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§1. Introduction

It is our basic question to study the following Diophantine equations

(1.1) tXAX = B

over the ring of integers Z, where A and B are non-degenerate and symmetric
matrices of size m × m and n × n over Z respectively, and A is indefinite with
m ≥ 3. It is a necessary condition for solubility of equation (1.1) that it is solvable
over Zp for all primes p and the real numbers R. This necessary condition is
already sufficient if m − n ≥ 3 [Kn1,Hs]. However the equation (1.1) is no longer
a purely local problem when m − n ≤ 2. By the Hasse principle, the necessary
condition implies there is a rational solution of (1.1). In the previous papers [CX]
and [X1], one of us has given conditions that allow to decide for m−n ≤ 2 whether
the equation (1.1) is solvable over Z by looking at a given rational solution whose
denominator is prime to the determinant of A. Can one also determine the solubility
of (1.1) if the denominator of the rational solution is not prime to the determinant
of A? In this note, we try to give such a condition.

Notation and terminology are standard if not explained, or adopted from [CX]
and [X1]. Let V be a quadratic space over a number field F with a non-degenerate
symmetric bilinear form 〈x, y〉, Q(x) = 〈x, x〉 be the quadratic map on V and SO(V )
be the special orthogonal group of V . A lattice in V means a finitely generated oF

module in V such that it generates a non-degenerate quadratic subspace of V . A
full lattice means a lattice which generates the whole space. For a full lattice L,
L] denotes the dual lattice of L. For two lattices K and L in V , 〈K, L〉 denotes
the fractional ideal generated by 〈x, y〉 for x ∈ K and y ∈ L. We use τz for the
reflection if Q(z) 6= 0. We also denote n(L) and s(L) as norm and scale of a lattice
L in the sense of [O] respectively.

For any prime p of F , Vp (resp. Fp, etc.) denotes the local completion of V
(resp. F , etc.). Let oF be the ring of integers of F . If p is a finite prime, the group
of units of oFp is denoted by up, and πp is a uniformizer of Fp. We use θp to denote
the spinor norm map of SO(Vp). For a lattice Kp and a full lattice Lp in Vp, let

X(Lp/Kp) = {σ ∈ SO(Vp) : Kp ⊆ σLp}.

It is clear that X(Lp/Kp) is not empty if and only if Kp is represented by Lp. Then
there is σ ∈ X(Lp/Kp) such that Kp ⊆ σLp. By [HSX, Thm.2.1], one has that
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θp(X(σLp/Kp) is a group. It can be easily verified that this group is independent
of choice of σ ∈ X(Lp/Kp). Then one can define

θp(Lp,Kp) := θp(X(σLp/Kp)).

The invariant θp(Lp,Kp) was introduced and computed in [SP1] for ternary forms
with codimension two over non-dyadic and 2-adic local fields. For such case over
general dyadic fields, this invariant is computed in [X]. For general high dimensional
cases, the invariant is computed in [HSX] and [HSX1] over non-dyadic and 2-adic
local fields respectively. Recently, Beli has announced a computation of θp(Lp,Kp)
over general dyadic local fields.

By the strong approximation theorem for spin groups, the solubility of (1.1) is
reduced to determine in which coset of the quotient group F×p /θp(Lp,Kp) the set
θp(X(Lp/Kp)) is for all p. The results of [CX,X1] show that this coset depends
only on [Kp : Lp∩Kp] if p does not divide the discriminant of Lp. A question raised
in [X1] is to find some invariants derived from Lp and Kp directly to describe to
which coset θp(X(Lp/Kp)) belongs if p divides the discriminant of Lp.

As a first step, we show that (under a suitable primitivity condition in case that
rank(Kp) ≥ 2) the coset in question depends only on the image of (a suitable
multiple of) Kp in the discriminant group L#

p /Lp of Lp.
We focus then on the most interesting case that rank(L) = 3 and rank(K) = 1.

The group θp(Lp,Kp) is then (as always in the case that the codimension of K in
L is 2) a subgroup of index ≤ 2 of F×p , and we consider the case that this subgroup
is the group of units up of Fp. For this unramified situation we obtain a complete
answer in the special case F = Q (or more generally for F/Q such that 2 splits
completely in F ). In fact it turns out that the coset in question then depends only
on 〈Kp, Lp〉 and (in the case of p = (2)) information about the primitivity of (a
suitable multiple of) Kp in the discriminant group. It appears that the case of
dyadic Fp 6= Q2 is more complicated in the sense that one needs more information
about the position of Kp in the discriminant group in that case.

The case that θp(Lp,Kp) is the norm group of a ramified quadratic extension of
Fp is apparently also quite a bit more complicated. We have no general result in
that case but give some examples of the type of calculation arising in one case of the
example below and in the final section dealing with the question of the existence of
regular forms in an indefinite genus.

As an example for the usefulness of our (admittedly rather technical) results
for getting concrete answers about the solubility of equation (1.1), we prove the
following

Example 1.2. Let m, n and k be positive integers. The Diophantine equation

m2x2 + n2ky2 − nz2 = 1

is solvable over Z if and only if (m,n) = 1 and

n ≡
{

1, 3, 7 mod 8 if 2 | m and 4 - m
1, 7 mod 8 if 4 | m.

We always assume that X(Lp/Kp) is not empty for all primes p. If n(Kp) ⊂
n(Lp), there is a full lattice L′p ⊂ Lp such that

n(Kp) ⊆ n(L′p) ⊂ n(Lp)), X(L′p/Kp) = X(Lp/Kp)
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and
θp(L′p,Kp) = θp(Lp,Kp).

Therefore we also assume that n(Kp) = n(Lp) by the above standard argument.

§2. An application of Witt’s theorem

We recall that a nonzero submodule N of a module M over a ring R is called
primitive if it is a direct summand of M .

Lemma 2.1. Let R be a discrete valuation ring with field of fractions F and max-
imal ideal (π). Let M be a finitely generated free R-module with quadratic form
q : M → R and associated symmetric bilinear form 〈x, y〉 = q(x + y)− q(x)− q(y)
and let N1, N2 be two R-submodules of FM that are isometric with respect to the
extension of q to FM.

Assume that there is j ∈ Z such that πjNν is a primitive submodule of M# =
{y ∈ FM | 〈y, M〉 ⊆ R} for ν = 1, 2. Assume moreover that there is an isometry
τ : N1 → N2 such that τ(x)− x ∈ M for all x ∈ πjN1.

Then there is σ ∈ O(M, q) with σ(N1) = N2.

Proof. For x ∈ M and a submodule N ⊆ M# let βN (x) ∈ N∗ be the linear form on
N given by βN (y) := 〈x, y〉. It is then easily seen that a submodule N of M# is a
primitive submodule of M# if and only if one has βN (M) = N∗. A submodule of M
satisfying this last property is called sharply primitive with respect to the symmetric
bilinear form 〈 , 〉 in [Kn3, Definition 2.17]. If in addition to our assumptions
πjNν ⊆ M is true for ν = 1, 2, our assertion is therefore just Folgerung 4.4 in [Kn3].
An inspection of the proof given there shows that it remains valid in the present
situation. ¤

Proposition 2.2. Let Lp be as in the introduction with 1
2 〈x, x〉 ∈ oFp for all

x ∈ Lp, let K
(1)
p , K

(2)
p be isometric sublattices of FpLp. Assume that there are an

isometry τ : K
(1)
p → K

(2)
p and j ∈ Z such that pjK

(1)
p and pjK

(2)
p are primitive

sublattices of L#
p and such that τ(x)− x ∈ Lp for all x ∈ pjK

(1)
p .

Then one has θp(X(Lp/K
(1)
p )) = θp(X(Lp/K

(2)
p )).

In particular, for one dimensional Kp = oFpx as above with fixed 〈x, x〉 ∈ 2oFp

the set θp(X(Lp/Kp)) depends only on 〈Kp, Lp〉 and on the class of x modulo
(〈Kp, Lp〉)−1Lp.

Proof. Since θp(X(Lp/Kp)) is (if θp(Lp,Kp) is non-empty) a coset of θp(Lp, Kp) ⊇
θp(SO(Lp)) this is an immediate consequence of Lemma 2.1. ¤

Remark. If p does not divide the discriminant of L and K = oF x is one dimen-
sional, Proposition 2.2 implies the well known fact that θp(X(Lp/Kp)) depends
only on 〈x, x〉 and 〈Kp, Lp〉 or equivalently on [Kp : Kp ∩ Lp] (see [CX]). In the
cases of p dividing the discriminant of L discussed below we see that at least in the
dyadic case it is sometimes necessary to use (part of) the additional information
about the position of Kp in the local discriminant group L#

p /Lp.

§3. Nondyadic primes

In this section, we assume that p is non-dyadic.
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Proposition 3.1. Suppose θp(Lp,Kp) = up and n(Kp) = n(Lp) = oFp . Write
〈Kp, Lp〉 = pk. Then

θp(X(Lp/Kp)) =
{

θp(Lp,Kp) if k ≥ 0

πkθp(Lp, Kp) if k < 0.

Proof. Without loss of generality, one can write

L = oFpx ⊥ oFpy ⊥ oFpz with Q(x) = 1, Q(y) = ε1π
r1 and Q(z) = ε2π

r2

and K = oFpw with Q(w) = 1. The condition θp(Lp, Kp) = up implies that
0 ≤ r1 ≤ r2 and that both r1 and r2 are even. Let

w = αx + βy + γz with α, β and γ in Fp.

i) k ≥ 0. Since θp(Lp,Kp) = up, one has ord(Q(v)) is even for any vector v in
Fpy ⊥ Fpz and Fpy ⊥ Fpz is anisotropic. It is clear that

τw−xτx ∈ X(Lp/Kp) and Q(w − x) = 2(1− α).

Since Kp ⊂ L]
p, one has ord(α) ≥ 0 and

1− α2 = Q(βy + γz)

Then
ord(1− α) = 0 or ord(1− α) = ord(Q(βy + γz))

which is even. Therefore θp(X(Lp/Kp)) = θp(Lp,Kp).

ii) k < 0. One can assume that Fpy ⊥ Fpz is anisotropic. It is clear that

k = min{ord(α), r1 + ord(β), r2 + ord(γ)}.

Suppose ord(α) > min{r1 + ord(β), r2 + ord(γ)}. Then one of ord(β), ord(γ) is
negative and smaller than ord(α). This implies

min{ord(Q(βy)), ord(Q(γz))} < ord(1−Q(αx)) = ord(Q(βy + γz)),

which is impossible since Fpy + Fpz is anisotropic. Therefore

ord(α) ≤ min{r1 + ord(β), r2 + ord(γ)} and ord(α) = k.

Since τw−xτx ∈ X(Lp/Kp) and

ord(Q(w − x)) = ord(2(1− α)) = ord(α) = k,

the proof is complete. ¤
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§4. Over Z2

It becomes very complicated to study such a question over dyadic local fields.
The simple result as in the previous section is no longer true over general dyadic
local fields even if 2 is unramified. Therefore we restrict ourselves to Fp = Q2

and oFp = Z2. As pointed out in previous sections, one only needs to consider
n(Kp) = n(Lp) and θp(Lp, Kp) = up. According to the classification in [X], we only
need to study Case II, III and IV in [X]. For convenience, we list them as follows by
[X, Theorem 2.1], taking into account the additional restrictions imposed in these
cases by the condition θ2(L2,K2) = u2.

Case II: L2 = Z2x ⊥ Z2y ⊥ Z2z with

Q(x) = 1, Q(y) = 2r1γ and Q(z) = 2r2δ

where 0 < r1 < r2, both r1 and r2 are even and γδ = −5.
Then K2 = Z2w with Q(w) = 1.

Case III: L2 = Z2x ⊥ (Z2y + Z2z) with

Q(x) = 1, Q(y) = 2r1+r2γ, Q(z) = −2r2−r1+2γ−1, and 〈y, z〉 = 2r2

where r2 ≥ r1 ≥ 0, r2 > 0 and r1 ≡ r2 mod 2.
Then K2 = Z2w with Q(w) = 1.

Case IV: If s(L2) = n(L2), L2 = Z2x ⊥ Z2y ⊥ Z2z with

Q(x) = 1, Q(y) = γ and Q(z) = 2r2δ

where r2 ≥ 2 and is even, γδ = −5 and γ = −1 or −5.
Then K2 = Z2w with Q(w) = 1.
If 2s(L2) = n(L2), L2 = (Z2x + Z2y) ⊥ Z2z with

Q(x) = 2, Q(y) = 2Γ, 〈x, y〉 = 1 and Q(z) = δ2r2

where r2 ≥ 3 and is odd, δ = 1 or 5 and

Γ =
{ −1 if δ = 1

0 if δ = 5.

Then K2 = Z2w with Q(w) = 2.

§5. Over Z2, Rank of the first Jordan component equals one

In this section, we study the case that the first Jordan component of L2 is of
rank one which corresponds to the cases II and III in §4.

Proposition 5.1. Suppose θ2(L2,K2) = u2, s(L2) = Z2 and the first Jordan
component of L2 is of rank one . Let 〈K2, L2〉 = 2kZ2.

If k > 0, then θ2(X(L2/K2)) = 2θ2(L2,K2).
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If k = 0, then

θ2(X(L2/K2)) =
{

2θ2(L2,K2) if (K2 + L2)/L2 is primitive in L]
2/L2,

θ2(L2,K2) otherwise.

If k < 0, then θ2(X(L2/K2)) = 2k+1θ2(L2,K2).

Proof. It is clear that one only needs to consider Case II and III in §4. We first
consider Case II. Write w = ax + by + cz where a, b and c are in Q2. Then

(5.2) 1 = a2 + b2Q(y) + c2Q(z)

and

(5.3) min{ord(a), r1 + ord(b), r2 + ord(c)} = k

It is clear that τw−xτx ∈ X(L2/K2) and Q(w − x) = 2(1− a).

For k > 0, the result follows from the same argument as in Proposition 3.1 i).

For k = 0, we have the following two cases.
If (K2 + L2)/L2 is primitive in L]

2/L2, then ord(b) = −r1 or ord(c) = −r2. This
implies

ord(Q(by + cz)) ≤ −r1 + 2 ≤ 0,

since Q2y + Q2z is anisotropic. By (5.2) one has ord(Q(by + cz)) = 0, and a2 +
Q(by + cz) = 1 implies ord(a) > 0 and hence (1 − a) ∈ Z×2 (the fact that we are
working over Z2 will be used in a similar way several times in this section).

Otherwise, ord(a) = 0 by (5.3). The result follows clearly for ord(1 − a) = 1.
We can assume that ord(1 − a) > 1. Then ord(1 + a) = 1, and ord(1 − a2) =
ord(1− a) + ord(1 + a) = ord(2(1− a)) is even since Q2y +Q2z is anisotropic, and
the result follows from (5.2).

For k < 0, we claim that ord(a) = k.
If ord(a) > r1 + ord(b), then

ord(a) ≥ 3 + ord(b) and ord(a2) ≥ 4 + ord(Q(by)).

By (5.3)
min{ord(Q(by)), ord(Q(cz))} < 0.

Then
r1 + 2ord(b) = ord(Q(by)) = ord(Q(cz)) = r2 + 2ord(c)

by (5.2), and hence ord(b) > ord(c) and r2 + ord(c) > r1 + ord(b). Therefore we
have

ord(b) + r1 = k < 0 and ord(Q(by)) = 2k − r1 ≤ −4.

Since Q2y ⊥ Q2z is anisotropic, one has

ord(Q(by) + Q(cz)) ≤ 2 + ord(Q(by)).

A contradiction is derived from (5.2). This implies that ord(a) ≤ r1 + ord(b) <
r2 + ord(c) and the claim follows.

Case III follows from similar arguments as above and the domination principle
in [R].

The proof is complete. ¤
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Remark 5.4. The case that (K2 + L2)/L2 is primitive in L]
2/L2 can only happen

for case II with r1 = 2 and Case III with r2 ≤ 2.

§6. Over Z2, Rank of the first Jordan component equals two

In this section, we study the case that the first Jordan component of L2 is of
rank two which corresponds to case IV in §4.

Proposition 6.1. Suppose θ2(L2,K2) = u2, s(L2) = Z2 and the first Jordan
component of L2 is of rank two. Let 〈K2, L2〉 = 2kZ2.

If k > 0, then θ2(X(L2/K2)) = 2θ2(L2,K2).
If k = 0, then θ2(X(L2/K2)) = θ2(L2,K2).
If k < 0 and n(L2) = Z2, then K2 is a sublattice of 2k−rL and

θ2(X(L2/K2)) =
{

2kθ2(L2,K2) if K2 is primitive in 2k−rL

2k+1θ2(L2,K2) otherwise.

where r = [ 12 (ord(n(L]
2))].

If k < 0 and n(L2) = 2Z2, then θ2(X(L2/K2)) = 2µθ2(L2,K2) where

µ =
{

k when the first Jordan component of L2 is hyperbolic
k + 1 otherwise.

Proof. It is clear that we only need to consider Case IV in §3. We first consider
the case n(L2) = Z2. Write w = ax + by + cz. Then

(6.2) min{ord(a), ord(b), r2 + ord(c)} = k

and

(6.3) 1 = a2 + γb2 + δ2r2c2.

One also has τw−xτx ∈ X(L2/K2) and Q(w − x) = 2(1− a).

For k > 0, the arguments in Proposition 3.1 i) are still valid.

For k = 0, we claim that ord(a) = 0. Otherwise

ord(b) = 0 and ord(δ2r2c2) ≥ 2

by (6.2) and (6.3) (r2 +2ord(c) = 0 is impossible since then a2 +γb2 +δ2r2c2 would
be even). A contradiction is derived by considering (6.3) modulo 4.
Then the result follows from the same arguments as in Proposition 5.1 for k = 0 in
the case ord(a) = 0.

For k < 0, (6.3) and (6.2) imply r2 + 2ord(c) ≥ min{0, 2ord(a), 2ord(b)} ≥ 2k,
and hence (with r = r2

2 )

ord(δ2r2c2) ≥ 2k and ord(c) ≥ k − r.
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Therefore K is a sublattice of 2k−rL and

min{ord(a), ord(b)} = k.

If K is primitive in 2k−rL, then ord(c) = k − r and hence

ord(δ2r2c2) = 2k = min{ord(a2), ord(γb2)}.

ord(a) = k would (since δ = 1 or 5) imply ord(a2 + δ2r2c2) = 2k + 1 6= ord(γb2),
and (6.3) leads to a contradiction for ord(b) = k as well as for ord(b) > k.
We have therefore ord(a) > k, ord(b) = k and ord(γb2 + δ2r2c2) = 2 + 2k since
γδ = −5. Equation (6.3) implies then ord(a) > 0 for k = −1 and ord(a) = k + 1
for k < −1, and hence ord(Q(w − x)) = 1 + ord(1− a) is congruent to k modulo 2
in both cases.

If K is not primitive in 2k−rL we have ord(c) > k−r, and (6.3) implies ord(a) =
ord(b) = k and hence

ord(Q(w − x)) = 1 + ord(1− a) = k + 1.

Now we consider the case n(L2) = 2Z2. Write w = ax + by + cz. Then

(6.4) min{ord(a), ord(b), ord(c) + r2} = k

and

(6.5) 2 = 2a2 + 2ab + 2Γb2 + δ2r2c2.

It is clear that τx−wτx ∈ X(L2/K2) and Q(w − x) = 2(2(1− a)− b).

For k > 0, one has ord(a) > 0 and ord(b) > 0. We claim that ord(b) ≥ 2.
If δ = 1, one has

ord(a2 + ab− b2) = min{2ord(a), 2ord(b)} ≥ 3

by (6.5). Therefore ord(b) ≥ 2.
If δ = 5, then ord(a2 + ab) = 2 by (6.5). This also implies that ord(b) ≥ 2, and

we get ord(Q(x) + ord(Q(w − x)) = 3 as asserted in this case.

For k = 0, ord(b) = 0 implies ord(Q(w − x)) = 1 = ord(Q(x)) and hence
θ2(X(L2)/K2) = θ(L2,K2). We can therefore assume ord(b) ≥ 1 which implies
ord(a) = 0.
Then

ord(δ2r2c2) ≥ 3 and ord(b) ≥ 2

by (6.5). In fact, one can further assume that ord(2(1− a)− b) > 2. Then

ord(2(1− (a + 2−1b))) = ord(1− (a + 2−1b)2) = ord((2−1b)2(4Γ− 1) + δ2r2−1c2)

by (6.5), and this order is always even.
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For k < 0, (6.5) and (6.4) imply ord(δ2r2−1c2) ≥ min{2ord(a), 2ord(b)} ≥ 2k
and hence

ord(δ2r2−1c2) ≥ 2k and ord(c) ≥ k − 1
2
(r2 − 1)

by (6.4) and (6.5).

If the first Jordan component of L2 is not a hyperbolic plane, then

δ = 1 and ord(c) = k − 1
2
(r2 − 1)

by (6.4), (6.5) and the domination principle in [R]. We have

τ
2−

1
2 (r2−1)z−w

τx ∈ X(L2/K2),

and
ord(Q(2−

1
2 (r2−1)z − w)) = ord(4(1− 2

1
2 (r2−1)c)) = k + 2.

If the first Jordan component is a hyperbolic plane, then δ = 5 and Γ = 0.
If ord(c) = k − 1

2 (r2 − 1), one has ord(a) = ord(a + b) = k and

ord(a2 − δ2r2−1c2) = 2k + 2.

by (6.4) and (6.5). Since

a(2a + b) = a2 + a(a + b) = a2 − δ2r2−1c2 + 1

by (6.5), one has

ord(2a + b) =
{

> 1 if k = −1
k + 2 if k < −1.

Therefore ord(Q(w − x)) = k + 3.
Otherwise ord(c) > k − 1

2 (r2 − 1). By (6.4) and (6.5), we have

ord(a) 6= ord(a + b) and min{ord(a), ord(a + b)} = k.

Therefore ord(Q(w − x)) = k + 1. The proof is complete. ¤

§7. Proof of Example 1.2

Before we give a proof of Example 1.2, we recall some basic facts (see [Kn1, SP1,
HSX]):

To a lattice K in FL of codimension 2 that is represented locally everywhere by L
one associates the quadratic extension E = F (

√
d) of F where d is the discriminant

of FK⊥ and puts Np(E) := N
EP

Fp
(E×

P) for any place p of F with a place P in E

dividing p. The lattice K is then represented by all classes in the genus of L if
and only if either d is a square or there is some p such that θp(Lp,Kp) 6= Np(E)
(notice that θp(Lp,Kp) ⊇ Np(E) is true automatically). If this is not the case,
K is represented by precisely half the classes in the genus of L; such K are called
exceptional for gen(L).
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If K is exceptional for gen(L) and σ = (σp)p is in the adelic special orthogonal
group of FL such that K is represented by σL, then K is represented by L if and
only if

(θp(σp))p ⊆ F× ·
∏
p

Np(E).

We have the following proposition which explains that the solubility of (1.1) for
the case of codimension two depends only on the local computation of θp(X(Lp/Kp)).
For any two lattices K and L, let

P (L,K) = {p prime : θp(X(Lp/Kp)) 6= θp(Lp,Kp)}.
It is clear that | P (L,K) | is finite.

Proposition 7.1. If K is an exceptional lattice for gen(L) with codimension two,
then K is represented by L if and only if | P (L,K) | is even.

Proof. As above let σ = (σp)p be in adelic special orthogonal group of FL such
that K ⊆ σL. By Hilbert’s reciprocity law

(θp(σp))p ⊆ F× ·
∏
p

Np(E).

is true if and only if θp(σp) 6⊆ Np(E) holds for an even number of places p, i. e., if
and only if |P (L,K)| is even. ¤
Proof of Example 1.2. Let L = Ze1 + Ze2 + Ze3 be a quadratic lattice such that

Q(xe1 + ye2 + ze3) = m2x2 + n2ky2 − nz2

and K = Z(m−1e1).
It is easily seen that 1 is represented by gen(L) if and only if (m,n) = 1. We

have then Kp ⊆ Lp for all p - m, and it is clear that 〈L,K〉 = mZ.

We can conclude from Proposition 3.1 that θp(X(Lp/Kp)) = θp(Lp,Kp) for all
odd p | m, hence 1 is certainly represented by L if m is odd. If m is even (which
we assume from now on) and 4 - m we see from [SP1,X] that K is not exceptional
if n is congruent to 3 or 7 modulo 8. In all other cases of even m, the lattice K
is exceptional, and in these remaining cases 1 is represented by L if and only if
θ2(X(L2/K2)) = θ2(L2,K2) by Proposition 7.1.

If n ≡ 1 mod 8 there is nothing to check at p = 2 and the representability of 1
by L follows. If n ≡ 5 mod 8 Proposition 6.1 applies and yields θ2(X(L2/K2)) =
2θ2(L2, K2), thus P (L,K) = {2} and 1 is not represented by L.

It remains to consider the case that m is even and Q2(
√

n)/Q2 is ramified, i.e.,
n ≡ 3 mod 8 or n ≡ 7 mod 8; by the argument above we need to discuss this only
for 4 | m.

It is clear that
τ 1

nk e2− 1
m e1

τe2 ∈ X(L2/K2)

and
Q(

1
nk

e2 − 1
m

e1) = 2.

We have 2 /∈ θ2(L2,K2) = N2(Q(
√

n)) for n ≡ 3 mod 8 and 2 ∈ θ2(L2,K2) =
N2(Q(

√
n)) for n ≡ 7 mod 8, which finishes the proof. ¤
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§8. Regularity of indefinite ternary forms

In this section, we discuss the regularity of indefinite ternary forms in the sense
of Dickson [Di].

Definition 8.1. A quadratic form is called regular if it represents all integers which
are locally represented.

It is well known that there are only finitely many regular positive definite ternary
quadratic forms by the results of Watson. Jagy, Kaplansky and Schiemann [JaKaSc]
try to give a complete list of such positive definite ternary forms. For indefinite
ternary forms, it is easy to see that there are infinitely many genera consisting only
of one class and hence infinitely many regular forms. In [BH] an example was given
of genera with arbitrary large class number such that all forms in the genus are
regular. We consider here some examples of other types of behaviour.
Let L be an indefinite lattice of rank 3.

Definition 8.2. ([BH]) A set of exceptional square classes {c1, · · · , cn} for gen(L)
is called independent if {−c1det(L), · · · ,−cndet(L)} are linearly independent vec-
tors in the F2 vector space Q×/(Q×)2 (or equivalently, if the fields Q(

√
−cidet(L))

are linearly disjoint).
It is called complete if in addition 2n is the number of spinor genera in gen(L).

The following proposition is already known in [BH]. Here we give a proof which
also provides a method of explicit construction.

Proposition 8.3. If the set of all exceptional square classes for gen(L) is inde-
pendent, then there is a regular form in gen(L).

Proof. Let {c1, · · · , cn} be all exceptional square classes for gen(L) and

Gal(Q(
√
−cidet(L))/Q) = {1, gi}

for 1 ≤ i ≤ n. Define

hi =
{

1 if L represents ci,
gi otherwise.

Since {−c1det(L), · · · ,−cndet(L)} are linearly independent, by Kummer theory
and Cebotarev density Theorem, there is a prime l - 2det(L) such that

l is unramified in Gal(Q(
√
−cidet(L))/Q)

and the Frobenius of l is hi for 1 ≤ i ≤ n. Then the l-neighbor of L in the sense of
Kneser [Kn2,SP2] is in gen(L) and regular. ¤
Corollary 8.4. If gen(L) has only two exceptional square classes, then there is a
regular form in gen(L).

Proof. It is clear that any two exceptional square classes are independent. ¤
Example 8.5. Let p, q and r be primes such that p ≡ 1 mod 8, q ≡ r ≡ 3 mod 8
and ( q

p ) = ( r
p ) = 1. Let

f(x, y, z) = x2 − pqry2 + p3q2r2z2
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Then 1 and p are the only two exceptional square classes and f is regular.

Proof. It is clear that 1 and p are represented by gen(f) and are also exceptional
integers for gen(f). In fact, they are the only exceptional square classes. Indeed,
let a be an exceptional integer for gen(f). By [CX, (3.2)] at ∞, one has that a
is positive. Write a = a0b

2 where both a0 and b are positive integers and a0 is
square-free. Besides 1 and p, the other possible values of a0 are q, r, pq, pr and
pqr.

Since q and r are symmetric, one can assume ( r
q ) = 1 and ( q

r ) = −1. By a simple
computation of Hasse symbols, one has that a is not represented by f over Qq if
a0 = q, pq or pqr. For a0 = r or pr, the relative spinor norm is Q×r at r but r is
not split in the corresponding quadratic field Q(

√
q) or Q(

√
pq) respectively. Then

a is not exceptional.
In order to prove that f is regular, one only needs to show that p is represented

by f . Equivalently, one only needs to show that the following equation

px2 − qry2 + p2q2r2z2 = 1

is solvable over Z. Let L = Ze1 ⊥ Ze2 ⊥ Ze3 be a quadratic lattice such that

Q(xe1 + ye2 + ze3) = px2 − qry2 + p2q2r2z2

and K = Z 1
pqr e3. It is clear that the primes in P (L,K) in §7 are from p, q and r.

At p, one has
τ√−qr−1e2−(pqr)−1e3

τe2 ∈ X(Lp/Kp)

and
Q(
√−qr

−1
e2 − (pqr)−1e3) = 2 ∈ (Q×

p )2

Therefore p /∈ P (L,K).
At q, one has

τ√p−1e1−(pqr)−1e3
τe1 ∈ X(Lq/Kq)

and
Q(
√

p
−1

e1 − (pqr)−1e3) = 2 /∈ (Z×q )2

Therefore q ∈ P (L,K). Similarly one has r ∈ P (L, K). The result follows from
Prop.7.1. ¤

If there are more than two exceptional square classes, the set of all exceptional
square classes is not necessarily independent and there may be no regular forms in
the given genus.

Remark 8.6. It should be pointed out that the term “regular spinor genus” in [BH]
denotes a spinor genus which represents a maximal independent set of exceptional
square classes but not necessarily all exceptional square classes.

In fact, we’ll construct a genus in the following steps with only three exceptional
square classes which are not independent and with arbitrarily large class number
but such that there is no regular form in the genus.
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Step 1): Suppose p1, · · · , pn are odd primes with pi ≡ 1 mod 8 for 1 ≤ i ≤ n
and ( pi

pj
) = 1 for i 6= j. Let

f(x, y, z) = x2 − (p1 · · · pn)y2 + (p1 · · · pn)2z2.

It is clear that the class number of f is 2n and there are 2n − 1 exceptional square
classes for gen(f) which are the classes of 1 and of the pi1 · · · pis

for i1 < · · · < is
with 1 ≤ s ≤ n− 1. The form f is equivalent to

f ′(x, y, z) = (p1 · · · pk)2x2 − (p1 · · · pn)y2 + (pk+1 · · · pn)2z2.

To see equivalence of these forms, one can write L = Ze1 ⊥ Ze2 ⊥ Ze3 such that

Q(xe1 + ye2 + ze3) = (p1 · · · pk)2x2 − (p1 · · · pn)y2 + (pk+1 · · · pn)2z2.

Then we only need to show that L is equivalent to L′ = Z(p−1
k e1) ⊥ Ze2 ⊥ Z(pke3).

It is clear that Lp = L′p if p 6= pk. At p = pk, one can check that

τ 1
p1···pk

e1− 1
pk+1···pn

e3
(Lpk

) = L′pk

and
Q(

1
p1 · · · pk

e1 − 1
pk+1 · · · pn

e3) = 2 ∈ (Q×pk
)2.

Step 2): To decide if f represents (p1 · · · pk) is equivalent to determine if the
following Diophantine equation

(p1 · · · pk)x2 − (pk+1 · · · pn)y2 + (p1 · · · pk)(pk+1 · · · pn)2z2 = 1

is solvable over Z. Let L = Ze1 ⊥ Ze2 ⊥ Ze3 such that

Q(xe1 + ye2 + ze3) = (p1 · · · pk)x2 − (pk+1 · · · pn)y2 + (p1 · · · pk)(pk+1 · · · pn)2z2.

Write
p1 · · · pk = m2 + n2

and
K = Z(

m

p1 · · · pk
e1 +

n

p1 · · · pn
e3).

Since pi with 1 ≤ i ≤ k splits in Q(
√

pk+1 · · · pn), P (L,K) in §7 contains only
primes from {pk+1, . . . , pn}.

Step 3): For any p ∈ {pk+1, . . . , pn}, (p1 · · · pk) is a square in Qp. It is clear that

τ(
√

p1···pk)−1e1−uτe1 ∈ X(Lp/Kp)

where u = m
p1···pk

e1 + n
p1···pn

e3. Therefore p ∈ P (L,K) if and only if

Q((
√

p1 · · · pk)−1e1 − u) = 2(1−m(
√

p1 · · · pk)−1)

is a non-square unit or p times a non-square unit up to a square in Qp.
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Step 4): Let n = 2 and p1 = 17 and p2 = 89 (this is the first pair of primes
satisfying the conditions above).

To see if f represents 17, one can write 17 = 12 + 42 and have

1−
√

17
−1 ≡ 1− 33 ≡ −25 mod 89.

Therefore P (L,K) is empty and f represents 17.
To see if f represents 89, one can write 89 = 82 + 52 and have

1− 8(
√

89)−1 ≡ 1− 8× 2−1 ≡ −3 mod 17.

Therefore P (L,K) = {17} and f does not represent 89.
By the Cebotarev density theorem, for any given class in gen(f) there are primes

l - 2 · 17 · 89 such that the l-neighbor of f is equivalent to this given class.
However, there are no primes l - 2 · 17 · 89 such that Frobenius of l is trivial

at Gal(Q(
√

89)/Q) and Gal(Q(
√

17 · 89)/Q) but non-trivial at Gal(Q(
√

17)/Q).
Hence no form in the genus of f can represent all of 1, 17, 89, i. e., there are no
regular forms in gen(f).

Step 5): Based on the above construction, one can have

g(x, y, z) = x2 − 17 · 89 · (q1 · · · qm)2y2 + (17 · 89)2(q1 · · · qm)4z2

where qi are odd primes with qi ≡ 1 mod 8 and different from 17 and 89, and
( 17

qi
) = ( 89

qi
) = 1 for 1 ≤ i ≤ m and ( qi

qj
) = 1 for i 6= j.

If there were an exceptional integer a that is divisible by one of the qi it had
to be divisible by q3 in order to be locally representable at qi. But then it is seen
from [SP1] that a can not be exceptional. All the exceptional squares for gen(g)
are therefore 1, 17 and 89. By the same argument as above, g represents 1 and 17
but not 89 and there are no regular forms in gen(g). At the same time, the class
number in gen(g) can be arbitarily large. ¤
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