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Purpose of Lesson

Purpose of Lesson:

To discuss why does the Lagrange multiplier approach work.

Consider problems with non-integral constraints (holonomic and
non-holonomic).

Study general geodesic problem.
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Purpose of Lesson Why the Lagrange multiplier approach works here?

Why the Lagrange multiplier approach works here?

Consider the approximation of the functional

J[y ] =

b∫
a

F (x , y , y ′)dx '
n∑

i=1

F
(

xi , yi ,
∆yi

∆xi

)
∆x = F (y1, . . . , yn)

where ∆x = (b−a)
n , and ∆yi = yi − yi−1.

The problem of finding an extremal curve now becomes one of
finding stationary points of the function F (y1, . . . , yn).

We solve this by looking for

∂F
∂yi

= 0 for all i = 1,2, . . . ,n.
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Purpose of Lesson Why the Lagrange multiplier approach works here?

The constraint can be likewise approximted to give

G[y ] '
n∑

i=1

G
(

xi , yi ,
∆yi

∆xi

)
∆x = G(y1, . . . , yn) = L.

Under our usual conditions on J and G, the limit as n→∞ gives

F (y1, . . . , yn)→ J[y ]

G(y1, . . . , yn)→ G[y ]

That is, the functions of the approximation y1, . . . , yn converge to
the functionals of the curve y(x).
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Purpose of Lesson Why the Lagrange multiplier approach works here?

In the finite dimensional case the constraint is

G(y1, . . . , yn)− L = 0

and we use a standard Lagrange multiplier

H(y1, . . . , yn, λ) = F (y1, . . . , yn) + λ [G(y1, . . . , yn)− L]

We solve this by looking for

∂H
∂yi

= 0, ∀i = 1,2, . . . ,n, and
∂H
∂λ

= 0.

The last equation just gives you back your constraint.
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Purpose of Lesson Why the Lagrange multiplier approach works here?

In our formulation of the isoperimetric problem we take

H[y ] = J[y ] + λG[y ]

and we also have

H(y1, . . . , yn, λ) = F (y1, . . . , yn) + λ [G(y1, . . . , yn)− L] .

In the limit as n→∞ we find that

H(y1, . . . , yn, λ)→ H[y ]− λL.

The EL equations for H[y ]− λL and H[y ] are the same, so they
have the same extremals.
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Purpose of Lesson Multiple constraints

Remarks about multiple constraints
We can also handle multiple constraints via multiple Lagrange
multipliers.

For instance, if we wish to find extremals of J[y ] =
x1∫
x0

F (x , y , y ′)dx

with the m constraints

Gk [y ] =

x1∫
x0

Gk (x , y , y ′)dx = Lk

we would look for extremals of

H[y ] =

x1∫
x0

H(x , y , y ′)dx =

x1∫
x0

[
F (x , y , y ′) +

m∑
k=1

λkGk (x , y , y ′)

]
dx
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Problems with non-integral constaints

§4. Problems with non-integral constaints
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Problems with non-integral constaints Non-integral constraints

It is relatively easy to adapt the Lagrange multiplier technique to the
case with non-integral constarints.

Holonomic constraints are of the form

G(x , y) = 0

Non-Holonomic constraints are of the form

G(x , y , y ′) = 0

”Holonomic” comes from the greek ”holos” , for ”whole” . In this
context it refers to integrability of the constraint.

The non-holonomic constraints are really DEs.
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Problems with non-integral constaints Holonomic constraints

Problem 6-1
Consider the problem of finding extremals of

J[y ] =

x1∫
x0

F (x , y , y ′)dx

subject to the constraint
G(x , y) = 0.

In this case we introduce a function λ(x) (also called a Lagrange
multiplier), and look for the extremals of

H[y ] = J[y ] +

x1∫
x0

λ(x)G(x , y)dx .
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Problems with non-integral constaints Holonomic constraints

Remarks
Constraints of the form G(x , y) = 0 which don’t involve derivatives
of y(x) can also be handled using a Lagrange multiplier
technique.

But we have to introduce a Lagrange multiplier function λ(x), not
just a single value λ.

Effectively we introduce one Lagrange multiplier at each point
where the constraint is enforced.
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Problems with non-integral constaints Why the Lagrange multiplier approach works here?

Why the Lagrange multiplier approach works here?

Go back to the approximation of the functional

J[y ] '
n∑

i=1

F
(

xi , yi ,
∆yi

∆xi

)
∆x = F (y1, . . . , yn).

The constraint applies a condition on each (xi , yi).

So, in the approximation there are n constraints

G(xi , yi) = 0 for i = 1, . . . ,n.
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Problems with non-integral constaints Why the Lagrange multiplier approach works here?

There are n constraints,

G(xi , yi) = 0 for i = 1, . . . ,n.

For optimization problems with n constraints, we introduce n
Lagrange multipliers, and maximize

H(y1, . . . , yn) = F (y1, . . . , yn) +
n∑

k=1

λkG(xk , yk ).

In the limit as n→∞

∆x
n∑

k=1

λkG(xk , yk )→
x1∫

x0

λ(x)G(x , y)dx

and hence the choice of

H[y , λ] = J[y ] +

x1∫
x0

λ(x)G(x , y)dx .
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Problems with non-integral constaints Holonomic constraints

H[y , λ] = J[y ] +

x1∫
x0

λ(x)G(x , y)dx

=

x1∫
x0

(
F (x , y , y ′) + λ(x)G(x , y)

)
dx

So, we can apply out standard arguments to the integrand

H(x , y , y ′, λ) = F (x , y , y ′) + λ(x)G(x , y)

and get the Euler-Lagrange equation

∂F
∂y
− d

dx

(
∂F
∂y ′

)
+ λ(x)

∂G
∂y

= 0 .
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Problems with non-integral constaints Multiple dependent variables

With multiple dependent variables holonomic constraints are of the
form

G(t ,q) = 0

and they don’t involve derivatives.

Example 6.1
To minimize the functional

J[x , y , z] =

t1∫
t0

√
ẋ2 + ẏ2 + ż2dt

subject to the constraint

x2 + y2 − r2 = 0.
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Problems with non-integral constaints Multiple dependent variables

Remarks
In Example 6.1 we have to find geodesics on a right circular
cylinder with radius r .

Geodesic is the shortest line between two points on a
mathematically defined surface (as a straight line on a plane or an
arc of a great circle (like the equator) on a sphere).

Geodesic is a curve whose tangent vectors remain parallel is they
are transported along it.
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Problems with non-integral constaints Multiple dependent variables

H[q, λ] = J[q] +

t1∫
t0

λ(t)G(t ,q)dt

So, we can again apply our standard arguments to the integrand

H(t ,q, q̇, λ) = F (t ,q, q̇) + λ(t)G(t ,q)

and get the system of the Euler-Lagrange equations

∂F
∂qk
− d

dt

(
∂F
∂q̇k

)
+ λ(t)

∂G
∂qk

= 0

for all k .
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Problems with non-integral constaints General geodesic problem

General geodesic problem can be written as

Problem 6-2 (general geodesic problem)
To minimize

J[x , y , z] =

t1∫
t0

√
ẋ2 + ẏ2 + ż2dt

sublect to
G[x , y , z] = 0,

where G[x , y , z] = 0 is the equation describing the surface of interest.

As usual instead of J[x , y , z] we minimize

H[x , y , z, λ] =

t1∫
t0

(√
ẋ2 + ẏ2 + ż2 + λ(t)G(x , y , z)

)
dt .
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Problems with non-integral constaints General geodesic problem

Given this formulation of the geodesic problem, the Euler-Lagrange
equations become

d
dt

(
ẋ√

ẋ2 + ẏ2 + ż2

)
− λ(t)

∂G
∂x

= 0

d
dt

(
ẏ√

ẋ2 + ẏ2 + ż2

)
− λ(t)

∂G
∂y

= 0

d
dt

(
ż√

ẋ2 + ẏ2 + ż2

)
− λ(t)

∂G
∂z

= 0

which may be easier to solve in some cases.
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Problems with non-integral constaints General geodesic problem

Example 6.2 (Geodesics on the sphere)
Find the geodesics on the sphere: e.g., we wish to find a parametric
curve (x(t), y(t), z(t)) to minimize distance

J[x , y , z] =

t1∫
t0

√
ẋ2 + ẏ2 + ż2dt

subject to being on the surface of a sphere

x2 + y2 + z2 = a2.

We get

H(t , x , y , z, ẋ , ẏ , ż, λ) =
√

ẋ2 + ẏ2 + ż2 + λ(t)
(

x2 + y2 + z2 − a2
)

and there are three dependent variables (x , y , z).
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Problems with non-integral constaints General geodesic problem

Example 6.2 (cont.)
The simple calculation shows that

∂H
∂x

= 2λx
∂H
∂ẋ

=
ẋ√

ẋ2 + ẏ2 + ż2

∂H
∂y

= 2λy
∂H
∂ẏ

=
ẏ√

ẋ2 + ẏ2 + ż2

∂H
∂z

= 2λz
∂H
∂ż

=
ż√

ẋ2 + ẏ2 + ż2
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Problems with non-integral constaints General geodesic problem

Example 6.2 (cont.)

There are 3 dependent variables (x , y , z), and, so 3
Euler-Lagrange equations, e.g.,

2λx =
d
dt

(
ẋ√

ẋ2 + ẏ2 + ż2

)

=
ẍ√

ẋ2 + ẏ2 + ż2
− ẋ [ẋ ẍ + ẏ ÿ + żz̈](

ẋ2 + ẏ2 + ż2
)3/2

Due to symmetry, the equation

2λu =
ü√

ẋ2 + ẏ2 + ż2
− u̇ [ẋ ẍ + ẏ ÿ + żz̈](

ẋ2 + ẏ2 + ż2
)3/2

holds for u = x , y and z.
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Problems with non-integral constaints General geodesic problem

Example 6.2 (cont.)
Observe that

2λu =
ü√

ẋ2 + ẏ2 + ż2
− u̇ [ẋ ẍ + ẏ ÿ + żz̈](

ẋ2 + ẏ2 + ż2
)3/2

is a second order linear DE in u, and so it has only 2 linearly
independent solutions, but the DE holds for u = x , y and z.

Therefore, x , y and z are linearly dependent, and so we can write
them as

Ax + By + Cz = 0

but this is the equation of a plane through the origin.

We have shown that geodesics on the sphere are great circles.
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Problems with non-integral constaints Non-Holonomic constraints

Remarks
Non-Holonomic constraints are constraints of the form

G(x , y , y ′) = 0 or G(t ,q, q̇),

which involve derivatives.

Non-Holonomic constraints are effectively additional DEs which
we need to solve, but we can once again use Lagrange
multipliers.

Sometimes a constraint involving derivatives may be integrated to
get a holonomic constraint. So, we refer to these constraints as
integrable.

In general, we will also need to deal with constraints involving
derivatives as these may describe an entire systems behaviour,
and be very difficult to integrate out of the problem.
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Problems with non-integral constaints Non-Holonomic constraints

Example 6.3 (Non-Holonomic constraints)
Example non-holonomic constraints:

G(x , y , y ′) = 0 or G(t ,q, q̇),

Instances:
y = ẋ
y ′2 = log x .

Solution technique for the non-holonomic constraints is just as for
holonomic constraints, e.g.,

H[y , λ] = J[y ] +

x1∫
x0

λ(x)G(x , y , y ′)dx

and the argument for why it works is almost identical.
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Problems with non-integral constaints Non-Holonomic constraints

Remark
Non-Holonomic constraints can be used to avoid higher
derivatives.

Example 6.4
Minimizing the functional

J[y ] =

b∫
a

F (x , y , y ′, y ′′)dx

we derive a new form of the Euler-Lagrange (Euler-Poisson) equation
for this case, e.g.,

∂F
∂y
− d

dx

(
∂F
∂y ′

)
+

d2

dx2

(
∂F
∂y ′′

)
= 0 (6.1)
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Problems with non-integral constaints Non-Holonomic constraints

Example 6.4 (cont.)
Non-Holonomic constraints give us an alternative approach to
problem (6.1).
Introduce the new variable z = y ′, and rewrite the functional as

J[y , z] =

∫ b

a
F (x , y , z, z ′)dx . (6.2)

Now there is more thatn one dependent variable, but no second
order derivatives. However, we must also introduce the constraint
that

z − y ′ = 0.

So, we look for stationary curves of the functional

H[y , z, λ] =

∫ b

a

(
F (x , y , z, z ′) + λ(x)(z − y ′)

)
dx .
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Problems with non-integral constaints Non-Holonomic constraints

Example 6.4 (cont.)
The Euler-Lagrange equations for y and z are

∂H
∂y
− d

dx

(
∂H
∂y ′

)
= 0

∂H
∂z
− d

dx

(
∂H
∂z ′

)
= 0

Note that H(x , y , y ′, z, z ′) = F (x , y , z, z ′) + λ(x) (z − y ′). So, the
Euler-Lagrange equations become

∂F
∂y

+
d
dx

(λ(x)) = 0

∂F
∂z

+ λ(x)− d
dx

(
∂F
∂z ′

)
= 0
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Problems with non-integral constaints Non-Holonomic constraints

Example 6.4 (cont.)
The first Euler-Lagrange equation can be rewritten

dλ
dx

= −∂F
∂y

Differentiating the second Euler-Lagrange equation w.r.t. x we get

d
dx

(
∂F
∂z

)
+

dλ
dx
− d2

dx2

(
∂F
∂z ′

)
= 0

Note from above that λ′ = −Fy and that z = y ′ and z ′ = y ′′ we get
(as before) the Euler-Poisson equation:

∂F
∂y
− d

dx

(
∂F
∂y ′

)
+

d2

dx2

(
∂F
∂y ′′

)
= 0.
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Problems with non-integral constaints Non-Holonomic constraints

Remarks
Earlier we derived the Euler-Lagrange equation assuming treating
y and y ′ as if they were independent variables.

In reality they are related along the extremal.

Lets get some motivation for this. Start by taking a new variable
u(x) = y ′(x), and put this into our minimization problem

H[y ,u, λ] =

b∫
a

(
F (x , y ,u) + λ(x)

[
u − y ′

])
dx .

We can use the same trick as in previous slides to get the
Euler-Lagrange equations.
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