Calculus of Variations Summer Term 2014

Lecture 9
23. Mai 2014

Purpose of Lesson:

- To consider several problems with inequality constraints

§6. Inequality constraints

We have considered problems with

- integral constraints (Dido's problem)
- holonomic constraints (geodesics formulation)
- non-holonomic constraints (problems with higher derivatives)

But we have not considered inequality constraints

Example 9.1: parking a car

Consider the following classic problem:
We want to drive a car/tank from point A to point B as quickly as possible, and at point B the car should be stationary.

Remark

Parking a car seems like a trivial problem:

- in fact this problem appears in other contexts, e.g.
- automatic positioning of components on a circuit board
- has to be done frequently (so has to be fast)
- speed limited by robot, and how delicate the components are
- shortest-time problems are a case of a more general type of problem as well.

http://www.expo21xx.com/automation77/news/2085_robot_mitsubishi/news_default.htm

Example 9.1: parking a car (cont.)

We want to drive a car/tank from point A to point B as quickly as possible, and at point B the car should be stationary.

- Newton's law

$$
\text { force }=u=m \ddot{x}
$$

- Choose force u that minimizes the time subject to $\dot{x}=0$ at $t=0$ and $t=T$, where T is not specified, but rather given by

$$
T[u]=\int_{A}^{B} d t
$$

and it is the functional we wish to minimize.

Example 9.1: parking a car (cont.)

- Note that $\dot{x}(t)=\frac{d x}{d t}$ is the car's velocity, so we can write

$$
T[x]=\int_{A}^{B} d t=\int_{x_{A}}^{x_{B}} \frac{1}{\dot{x}} d x
$$

- We wish to minimize this functional, subject to the DE constraint that

$$
\ddot{x}=\frac{u(t)}{m}
$$

where $u(t)$ is the force that we exert, and also subject to

$$
\dot{x}(0)=\dot{x}(T)=0
$$

i.e., the car is stationary at the start and finish.

Example 9.1: parking a car (cont.)

- Take $y=\dot{x}$, and we can rewrite the problem as minimize

$$
T[y]=\int_{A}^{B} d t=\int_{x_{A}}^{x_{B}} \frac{1}{y} d x
$$

- We wish to minimize this extremal, subject to the DE constraint that

$$
\dot{y}=\frac{u(t)}{m}
$$

where $u(t)$ is the control that we exert, and also subject to

$$
y\left(x_{A}\right)=y\left(x_{B}\right)=0
$$

Example 9.1: parking a car (cont.)

- Including the non-holonomic constraint into the problem using a Lagrange multiplier we get

$$
\mathcal{H}[y, u]=\int_{x_{A}}^{x_{B}}\left[\frac{1}{y}+\lambda\left(\dot{y}-\frac{u(t)}{m}\right)\right] d x
$$

subject to

$$
y\left(x_{A}\right)=y\left(x_{B}\right)=0
$$

- The Euler-Lagrange equations are

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial h}{\partial \dot{y}}-\frac{\partial h}{\partial y}=0 \\
& \frac{d}{d t} \frac{\partial h}{\partial \dot{u}}-\frac{\partial h}{\partial u}=0
\end{aligned}
$$

Example 9.1: parking a car (cont.)

$$
\begin{aligned}
\frac{d}{d t} \lambda+\frac{1}{y^{2}} & =0 \\
\frac{\lambda}{m} & =0
\end{aligned}
$$

- From the second equation $\lambda=0$, and so we see that the only viable solutions are $y= \pm \infty$

Example 9.1: parking a car (cont.)

Euler-Lagrange solutions:

- solutions are $y= \pm \infty$
- this requires $u= \pm \infty$ at some points in time
- but in reality we can't exert infinite force
- i.e., force is bounded

$$
|u| \leqslant u_{\max }
$$

- need to consider optimizing functionals with inequality constraints.
- similar (in some respects) to min / max functions with inequality constraints
- min / max is in the interior, or on the boundary

Example 9.2: the shortest path

What is the shortest path, between A and B, avoiding an obstacle.
E.G. what is the shortest path around a lake?

Example 9.2: the shortest path (cont.)

- Find extremals

$$
J[y]=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x
$$

sublect to $y(0)=y_{0}$ and $y(1)=y_{1}$ and

$$
y(x) \geqslant g(x)
$$

- Enforce the constraint by taking

$$
y(x)=g(x)+z^{2}(x)
$$

In other words introduce a "slack function" $z(x)$, and note that

$$
y(x)-g(x)=z^{2}(x) \geqslant 0
$$

Example 9.2: the shortest path (cont.)

- We have slack function $z(x)$, and constraint $y(x) \geqslant g(x)$ and

$$
\begin{aligned}
y & =z^{2}+g \\
y^{\prime} & =2 z z^{\prime}+g^{\prime}
\end{aligned}
$$

- Substitute these into the functional and we can change the original functional $J[y]$ for a new one in terms of $J[z]$

$$
\begin{aligned}
& J[y]=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x \\
& J[z]=\int_{x_{0}}^{x_{1}} f\left(x, z^{2}+g, 2 z z^{\prime}+g^{\prime}\right) d x
\end{aligned}
$$

Example 9.2: the shortest path (cont.)

- Given we look for the extremals of

$$
J[z]=\int_{x_{0}}^{x_{1}} f\left(x, z^{2}+g, 2 z z^{\prime}+g^{\prime}\right) d x
$$

- The Euler-Lagrange equations are

$$
\begin{aligned}
\frac{d}{d x} \frac{\partial f}{\partial z^{\prime}}-\frac{\partial f}{\partial z} & =0 \\
\frac{d}{d x}\left[2 z \frac{\partial f}{\partial y^{\prime}}\right]-2 z \frac{\partial f}{\partial y}-2 z^{\prime} \frac{\partial f}{\partial y^{\prime}} & =0 \\
2 z \frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}+2 z^{\prime} \frac{\partial f}{\partial y^{\prime}}-2 z \frac{\partial f}{\partial y}-2 z^{\prime} \frac{\partial f}{\partial y^{\prime}} & =0 \\
z\left[\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}-\frac{\partial f}{\partial y}\right] & =0
\end{aligned}
$$

Example 9.2: the shortest path (cont.)

- The Euler-Lagrange equations give

$$
z\left[\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}-\frac{\partial f}{\partial y}\right]=0
$$

for which there are two solutions

- Euler areas: The Euler-Lagrange equations are satisfied
- Boundary areas: $z(x)=0$, so $y(x)=g(x)$ and the curve lies on the boundary
- Analogy: a global minima of function on an interval can happen at stationary point, or at the edges.
- But we can mix the two along the curve y.

Example 9.3: a shortest path around a circular lake

To find the shortest path around a circular lake (radius a, centered at the origin), between the points $(b, 0)$ and $(-b, 0)$ (for $b>a)$.

The conditions are

- Euler areas: The Euler-Lagrange equations are satisfied, so the curve is a straight line.
- Boundary areas: $z(x)=0$, so $y(x)=g(x)$ and the curve lies on the boundary of the circle.

We can mix the two along the curve y.

Example 9.3: a shortest path around a circular lake (cont.)

Given the conditions, the solution must look like

i.e. straight lines joining the end-points to a circular arc, where P, the point of intersection of the right-hand straight-line, and the circle is at $(a \cos (\vartheta), a \sin (\vartheta))$

Example 9.3: a shortest path around a circular lake (cont.)

- The total distance of such a line is

$$
\begin{aligned}
d(\vartheta) & =2 \sqrt{(b-a \cos \vartheta)^{2}+a^{2} \sin ^{2} \vartheta}+a(\pi-2 \vartheta) \\
& =2 \sqrt{b^{2}-2 a b \cos \vartheta+a^{2}}+a(\pi-2 \vartheta)
\end{aligned}
$$

- We find the minimum of $d(\vartheta)$, by differentiating WRT ϑ, to get

$$
\begin{aligned}
d^{\prime}(\vartheta) & =\frac{2 a b \sin \vartheta}{\sqrt{b^{2}-2 a b \cos \vartheta+a^{2}}}-2 a \\
& =0
\end{aligned}
$$

- So,

$$
2 a b \sin \vartheta=2 a \sqrt{b^{2}-2 a b \cos \vartheta+a^{2}} .
$$

Example 9.3: a shortest path around a circular lake (cont.)

- Dividing both sides by 2 a we get the condition

$$
\begin{aligned}
b \sin \vartheta & =\sqrt{b^{2}-2 a b \cos \vartheta+a^{2}} \\
b^{2} \sin ^{2} \vartheta & =b^{2}-2 a b \cos \vartheta+a^{2} \\
b^{2}-b^{2} \cos ^{2} \vartheta & =b^{2}-2 a b \cos \vartheta+a^{2} \\
0 & =b^{2} \cos ^{2} \vartheta-2 a b \cos \vartheta+a^{2} \\
0 & =(b \cos \vartheta-a)^{2}
\end{aligned}
$$

- So the result is

$$
\cos \vartheta=\frac{a}{b}
$$

Example 9.3: a shortest path around a circular lake (cont.)

Think of what we would get if we stretch an elastic band between the two points.

