Universität des Saarlandes
Fachrichtung 6.1 - Mathematik

PD Dr. Darya Apushkinskaya

Calculus of Variations (Summer Term 2014)
 Assignment H6 - Homework

Problem 6.1 (7 Points)

Minimize

$$
J[u]=\int_{0}^{1} u^{2} d t
$$

subject to

$$
\begin{aligned}
& \dot{x}_{1}=u-x_{2} \\
& \dot{x}_{2}=-u
\end{aligned}
$$

and

$$
\begin{aligned}
& x_{1}(0)=2 \\
& x_{1}(1)=1 \\
& x_{2}(0)=0 \\
& x_{2}(1)=1
\end{aligned}
$$

Problem 6.2 (8 Points)

Find the minimum value of

$$
J[u]=x(1)+\int_{0}^{1} \alpha u^{2} d t,
$$

where $\alpha>0, x(0)=0, x(1)$ free, and

$$
\dot{x}=u .
$$

How does the answer change if we add the condition that $|u(t)| \leqslant 1$?

Problem 6.3 (10 Points)

Maximize the range of a missile: Take a missile which has a rocket motor that generates constant thrust f for a fixed time interval $\left[0, t_{1}\right]$. We can control the angle of the thrust $\theta(t)$ (relative to the horizontal). Ignoring drag, the curve of the Earth's surface (and its rotation), determine the angle profile that will maximize the range of the missile.

Hints: choose a coordinates (x, y), and $(u, v)=(\dot{x}, \dot{y})$, then the DEs decribing the system under thrust will be

$$
\begin{aligned}
\dot{x} & =u \\
\dot{y} & =v \\
\dot{u} & =f \cos \theta \\
\dot{v} & =f \sin \theta-g
\end{aligned}
$$

After the rocket stops firing, the missile will continue on a ballistic trajectory, i.e., the remaining motion will be a parabola, resulting in a total firing distance of

$$
R(x, y, u, v)=x+\frac{u}{g}\left[v+\sqrt{v^{2}+2 g y}\right]
$$

where x, y, u, v are given at the time at which ballistic motion commences.

Deadline for submission: Wednesday, July 16, 12 pm

