to make it.
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Isoperimetric problems (continued) Interpretation of λ

Interpretation of λ (cont.)

For example,

in the catenary problem, the size of λ is the amount we have to
shift the cosh function up or down to get the right length.

when λ = 0 we get the natural catenary,

i.e., in this case, we didn’t need to change anything to get the right
shape, so the constraint had no affect.
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Isoperimetric problems (continued) Interpretation of λ

Interpretation of λ (cont.)

Write the problem (including the constant) as minimize

H[y ] =

∫
F + λ(G − k)dx ,

for the constant k =
L∫
1dx

, then

∂H
∂k

= λ,

we can also think of λ as the rate of change of the value of the
optimum with respect to k .

when λ = 0, the functional H has a stationary point

e.g., in the catenary problem this is a local minimum
corresponding to the natural catenary.
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Isoperimetric problems (continued) Dido’s problem - traditional

Consider now the more general case of Dido’s problem:

a general shape,

	  

Ω	  

∂Ω	  

without a coast,

so that the perimeter must be parametrically described.
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Isoperimetric problems (continued) Dido’s problem - traditional

Dido’s problem is usual posed as follows:

Problem 5-1 (Dido’s problem -traditional)
To find the curve of length L which encloses the largest possible area,
i.e., maximize

Area =

∫∫
Ω

1dxdy

subject to the constraint ∮
∂Ω

1ds = L

Of course Problem 5-1 is not yet in a convinient form.
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Isoperimetric problems (continued) Green’s Theorem

Green’s Theorem converts an integral over the area Ω to a contour
integral around the boundary ∂Ω.

Green’s Theorem∫∫
Ω

(
∂φ

∂x
+
∂ϕ

∂y

)
dxdy =

∮
∂Ω

φdy − ϕdx

for φ, ϕ : Ω→ R such that φ, ϕ, φx and ϕy are continuous.

This converts an area integral over a region into a line integral around
the boundary.
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Isoperimetric problems (continued) Geometric representation of area

The area of a region is given by

Area =

∫∫
Ω

1dxdy .

In Green’s theorem choose φ =
x
2

and ϕ =
y
2

, so that we get

Area =

∫∫
Ω

1dxdy =
1
2

∮
∂Ω

xdy − ydx

Previous approach to Dido, was to use y = y(x), but in more
general case where the boundary must be closed, we can’t define
y as a function of x (or visa versa).

So, we write the boundary curve parametrically as (x(t), y(t)).
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Isoperimetric problems (continued) Dido’s Problem

If the boundary ∂Ω is represented parametrically by (x(t), y(t))
then

Area =

∫∫
Ω

1dxdy

=
1
2

∮
∂Ω

xdy − ydx

=
1
2

∮
∂Ω

(xẏ − yẋ) dt

So, now the problem is written in terms of

one independent variable = t
two dependent variables = (x , y).
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Isoperimetric problems (continued) Isoperimetric constraint

Previously we wrote the isoperimetric constraint as

G[y ] =

∫
1ds =

x1∫
x0

√
1 + (y ′)2dx = L

Now we must also modify the constraint using

ds
dt

=

√(
dx
dt

)2

+

(
dy
dt

)2

to get

G[y ] =

∮
1ds =

∮ √
ẋ2 + ẏ2dt = L
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Isoperimetric problems (continued) Dido’s problem: Lagrange multiplier

Hence, we look for extremals of

H[x , y ] =

∮ (
1
2

(xẏ − yẋ) + λ

√
ẋ2 + ẏ2

)
dt

So, H(t , x , y , ẋ , ẏ) = 1
2 (xẏ − yẋ) + λ

√
ẋ2 + ẏ2, and there are two

dependent variables, with derivatives

∂H
∂x

=
1
2

ẏ
∂H
∂ẋ

= −1
2

y +
λẋ√

ẋ2 + ẏ2

∂H
∂y

= −1
2

ẋ
∂H
∂ẏ

=
1
2

x +
λẏ√

ẋ2 + ẏ2

c© Daria Apushkinskaya 2014 () Calculus of variations lecture 5 7. Mai 2014 22 / 25



Isoperimetric problems (continued) Dido’s problem: EL equations

Leading to the 2 Euler-Lagrange equations

d
dt

[
−1

2
y +

λẋ√
ẋ2 + ẏ2

]
=

1
2

ẏ

d
dt

[
1
2

x +
λẏ√

ẋ2 + ẏ2

]
= −1

2
ẋ

Integrate

−1
2

y +
λẋ√

ẋ2 + ẏ2
=

1
2

y + A

1
2

x +
λẏ√

ẋ2 + ẏ2
= −1

2
x − B
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Isoperimetric problems (continued) Dido’s problem: solution

After simplification we get

λẋ√
ẋ2 + ẏ2

= y + A

λẏ√
ẋ2 + ẏ2

= −x − B

Now square the both equations, and add them to get

λ2 ẋ2 + ẏ2

ẋ2 + ẏ2 = (y + A)2 + (x + B)2

Or, more simply

(y + A)2 + (x + B)2 = λ2,

the equation os a circle with center (−B,−A) and radius |λ|.
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Isoperimetric problems (continued) Dido’s problem: End-conditions

Remarks
Note, we can’t set value at end points arbitrarily.

If x(t0) = x(t1), and y(t0) = y(t1), then we get a closed curve,
obviously a circle.

These conditions only amount to setting one constant, λ.

On the other hand, if we specify different end-points, we are really
solving a problem such as the simplified problem considered in
Lecture 4.
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