Calculus of Variations Summer Term 2014

Lecture 9

23. Mai 2014

Purpose of Lesson:

• To consider several problems with inequality constraints

§6. Inequality constraints

We have considered problems with

- integral constraints (Dido's problem)
- holonomic constraints (geodesics formulation)
- non-holonomic constraints (problems with higher derivatives)

But we have not considered inequality constraints

Example 9.1: parking a car

Consider the following classic problem:

We want to drive a car/tank from point A to point B as quickly as possible, and at point B the car should be stationary.

lecture 9

Remark

Parking a car seems like a trivial problem:

- in fact this problem appears in other contexts, e.g.
 - automatic positioning of components on a circuit board
 - has to be done frequently (so has to be fast)
 - speed limited by robot, and how delicate the components are
- shortest-time problems are a case of a more general type of problem as well.

http://www.expo21xx.com/automation77/news/2085_robot_mitsubishi/news_default.htm

◆□ > ◆□ > ◆ = > ◆ = > ○

We want to drive a car/tank from point A to point B as quickly as possible, and at point B the car should be stationary.

Newton's law

force
$$= u = m\ddot{x}$$

• Choose force u that minimizes the time subject to $\dot{x} = 0$ at t = 0 and t = T, where T is not specified, but rather given by

$$T[u] = \int_{A}^{B} dt$$

and it is the functional we wish to minimize.

8/23

• Note that $\dot{x}(t) = \frac{dx}{dt}$ is the car's velocity, so we can write

$$T[x] = \int_{A}^{B} dt = \int_{x_{A}}^{x_{B}} \frac{1}{\dot{x}} dx$$

 We wish to minimize this functional, subject to the DE constraint that

$$\ddot{x} = \frac{u(t)}{m}$$

where u(t) is the force that we exert, and also subject to

$$\dot{x}(0) = \dot{x}(T) = 0$$

i.e., the car is stationary at the start and finish.

9/23

• Take $y = \dot{x}$, and we can rewrite the problem as minimize

$$T[y] = \int_{A}^{B} dt = \int_{x_{A}}^{x_{B}} \frac{1}{y} dx$$

 We wish to minimize this extremal, subject to the DE constraint that

$$\dot{y} = \frac{u(t)}{m}$$

where u(t) is the control that we exert, and also subject to

$$y(x_A) = y(x_B) = 0.$$

 Including the non-holonomic constraint into the problem using a Lagrange multiplier we get

$$\mathcal{H}[y,u] = \int_{x_A}^{x_B} \left[\frac{1}{y} + \lambda \left(\dot{y} - \frac{u(t)}{m} \right) \right] dx$$

subject to

$$y(x_A)=y(x_B)=0.$$

The Euler-Lagrange equations are

$$\frac{d}{dt}\frac{\partial h}{\partial \dot{y}} - \frac{\partial h}{\partial y} = 0$$
$$\frac{d}{dt}\frac{\partial h}{\partial \dot{u}} - \frac{\partial h}{\partial u} = 0$$

$$\frac{d}{dt}\lambda + \frac{1}{y^2} = 0$$

$$\frac{\lambda}{m} = 0$$

• From the second equation $\lambda=0$, and so we see that the only viable solutions are $y=\pm\infty$

Euler-Lagrange solutions:

- solutions are $y = \pm \infty$
- this requires $u = \pm \infty$ at some points in time
- but in reality we can't exert infinite force
 - i.e., force is bounded

$$|u| \leqslant u_{max}$$

- need to consider optimizing functionals with inequality constraints.
 - similar (in some respects) to min / max functions with inequality constraints
 - min / max is in the interior, or on the boundary

Example 9.2: the shortest path

What is the shortest path, between *A* and *B*, avoiding an obstacle.

E.G. what is the shortest path around a lake?

Find extremals

$$J[y] = \int_{x_0}^{x_1} f(x, y, y') dx$$

sublect to $y(0) = y_0$ and $y(1) = y_1$ and

$$y(x) \geqslant g(x)$$
.

Enforce the constraint by taking

$$y(x) = g(x) + z^2(x)$$

In other words introduce a "slack function" z(x), and note that

$$y(x)-g(x)=z^2(x)\geqslant 0.$$

• We have slack function z(x), and constraint $y(x) \ge g(x)$ and

$$y = z^2 + g$$
$$y' = 2zz' + g'$$

 Substitute these into the functional and we can change the original functional J[y] for a new one in terms of J[z]

$$J[y] = \int_{x_0}^{x_1} f(x, y, y') dx$$
$$J[z] = \int_{x_2}^{x_1} f(x, z^2 + g, 2zz' + g') dx$$

Given we look for the extremals of

$$J[z] = \int_{x_0}^{x_1} f(x, z^2 + g, 2zz' + g') dx$$

The Euler-Lagrange equations are

$$\frac{d}{dx}\frac{\partial f}{\partial z'} - \frac{\partial f}{\partial z} = 0$$

$$\frac{d}{dx}\left[2z\frac{\partial f}{\partial y'}\right] - 2z\frac{\partial f}{\partial y} - 2z'\frac{\partial f}{\partial y'} = 0$$

$$2z\frac{d}{dx}\frac{\partial f}{\partial y'} + 2z'\frac{\partial f}{\partial y'} - 2z\frac{\partial f}{\partial y} - 2z'\frac{\partial f}{\partial y'} = 0$$

$$z\left[\frac{d}{dx}\frac{\partial f}{\partial y'} - \frac{\partial f}{\partial y}\right] = 0$$

The Euler-Lagrange equations give

$$z\left[\frac{d}{dx}\frac{\partial f}{\partial y'} - \frac{\partial f}{\partial y}\right] = 0$$

for which there are two solutions

- Euler areas: The Euler-Lagrange equations are satisfied
- **Boundary areas:** z(x) = 0, so y(x) = g(x) and the curve lies on the boundary
- Analogy: a global minima of function on an interval can happen at stationary point, or at the edges.
- But we can mix the two along the curve y.

To find the shortest path around a circular lake (radius a, centered at the origin), between the points (b,0) and (-b,0) (for b>a).

The conditions are

- Euler areas: The Euler-Lagrange equations are satisfied, so the curve is a straight line.
- Boundary areas: z(x) = 0, so y(x) = g(x) and the curve lies on the boundary of the circle.

We can mix the two along the curve y.

Given the conditions, the solution must look like

i.e. straight lines joining the end-points to a circular arc, where P, the point of intersection of the right-hand straight-line, and the circle is at $(a\cos(\theta), a\sin(\theta))$

The total distance of such a line is

$$d(\vartheta) = 2\sqrt{(b - a\cos\vartheta)^2 + a^2\sin^2\vartheta} + a(\pi - 2\vartheta)$$
$$= 2\sqrt{b^2 - 2ab\cos\vartheta + a^2} + a(\pi - 2\vartheta)$$

• We find the minimum of $d(\vartheta)$, by differentiating WRT ϑ , to get

$$d'(\vartheta) = \frac{2ab\sin\vartheta}{\sqrt{b^2 - 2ab\cos\vartheta + a^2}} - 2a$$
$$= 0$$

So,

$$2ab\sin\vartheta = 2a\sqrt{b^2 - 2ab\cos\vartheta + a^2}$$
.

Dividing both sides by 2a we get the condition

$$b\sin\vartheta = \sqrt{b^2 - 2ab\cos\vartheta + a^2}$$

$$b^2\sin^2\vartheta = b^2 - 2ab\cos\vartheta + a^2$$

$$b^2 - b^2\cos^2\vartheta = b^2 - 2ab\cos\vartheta + a^2$$

$$0 = b^2\cos^2\vartheta - 2ab\cos\vartheta + a^2$$

$$0 = (b\cos\vartheta - a)^2$$

So the result is

$$\cos \vartheta = \frac{a}{b}$$

22 / 23

Think of what we would get if we stretch an elastic band between the two points.