Calculus of Variations Summer Term 2014

Lecture 6
23. Mai 2014

Purpose of Lesson:

- To discuss why does the Lagrange multiplier approach work.
- Consider problems with non-integral constraints (holonomic and non-holonomic).
- Study general geodesic problem.

Why the Lagrange multiplier approach works here?

- Consider the approximation of the functional

$$
J[y]=\int_{a}^{b} F\left(x, y, y^{\prime}\right) d x \simeq \sum_{i=1}^{n} F\left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x_{i}}\right) \Delta x=F\left(y_{1}, \ldots, y_{n}\right)
$$

where $\Delta x=\frac{(b-a)}{n}$, and $\Delta y_{i}=y_{i}-y_{i-1}$.

- The problem of finding an extremal curve now becomes one of finding stationary points of the function $F\left(y_{1}, \ldots, y_{n}\right)$.
- We solve this by looking for

$$
\frac{\partial F}{\partial y_{i}}=0 \quad \text { for all } \quad i=1,2, \ldots, n
$$

- The constraint can be likewise approximted to give

$$
\mathcal{G}[y] \simeq \sum_{i=1}^{n} G\left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x_{i}}\right) \Delta x=G\left(y_{1}, \ldots, y_{n}\right)=L .
$$

- Under our usual conditions on J and \mathcal{G}, the limit as $n \rightarrow \infty$ gives

$$
\begin{aligned}
F\left(y_{1}, \ldots, y_{n}\right) & \rightarrow J[y] \\
G\left(y_{1}, \ldots, y_{n}\right) & \rightarrow \mathcal{G}[y]
\end{aligned}
$$

- That is, the functions of the approximation y_{1}, \ldots, y_{n} converge to the functionals of the curve $y(x)$.
- In the finite dimensional case the constraint is

$$
G\left(y_{1}, \ldots, y_{n}\right)-L=0
$$

and we use a standard Lagrange multiplier

$$
H\left(y_{1}, \ldots, y_{n}, \lambda\right)=F\left(y_{1}, \ldots, y_{n}\right)+\lambda\left[G\left(y_{1}, \ldots, y_{n}\right)-L\right]
$$

- We solve this by looking for

$$
\frac{\partial H}{\partial y_{i}}=0, \quad \forall i=1,2, \ldots, n, \quad \text { and } \quad \frac{\partial H}{\partial \lambda}=0
$$

- The last equation just gives you back your constraint.
- In our formulation of the isoperimetric problem we take

$$
\mathcal{H}[y]=J[y]+\lambda \mathcal{G}[y]
$$

and we also have

$$
H\left(y_{1}, \ldots, y_{n}, \lambda\right)=F\left(y_{1}, \ldots, y_{n}\right)+\lambda\left[G\left(y_{1}, \ldots, y_{n}\right)-L\right] .
$$

- In the limit as $n \rightarrow \infty$ we find that

$$
H\left(y_{1}, \ldots, y_{n}, \lambda\right) \rightarrow \mathcal{H}[y]-\lambda L .
$$

- The EL equations for $\mathcal{H}[y]-\lambda L$ and $\mathcal{H}[y]$ are the same, so they have the same extremals.

Remarks about multiple constraints

- We can also handle multiple constraints via multiple Lagrange multipliers.
- For instance, if we wish to find extremals of $J[y]=\int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x$ with the m constraints

$$
\mathcal{G}_{k}[y]=\int_{x_{0}}^{x_{1}} G_{k}\left(x, y, y^{\prime}\right) d x=L_{k}
$$

we would look for extremals of

$$
\mathcal{H}[y]=\int_{x_{0}}^{x_{1}} H\left(x, y, y^{\prime}\right) d x=\int_{x_{0}}^{x_{1}}\left[F\left(x, y, y^{\prime}\right)+\sum_{k=1}^{m} \lambda_{k} G_{k}\left(x, y, y^{\prime}\right)\right] d x
$$

§4. Problems with non-integral constaints

It is relatively easy to adapt the Lagrange multiplier technique to the case with non-integral constarints.

- Holonomic constraints are of the form

$$
G(x, y)=0
$$

- Non-Holonomic constraints are of the form

$$
G\left(x, y, y^{\prime}\right)=0
$$

- "Holonomic" comes from the greek "holos", for "whole". In this context it refers to integrability of the constraint.
- The non-holonomic constraints are really DEs.

Problem 6-1
Consider the problem of finding extremals of

$$
J[y]=\int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x
$$

subject to the constraint

$$
G(x, y)=0 .
$$

- In this case we introduce a function $\lambda(x)$ (also called a Lagrange multiplier), and look for the extremals of

$$
\mathcal{H}[y]=J[y]+\int_{x_{0}}^{x_{1}} \lambda(x) G(x, y) d x
$$

Remarks

- Constraints of the form $G(x, y)=0$ which don't involve derivatives of $y(x)$ can also be handled using a Lagrange multiplier technique.
- But we have to introduce a Lagrange multiplier function $\lambda(x)$, not just a single value λ.
- Effectively we introduce one Lagrange multiplier at each point where the constraint is enforced.

Why the Lagrange multiplier approach works here?

- Go back to the approximation of the functional

$$
J[y] \simeq \sum_{i=1}^{n} F\left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x_{i}}\right) \Delta x=F\left(y_{1}, \ldots, y_{n}\right)
$$

- The constraint applies a condition on each $\left(x_{i}, y_{i}\right)$.
- So, in the approximation there are n constraints

$$
G\left(x_{i}, y_{i}\right)=0 \quad \text { for } \quad i=1, \ldots, n .
$$

- There are n constraints,

$$
G\left(x_{i}, y_{i}\right)=0 \quad \text { for } \quad i=1, \ldots, n
$$

- For optimization problems with n constraints, we introduce n Lagrange multipliers, and maximize

$$
H\left(y_{1}, \ldots, y_{n}\right)=F\left(y_{1}, \ldots, y_{n}\right)+\sum_{k=1}^{n} \lambda_{k} G\left(x_{k}, y_{k}\right)
$$

- In the limit as $n \rightarrow \infty$

$$
\Delta x \sum_{k=1}^{n} \lambda_{k} G\left(x_{k}, y_{k}\right) \rightarrow \int_{x_{0}}^{x_{1}} \lambda(x) G(x, y) d x
$$

and hence the choice of

$$
\mathcal{H}[y, \lambda]=J[y]+\int_{x_{n}}^{x_{1}} \lambda(x) G(x, y) d x
$$

$$
\begin{aligned}
\mathcal{H}[y, \lambda] & =J[y]+\int_{x_{0}}^{x_{1}} \lambda(x) G(x, y) d x \\
& =\int_{x_{0}}^{x_{1}}\left(F\left(x, y, y^{\prime}\right)+\lambda(x) G(x, y)\right) d x
\end{aligned}
$$

- So, we can apply out standard arguments to the integrand

$$
H\left(x, y, y^{\prime}, \lambda\right)=F\left(x, y, y^{\prime}\right)+\lambda(x) G(x, y)
$$

and get the Euler-Lagrange equation

$$
\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)+\lambda(x) \frac{\partial G}{\partial y}=0
$$

With multiple dependent variables holonomic constraints are of the form

$$
G(t, \mathbf{q})=0
$$

and they don't involve derivatives.

Example 6.1

To minimize the functional

$$
J[x, y, z]=\int_{t_{0}}^{t_{1}} \sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}} d t
$$

subject to the constraint

$$
x^{2}+y^{2}-r^{2}=0
$$

Remarks

- In Example 6.1 we have to find geodesics on a right circular cylinder with radius r.
- Geodesic is the shortest line between two points on a mathematically defined surface (as a straight line on a plane or an arc of a great circle (like the equator) on a sphere).
- Geodesic is a curve whose tangent vectors remain parallel is they are transported along it.

$$
\mathcal{H}[\mathbf{q}, \lambda]=J[\mathbf{q}]+\int_{t_{0}}^{t_{1}} \lambda(t) G(t, \mathbf{q}) d t
$$

- So, we can again apply our standard arguments to the integrand

$$
H(t, \mathbf{q}, \dot{\mathbf{q}}, \lambda)=\boldsymbol{F}(t, \mathbf{q}, \dot{\mathbf{q}})+\lambda(t) \boldsymbol{G}(t, \mathbf{q})
$$

and get the system of the Euler-Lagrange equations

$$
\frac{\partial F}{\partial q_{k}}-\frac{d}{d t}\left(\frac{\partial F}{\partial \dot{q}_{k}}\right)+\lambda(t) \frac{\partial G}{\partial q_{k}}=0
$$

for all k.

General geodesic problem can be written as

Problem 6-2 (general geodesic problem)
To minimize

$$
J[x, y, z]=\int_{t_{0}}^{t_{1}} \sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}} d t
$$

sublect to

$$
G[x, y, z]=0,
$$

where $G[x, y, z]=0$ is the equation describing the surface of interest.

- As usual instead of $J[x, y, z]$ we minimize

$$
\mathcal{H}[x, y, z, \lambda]=\int_{t_{0}}^{t_{1}}\left(\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}+\lambda(t) G(x, y, z)\right) d t
$$

Given this formulation of the geodesic problem, the Euler-Lagrange equations become

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\dot{x}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}\right)-\lambda(t) \frac{\partial G}{\partial x}=0 \\
& \frac{d}{d t}\left(\frac{\dot{y}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}\right)-\lambda(t) \frac{\partial G}{\partial y}=0 \\
& \frac{d}{d t}\left(\frac{\dot{z}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}\right)-\lambda(t) \frac{\partial G}{\partial z}=0
\end{aligned}
$$

which may be easier to solve in some cases.

Example 6.2 (Geodesics on the sphere)

Find the geodesics on the sphere: e.g., we wish to find a parametric curve $(x(t), y(t), z(t))$ to minimize distance

$$
J[x, y, z]=\int_{t_{0}}^{t_{1}} \sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}} d t
$$

subject to being on the surface of a sphere

$$
x^{2}+y^{2}+z^{2}=a^{2}
$$

- We get
$H(t, x, y, z, \dot{x}, \dot{y}, \dot{z}, \lambda)=\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}+\lambda(t)\left(x^{2}+y^{2}+z^{2}-a^{2}\right)$
and there are three dependent variables (x, y, z).

Example 6.2 (cont.)

- The simple calculation shows that

$$
\begin{array}{ll}
\frac{\partial H}{\partial x}=2 \lambda x & \frac{\partial H}{\partial \dot{x}}=\frac{\dot{x}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}} \\
\frac{\partial H}{\partial y}=2 \lambda y & \frac{\partial H}{\partial \dot{y}}
\end{array}=\frac{\dot{y}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}
$$

Example 6.2 (cont.)

- There are 3 dependent variables (x, y, z), and, so 3 Euler-Lagrange equations, e.g.,

$$
\begin{aligned}
2 \lambda x & =\frac{d}{d t}\left(\frac{\dot{x}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}\right) \\
& =\frac{\ddot{x}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}-\frac{\dot{x}[\dot{x} \ddot{x}+\dot{y} \ddot{y}+\dot{z} \ddot{z}]}{\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)^{3 / 2}}
\end{aligned}
$$

- Due to symmetry, the equation

$$
2 \lambda u=\frac{\ddot{u}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}-\frac{\dot{u}[\dot{x} \ddot{x}+\dot{y} \ddot{y}+\dot{z} \ddot{z}]}{\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)^{3 / 2}}
$$

holds for $u=x, y$ and z.

Example 6.2 (cont.)

- Observe that

$$
2 \lambda u=\frac{\ddot{u}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}-\frac{\dot{u}[\dot{x} \ddot{x}+\dot{y} \ddot{y}+\dot{z} \ddot{z}]}{\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)^{3 / 2}}
$$

is a second order linear DE in u, and so it has only 2 linearly independent solutions, but the DE holds for $u=x, y$ and z.

- Therefore, x, y and z are linearly dependent, and so we can write them as

$$
A x+B y+C z=0
$$

but this is the equation of a plane through the origin.

- We have shown that geodesics on the sphere are great circles.

Remarks

- Non-Holonomic constraints are constraints of the form

$$
G\left(x, y, y^{\prime}\right)=0 \quad \text { or } \quad G(t, \mathbf{q}, \dot{\mathbf{q}})
$$

which involve derivatives.

- Non-Holonomic constraints are effectively additional DEs which we need to solve, but we can once again use Lagrange multipliers.
- Sometimes a constraint involving derivatives may be integrated to get a holonomic constraint. So, we refer to these constraints as integrable.
- In general, we will also need to deal with constraints involving derivatives as these may describe an entire systems behaviour, and be very difficult to integrate out of the problem.

Example 6.3 (Non-Holonomic constraints)

Example non-holonomic constraints:

$$
G\left(x, y, y^{\prime}\right)=0 \quad \text { or } \quad G(t, \mathbf{q}, \dot{\mathbf{q}})
$$

Instances:

- $y=\dot{x}$
- $y^{\prime 2}=\log x$.
- Solution technique for the non-holonomic constraints is just as for holonomic constraints, e.g.,

$$
\mathcal{H}[y, \lambda]=J[y]+\int_{x_{0}}^{x_{1}} \lambda(x) G\left(x, y, y^{\prime}\right) d x
$$

and the argument for why it works is almost identical.

Remark

- Non-Holonomic constraints can be used to avoid higher derivatives.

Example 6.4

Minimizing the functional

$$
J[y]=\int_{a}^{b} F\left(x, y, y^{\prime}, y^{\prime \prime}\right) d x
$$

we derive a new form of the Euler-Lagrange (Euler-Poisson) equation for this case, e.g.,

$$
\begin{equation*}
\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)+\frac{d^{2}}{d x^{2}}\left(\frac{\partial F}{\partial y^{\prime \prime}}\right)=0 \tag{6.1}
\end{equation*}
$$

Example 6.4 (cont.)

- Non-Holonomic constraints give us an alternative approach to problem (6.1).
- Introduce the new variable $z=y^{\prime}$, and rewrite the functional as

$$
\begin{equation*}
J[y, z]=\int_{a}^{b} F\left(x, y, z, z^{\prime}\right) d x \tag{6.2}
\end{equation*}
$$

- Now there is more thatn one dependent variable, but no second order derivatives. However, we must also introduce the constraint that

$$
z-y^{\prime}=0
$$

- So, we look for stationary curves of the functional

$$
\mathcal{H}[y, z, \lambda]=\int_{a}^{b}\left(F\left(x, y, z, z^{\prime}\right)+\lambda(x)\left(z-y^{\prime}\right)\right) d x
$$

Example 6.4 (cont.)

- The Euler-Lagrange equations for y and z are

$$
\begin{aligned}
& \frac{\partial H}{\partial y}-\frac{d}{d x}\left(\frac{\partial H}{\partial y^{\prime}}\right)=0 \\
& \frac{\partial H}{\partial z}-\frac{d}{d x}\left(\frac{\partial H}{\partial z^{\prime}}\right)=0
\end{aligned}
$$

- Note that $H\left(x, y, y^{\prime}, z, z^{\prime}\right)=F\left(x, y, z, z^{\prime}\right)+\lambda(x)\left(z-y^{\prime}\right)$. So, the Euler-Lagrange equations become

$$
\begin{aligned}
\frac{\partial F}{\partial y}+\frac{d}{d x}(\lambda(x)) & =0 \\
\frac{\partial F}{\partial z}+\lambda(x)-\frac{d}{d x}\left(\frac{\partial F}{\partial z^{\prime}}\right) & =0
\end{aligned}
$$

Example 6.4 (cont.)

- The first Euler-Lagrange equation can be rewritten

$$
\frac{d \lambda}{d x}=-\frac{\partial F}{\partial y}
$$

- Differentiating the second Euler-Lagrange equation w.r.t. x we get

$$
\frac{d}{d x}\left(\frac{\partial F}{\partial z}\right)+\frac{d \lambda}{d x}-\frac{d^{2}}{d x^{2}}\left(\frac{\partial F}{\partial z^{\prime}}\right)=0
$$

- Note from above that $\lambda^{\prime}=-F_{y}$ and that $z=y^{\prime}$ and $z^{\prime}=y^{\prime \prime}$ we get (as before) the Euler-Poisson equation:

$$
\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)+\frac{d^{2}}{d x^{2}}\left(\frac{\partial F}{\partial y^{\prime \prime}}\right)=0
$$

Remarks

- Earlier we derived the Euler-Lagrange equation assuming treating y and y^{\prime} as if they were independent variables.
- In reality they are related along the extremal.
- Lets get some motivation for this. Start by taking a new variable $u(x)=y^{\prime}(x)$, and put this into our minimization problem

$$
\mathcal{H}[y, u, \lambda]=\int_{a}^{b}\left(F(x, y, u)+\lambda(x)\left[u-y^{\prime}\right]\right) d x
$$

- We can use the same trick as in previous slides to get the Euler-Lagrange equations.

