PD Dr. Darya Apushkinskaya

Calculus of Variations (Summer Term 2014) Assignment H5 - Homework

Problem 4.1 (9 Points)

Minimize the functional

$$
J[y]=\int_{-1}^{1} y \sqrt{1+\left(y^{\prime}\right)^{2}} d x
$$

subject to the end-point conditions that $y(-1)=2$ and $y(1)=2$. Use the modification of the Ritz Method that we discussed in Lecture 13. Compare the obtained result with the result from Lecture 13.

Hint:

1. Approximate a curve by a polynomial

$$
y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots
$$

2. Calculate $J\left[a_{i}\right]$ and corresponding derivatives $\frac{\partial J}{\partial a_{i}}$.
3. Calculate (using Maple) the roots a_{i} provided $\frac{\partial J}{\partial a_{i}}=0$.

Problem 5.2 (9 Points)

Use Ritz's method to find an approximate, non-trivial solution to the differential equation

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\lambda y=0
$$

in the domain $x \in[0,1]$ where $y(0)$ is non-singular and $y(1)=1$, and hence determine an approximate value of λ that has a solution.
(Hint: Note that the equation can be written in the form

$$
\frac{d}{d x}\left(x y^{\prime}\right)+\lambda x y=0
$$

and find the corresponding integral for which this is the Euler-Lagrange equation.

Once you have a variational problem, use the trial function

$$
y_{\text {trial }}=a+b x^{2}+c x^{4},
$$

which we have chosen because the solution is expected to be an even function.)

Problem 5.3 (8 Points)

How could we minimize the functional

$$
J[y]=\int_{0}^{1}\left(y^{2}+y^{\prime 2}\right) d x, \quad y(0)-0, \quad y(1)=1
$$

by the method of Ritz?
(Hint: If we introduce a new function $z(t)$

$$
z(t)=(1-x) y(t)
$$

we note that $z(t)$ satisfies $z(0)=0$ and $z(1)=0$.)

Deadline for submission: Wednesday, July 02, 12 am

