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Purpose of Lesson

Purpose of Lesson:
@ To discuss why does the Lagrange multiplier approach work.

@ Consider problems with non-integral constraints (holonomic and
non-holonomic).

@ Study general geodesic problem.
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Purpose of Lesson Why the Lagrange multiplier approach works here?

Why the Lagrange multiplier approach works here?

@ Consider the approximation of the functional

J[y] /nyy dXNZF<XI7.yh y>AX—F(Y1a---7Yn)
i=1

where Ax = 28 and Ay, = y; — yi_4

@ The problem of finding an extremal curve now becomes one of
finding stationary points of the function F(y1,..., yn).

@ We solve this by looking for

9F _0 torall i=1.2.. . .n
3%
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Purpose of Lesson Why the Lagrange multiplier approach works here?

@ The constraint can be likewise approximted to give

A
g[y]NZG<XI7yI7Ay>AX G(Y1a-~-7}/n):L~

@ Under our usual conditions on J and G, the limit as n — oo gives

F(y1,...,¥n) — JIy]
G(y1,---,¥n) — Gyl

@ That is, the functions of the approximation y4, ..., y, converge to
the functionals of the curve y(x).
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Why the Lagrange multiplier approach works here?
@ In the finite dimensional case the constraint is

G(y1,...,yn)—L=0

and we use a standard Lagrange multiplier

H(Yh--w}/na)\):F(Yhnw}/n)+)‘[G(Y1w--a}’n)_L]

@ We solve this by looking for

OH oH
of _ i~ 1.2 AL
oy, 0 V=120 and FE=0

@ The last equation just gives you back your constraint.
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Why the Lagrange multiplier approach works here?
@ In our formulation of the isoperimetric problem we take

Hly] = Jly] + AGly]

and we also have

H(y1,- o ¥n A) = F(y1.- . ¥n) + AG(y4, -+, yn) — L.

@ In the limit as n — oo we find that

H(JV-],. .. ,yn,)\) — H[}/] — AL.

@ The EL equations for H[y] — AL and H|y] are the same, so they
have the same extremals.
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Purpose of Lesson Multiple constraints

Remarks about multiple constraints

@ We can also handle multiple constraints via multiple Lagrange
multipliers.

X4
@ For instance, if we wish to find extremals of J[y] = [ F(x,y,y")dx
Xo

with the m constraints
X1
Guly) = [ Gulx.y.y)d = Li
Xo

we would look for extremals of

Xq Xq m
Myl = [ Hieyy)ax= [|Fooyy)+ Y MGilxy.y')| dx
% 4 k=1
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Problems with non-integral constaints

§4. Problems with non-integral constaints
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Problems with non-integral constaints Non-integral constraints

It is relatively easy to adapt the Lagrange multiplier technique to the
case with non-integral constarints.

@ Holonomic constraints are of the form
G(x,y)=0
@ Non-Holonomic constraints are of the form
G(x,y.y')=0

@ "Holonomic” comes from the greek “holos”, for “whole”. In this
context it refers to integrability of the constraint.

@ The non-holonomic constraints are really DEs.
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Problems with non-integral constaints Holonomic constraints

Problem 6-1
Consider the problem of finding extremals of

X1
ﬂﬂ=/ﬂ&%ﬂw
Xo

subject to the constraint
G(x,y)=0.

@ In this case we introduce a function A(x) (also called a Lagrange
multiplier), and look for the extremals of

X1

MHZAH+/MMQ&WW-

X0
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Problems with non-integral constaints Holonomic constraints

Remarks

@ Constraints of the form G(x, y) = 0 which don’t involve derivatives
of y(x) can also be handled using a Lagrange multiplier
technique.

@ But we have to introduce a Lagrange multiplier function A(x), not
just a single value .

@ Effectively we introduce one Lagrange multiplier at each point
where the constraint is enforced.
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Problems with non-integral constaints Why the Lagrange multiplier approach works here?

Why the Lagrange multiplier approach works here?

@ Go back to the approximation of the functional

Jly] ~ ZF(X,,}/,, y>Ax—F(y1,...,y,,).

@ The constraint applies a condition on each (x;, ;).
@ So, in the approximation there are n constraints

G(x;,yi))=0 for i=1,...,n
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Problems with non-integral constaints Why the Lagrange multiplier approach works here?

@ There are n constraints,
G(x,-,y,-) =0 for i=1

gy

@ For optimization problems with n constraints, we introduce n
Lagrange multipliers, and maximize

n
H(}’h---a}/n) = F(Yh---,}’n)+Z)\kG(Xk,}’k)-
k=1
@ Inthelimitas n —

n X1
Ax S MGk, k) — / A(X)G(x, y)dx
k=1 Xo

and hence the choice of
X1

Hly. Al =)+ [ AG(x.y)d

Xn
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Problems with non-integral constaints Holonomic constraints

X1

Hly. Al = Jly] + / A(X)G(x, y)ax

X0
X1

= [ (Foeyy) +200G(xy)) dx

X0

@ So, we can apply out standard arguments to the integrand

H(x,y,y',2) = F(x,y,¥') + \(x)G(x, )

and get the Euler-Lagrange equation

oF d (0OF 0G
gy ~ o Loy) 05 0|
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Problems with non-integral constaints Multiple dependent variables

With multiple dependent variables holonomic constraints are of the
form
G(t,q) =0

and they don’t involve derivatives.

Example 6.1
To minimize the functional

b
Jix,y,z] = /\/)'(2 + y2 + Z2dt
fo

subject to the constraint

xX2+y?-rP=0.
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Problems with non-integral constaints Multiple dependent variables

Remarks
@ In Example 6.1 we have to find geodesics on a right circular
cylinder with radius r.

@ Geodesic is the shortest line between two points on a
mathematically defined surface (as a straight line on a plane or an
arc of a great circle (like the equator) on a sphere).

@ Geodesic is a curve whose tangent vectors remain parallel is they
are transported along it.
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Problems with non-integral constaints Multiple dependent variables

t

Hia, ] = Jla] + / A(HG(t, q)at

fo
@ So, we can again apply our standard arguments to the integrand
H(t,d,9.A) = F(t,9,9) + A(t)G(t, q)

and get the system of the Euler-Lagrange equations

OF d <8F) 028 _q

gk dt \ 9g gk

for all k.
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Problems with non-integral constaints General geodesic problem

General geodesic problem can be written as

Problem 6-2 (general geodesic problem)

To minimize t
3

Jx,y,z] = /\/)'(2 + y2 + Z2dt
fo

sublect to
G[X,y, Z] = 07

where GIx, y, z] = 0 is the equation describing the surface of interest.

v

@ As usual instead of J[x, y, z] we minimize
t

HIx,y, 2, )] = / (\/er)\(t)G(x,y, z)) dt.

fo
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Problems with non-integral constaints General geodesic problem

Given this formulation of the geodesic problem, the Euler-Lagrange
equations become

d X 0G
dt( /)'(2+}',2+22> _)\(t)a_o
d y 9G
dt («/k2+y2+22> ~Ag, =0
ad z 0G
dt( /)'(2+}',2+22> _)\(t)g_o

which may be easier to solve in some cases.
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Problems with non-integral constaints General geodesic problem

Example 6.2 (Geodesics on the sphere)

Find the geodesics on the sphere: e.g., we wish to find a parametric
curve (x(t), y(t), z(t)) to minimize distance

b
Jm%ﬂz/V%+W+%w
fo

subject to being on the surface of a sphere

X2 +yP+ 22 =

@ We get

H(L X,y 2,57, 2,0) = \[ X2+ 2+ 2+ () (B y2 + 22— &)

and there are three dependent variables (x, y, z).

v
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Problems with non-integral constaints General geodesic problem

Example 6.2 (cont.)

@ The simple calculation shows that

oH _
ox

OH

— =2)\y

oy

oH vy
9y  \/x2+y2+ 22
OH _ 5y, BH: z

oH
0z

oz /X2 1 y2 + 72
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Problems with non-integral constaints General geodesic problem

Example 6.2 (cont.)

@ There are 3 dependent variables (x, y, z), and, so 3
Euler-Lagrange equations, e.g.,

2= 2 ( S S—
at X2 +y2+z2
X _ X[xx +yy +22]

VR R (k2424 2)Y2

@ Due to symmetry, the equation
u _ U[xx+yy +2Z]
VIE+yE+ 72 (324 j2 4 2)%°

holds for u = x, y and z.

2 \U =
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Problems with non-integral constaints General geodesic problem

Example 6.2 (cont.)
@ Observe that
o\U — u _ uxx+yy + 2]

V222 (3242 4 2)R

is a second order linear DE in u, and so it has only 2 linearly
independent solutions, but the DE holds for u = x, y and z.

@ Therefore, x, y and z are linearly dependent, and so we can write
them as
Ax+By+Cz=0

but this is the equation of a plane through the origin.

@ We have shown that geodesics on the sphere are great circles.

v
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Problems with non-integral constaints Non-Holonomic constraints

Remarks
@ Non-Holonomic constraints are constraints of the form

G(x,y,y')=0 or G(t,q.9),

which involve derivatives.

@ Non-Holonomic constraints are effectively additional DEs which
we need to solve, but we can once again use Lagrange
multipliers.

@ Sometimes a constraint involving derivatives may be integrated to
get a holonomic constraint. So, we refer to these constraints as
integrable.

@ In general, we will also need to deal with constraints involving
derivatives as these may describe an entire systems behaviour,
and be very difficult to integrate out of the problem.

v
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Problems with non-integral constaints Non-Holonomic constraints

Example 6.3 (Non-Holonomic constraints)
Example non-holonomic constraints:

G(x,y,y')=0 or G(t,9,9),

Instances:
o y=x

@ y? =log x.

@ Solution technique for the non-holonomic constraints is just as for
holonomic constraints, e.g.,

Hly. A = Jiy] + / A(X)G(x. . y')dx

and the argument for why it works is almost identical.
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Problems with non-integral constaints Non-Holonomic constraints

Remark
@ Non-Holonomic constraints can be used to avoid higher
derivatives.

Example 6.4
Minimizing the functional

b
Jy] = / Flx.y,y'y")ox
a

we derive a new form of the Euler-Lagrange (Euler-Poisson) equation

for this case, e.g.,
oF d [0F a? [ OF
- _ = - (=) = 1
dy dx (8y’>+dx2 <8y”> 0 (6.1)
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Problems with non-integral constaints Non-Holonomic constraints

Example 6.4 (cont.)

@ Non-Holonomic constraints give us an alternative approach to
problem (6.1).

@ Introduce the new variable z = y’/, and rewrite the functional as

Jly,z] = /: F(x,y,z, Z')dx. (6.2)

@ Now there is more thatn one dependent variable, but no second
order derivatives. However, we must also introduce the constraint

that
z—y =0.
@ So, we look for stationary curves of the functional
b
Hly. 2= [ (Fixy.2.2) +200(z - y) o
a
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Problems with non-integral constaints Non-Holonomic constraints

Example 6.4 (cont.)
@ The Euler-Lagrange equations for y and z are

OH d [OH\
8y—dX<8y’>_
OH d (OH\ _
az‘m<wJ

@ Note that H(x,y,y’,z,Z') = F(x,y,z,Z') + A\(x) (z — y'). So, the
Euler-Lagrange equations become

OF _d
9y g () =0
OF d (oF
52 00— 5 (55) =0

v
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Problems with non-integral constaints Non-Holonomic constraints

Example 6.4 (cont.)
@ The first Euler-Lagrange equation can be rewritten

ar_ _oF
dx Oy
@ Differentiating the second Euler-Lagrange equation w.r.t. x we get

d (0F\  dr & (OF\
dx \ 0z dx dx2 \9z')

@ Note from above that \' = —F, and that z = y’ and z’ = y” we get
(as before) the Euler-Poisson equation:

OF _d (0F\ & (OF\
dy dx \ oy dx2 \oy" )
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Problems with non-integral constaints Non-Holonomic constraints

Remarks

@ Earlier we derived the Euler-Lagrange equation assuming treating
y and y’ as if they were independent variables.

@ In reality they are related along the extremal.

@ Lets get some motivation for this. Start by taking a new variable
u(x) = y'(x), and put this into our minimization problem

b
Hly,u, \] = / (F(x,y,u) + A\(x) [u—y']) dx.

a

@ We can use the same trick as in previous slides to get the
Euler-Lagrange equations.
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