

## Calculus of Variations (Summer Term 2014) Assignment H6 - Homework

## Problem 6.1 (7 Points)

Minimize

$$J[u] = \int_{0}^{1} u^2 dt$$

subject to

 $\dot{x}_1 = u - x_2$  $\dot{x}_2 = -u$ 

and

| $x_1(0)$ | = | 2 |
|----------|---|---|
| $x_1(1)$ | = | 1 |
| $x_2(0)$ | = | 0 |
| $x_2(1)$ | = | 1 |

## Problem 6.2 (8 Points)

Find the minimum value of

$$J[u] = x(1) + \int_0^1 \alpha u^2 dt,$$

where  $\alpha > 0$ , x(0) = 0, x(1) free, and

 $\dot{x} = u.$ 

How does the answer change if we add the condition that  $|u(t)| \leq 1$ ?

(See next page)

## Problem 6.3 (10 Points)

Maximize the range of a missile: Take a missile which has a rocket motor that generates constant thrust f for a fixed time interval  $[0, t_1]$ . We can control the angle of the thrust  $\theta(t)$  (relative to the horizontal). Ignoring drag, the curve of the Earth's surface (and its rotation), determine the angle profile that will maximize the range of the missile.

Hints: choose a coordinates (x, y), and  $(u, v) = (\dot{x}, \dot{y})$ , then the DEs decribing the system under thrust will be

$$\begin{aligned} \dot{x} &= u \\ \dot{y} &= v \\ \dot{u} &= f \cos \theta \\ \dot{v} &= f \sin \theta - g \end{aligned}$$

After the rocket stops firing, the missile will continue on a ballistic trajectory, i.e., the remaining motion will be a parabola, resulting in a total firing distance of

$$R(x, y, u, v) = x + \frac{u}{g} \left[ v + \sqrt{v^2 + 2gy} \right]$$

where x, y, u, v are given at the time at which ballistic motion commences.

Deadline for submission: Wednesday, July 16, 12 pm