Global Gross-Prasad conjecture for $S O$ (5) and Yoshida's theta lifting

Siegfried Böcherer, Masaaki Furusawa, Rainer Schulze-Pillot

Gross-Prasad-conjecture: Local or global situation
$S O(n)=G, \quad S O(n-1)=G^{\prime} \subseteq G, \quad H=G^{\prime} \Delta G^{\prime} \times G$
π, π^{\prime} irreducible representations of G, G^{\prime} resp. (cuspidal automorphic in global case, admissible in local case).

Local Problem: When is $\operatorname{Hom}_{H}\left(\pi \otimes \pi^{\prime}, \mathbf{C}\right) \neq 0$?
(Does there exist an H - invariant linear functional on $\pi \times \pi^{\prime}$?) equivalently: is $\operatorname{Hom}_{H}\left(\pi, \tilde{\pi}^{\prime}\right) \neq 0$?

If existent, the invariant linear functional is unique.

Global problem: Is the invariant functional

$$
I_{H}(\varphi)=\int_{H(\mathrm{Q}) \backslash H(\mathbf{A})} \varphi(h) d h
$$

nonzero?
In this talk: Global situation over \mathbf{Q}.

Example: $G=S O(4)$ split:
$G \cong\left\{\left(g_{1}, g_{2}\right) \in G L_{2} \times G L_{2} \mid \operatorname{det}\left(g_{1}\right)=\operatorname{det}\left(g_{2}\right)\right\} / Z\left(G L_{2}\right)_{\Delta}$,
(g_{1}, g_{2}) acting on ($M\left(2 \times 2\right.$), det) by $A \mapsto g_{1} A g_{2}^{-1}$.
$G^{\prime} \cong P G L_{2} \xrightarrow{\Delta} G$ acting on trace 0 matrices
$\pi_{1}, \pi_{2}, \pi_{3}$ irreducible cuspidal automorphic representations of $G L_{2}$, central character of $\pi_{1} \otimes \pi_{2}$ and of π_{3} trivial, $\pi:=\pi_{1} \otimes \pi_{2}$ (as rep. of $G=S O(4)$), $\pi^{\prime}=\pi_{3}$ (as rep. of $G^{\prime}=P G L_{2}$).

Similarly for D quaternion algebra over \mathbf{Q} with reduced norm n.
$G^{D}=S O(D) \cong\left\{\left(g_{1}, g_{2}\right) \in D^{\times} \times D^{\times} \mid n\left(g_{1}\right)=n\left(g_{2}\right)\right\} / Z\left(D^{\times}\right)_{\Delta,}$, acting on (D, n) as above,
$G^{\prime D} \cong P D^{\times} \stackrel{\Delta}{\hookrightarrow} G$ acting on trace 0 quaternions D^{0}
$\pi_{1}, \pi_{2}, \pi_{3}$ irreducible cuspidal automorphic representations of $G L_{2}(\mathbf{A})$, central character of $\pi_{1} \otimes \pi_{2}$ and of π_{3} trivial,
$\pi:=\pi_{1} \otimes \pi_{2}$ (as rep. of $G(\mathbf{A})=S O(4, \mathbf{A})$), $\pi^{\prime}=\pi_{3}$ (as rep. of $G^{\prime}(\mathbf{A})=$ $P G L_{2}(\mathrm{~A})$).
S set of places, where all of $\pi_{1}, \pi_{2}, \pi_{3}$ are discrete series,
D a quaternion algebra over \mathbf{Q} unramified outside S,
π_{i}^{D} the Jacquet-Langlands lift of π_{i} to $D^{\times}(\mathbf{A})$.
Jacquet conjecture: (Harris/Kudla)

$$
L\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{3}, 1 / 2\right) \neq 0 \Leftrightarrow \int_{Q_{A}^{\times} Z\left(D_{A}^{\times}\right) \backslash D_{A}^{\times}} \varphi_{1}^{D}(x) \varphi_{2}^{D}(x) \varphi_{3}^{D}(x) d x \neq 0
$$

for some quaternion algebra D as above and some $\varphi_{i}^{D} \in \pi_{i}^{D}$. (Notice: Integral becomes a finite sum if D is ramified at ∞.)
R.H.S.: \Leftrightarrow Invariant functional

Prasad: Such a functional exists locally at v for precisely one D_{v}.

Jacquet conjecture: (Harris/Kudla)

Prasad: Such a functional exists locally at v for precisely one D_{v}.
Gross/Kudla: Compute $L\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{3}, 1 / 2\right)$ explicitly as multiple of $\left(I\left(\varphi_{1}^{D} \otimes \varphi_{2}^{D} \otimes \varphi_{3}^{D}\right)\right)^{2}$ for hol. newforms of weight 2.
Böcherer/SP: same for triple of weights "balanced" (weights are sides of a triangle, quaternion algebra is ramified at ∞), Watson: Sum of weights 0 .

Gross-Prasad conjecture:

$S O(n)=G, \quad S O(n-1)=G^{\prime} \subseteq G, \quad H=G^{\prime} \stackrel{\Delta}{\hookrightarrow} G^{\prime} \times G$,
π, π^{\prime} irred. rep. of G, G^{\prime} resp. (cuspidal automorphic resp. admissible), central character of $\pi \times \pi^{\prime}$ trivial.

Locally H-invariant functional exists for precisely one inner form $\widetilde{G}, \widetilde{G}^{\prime \prime}$ and $\tilde{\pi}, \tilde{\pi}^{\prime}$ of $\tilde{G}, \widetilde{G}^{\prime}$ corresponding to π, π^{\prime} (assume π, π^{\prime} to have generic parameters), nonzero on spherical vector at places where π, π^{\prime} are unramified.

Global nonvanishing of $I_{\tilde{H}}$ (on some inner form) depends on central value of L-function $L\left(\pi \otimes \pi^{\prime}, s\right)$.

Here: $G^{\prime}=S O(4) \subseteq G=S O(5) \cong P G S p(2 \cdot 2)$,
in $G=P G S p(2 \cdot 2)$ we have $G^{\prime}=\left\{\left(\begin{array}{cccc}a_{1} & 0 & b_{1} & 0 \\ 0 & a_{2} & 0 & b_{2} \\ c_{1} & 0 & d_{1} & 0 \\ 0 & c_{2} & 0 & d_{2}\end{array}\right)\right\}$.
Goal: Compute $I(\varphi)$ explicitly for φ corresponding to holomorphic modular forms!
F holomorphic Siegel modular form on the Siegel uper half plane

$$
\mathbf{H}_{2}=\left\{Z=X+i Y \in M_{2}^{\text {sym }}(\mathbf{C}) \mid Y>0\right\}
$$

(possibly vector valued), f_{1}, f_{2} elliptic modular forms for Γ, compute

$$
\int_{(\ulcorner\backslash \mathbf{H}) \times(\ulcorner\backslash \mathbf{H})} F\left(\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{2}
\end{array}\right)\right) \overline{f_{1}\left(z_{1}\right) f_{2}\left(z_{2}\right)} d^{*} z_{1} d^{*} z_{2} .
$$

Should get connection to $L\left(\operatorname{Spin}(F), f_{1}, f_{2}, s\right)$.

Watson's talk: Jacquet conjecture and explicit formulae "explained" by seesaw identity:

The slanted lines denote theta liftings, the vertical lines denote inclusions.
The line between $S p_{6}$ and $S O(D)$ represents the Siegel-Weil formula.

We use a seesaw here too:

$$
\begin{array}{cc}
\Pi & \left(\pi_{1}^{D} \otimes \pi_{1}^{D}\right) \otimes\left(\pi_{2}^{D} \otimes \pi_{2}^{D}\right) . \\
F & \left(\psi_{1}^{D} \otimes \psi_{1}^{D}\right) \otimes\left(\psi_{2}^{D} \otimes \psi_{2}^{D}\right) \\
G S p_{2} & G O(D) \times G O(D) \\
G O\left(S L_{2} \times S L_{2}\right) &
\end{array}
$$

$$
\begin{array}{ll}
\left(f_{1}, f_{2}\right) & {\varphi_{1}^{\prime D} \otimes \varphi_{2}^{\prime D}}_{\pi_{1} \otimes \pi_{2}} \\
\pi_{1}^{\prime D} \otimes \pi_{2}^{\prime D}
\end{array}
$$

Use D ramified at ∞ (so with positive definite norm form).

Theta liftings:

V over Q even dimensional quadratic space with form $Q(x)=\frac{1}{2} B(x, x)$.
The oscillator representation ω of $O(V, \mathbf{A}) \times S p(2 n, \mathbf{A})$ acts on $S\left(V(\mathbf{A})^{n}\right.$, gives rise to the theta kernel

$$
\theta^{(V, n)}(g, h ; f)=\theta^{n}(g, h ; f):=\sum_{\mathbf{x} \in V(\mathbf{Q})^{n}} \omega(g) f\left(h^{-1} \mathbf{x}\right)
$$

For a cusp form φ on $O(V, \mathbf{A})$ and a test function $f \in S\left(V(\mathbf{A})^{n}\right)$ write

$$
\Theta_{f}^{(n)}(\varphi)(g):=\int_{O(V, \mathbf{Q}) \backslash O(V, \mathbf{A})} \varphi(h) \theta^{n}(g, h ; f) d h,
$$

this is an automorphic form on $\operatorname{Sp}(2 n, \mathbf{A})$.
For Q positive definite one has $O(V, \mathbf{A})=\cup_{j=1}^{t} O(V, \mathbf{Q}) h_{j} O(L, \mathbf{A})$ for a lattice $L \subseteq V, \Theta_{f}^{(n)}(\varphi)(g)$ is then a finite linear combination of classical theta series with spherical harmonic polynomials associated to a lattice $L \subseteq V$:

$$
\vartheta_{L, \mathbf{y}}^{(n)}(P, z)=\sum_{\mathbf{x} \in \mathbf{y}+L^{n}} P(\mathbf{x}) \exp (2 \pi i \operatorname{tr}(Q(\mathbf{x}) Z))
$$

where $\mathbf{y} \in V(\mathbf{Q})^{n}, Q(\mathbf{x})=\left(\frac{1}{2} B\left(x_{k}, x_{l}\right)\right) \in M_{n}^{\text {sym }}(\mathbf{Q})$ for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in V(\mathbf{Q})^{n}$.

Yoshida's lifting:

h_{1}, h_{2} cuspidal newforms of weight 2 , trivial character for $\Gamma_{0}(N)$ (N squarefree) (for simplicity), having the same Atkin-Lehner eigenvalues for $p \mid N$, associated representations $\pi_{1}^{\prime}, \pi_{2}^{\prime}$.
D quaternion algebra $/ \mathrm{Q}$, ramified at ∞ and some places dividing N, R an order of level N in D
(maximal at the ramified places, intersection of two maximal orders with index p in both of them at unramified primes $p \mid N)$.
h_{1}, h_{2} have Jacquet-Langlands lift $\varphi_{1}^{D}, \varphi_{2}^{D}$ to functions $D_{\mathrm{A}}^{\times} \rightarrow \mathbf{C}$ (new vectors in the representations $\left.\pi_{1}^{\prime D}, \pi_{2}^{\prime D}\right)$.

With $R_{\mathrm{A}}^{\times}=D_{\infty}^{\times} \times \prod_{p} R_{p}^{\times}$we have the double coset decomposition

$$
D_{\mathrm{A}}^{\times}=\cup_{i=1}^{r} D^{\times} y_{i} R_{\mathbf{A}}^{\times}
$$

(r the number of classes of left ideals of the order R). $e_{i}=\left|\left(y_{i} R y_{i}^{-1}\right)^{\times}\right|$is the number of units of the order $R_{i}=y_{i} R y_{i}^{-1}$ of D.
h_{1}, h_{2} have Jacquet-Langlands lift $\varphi_{1}^{D}, \varphi_{2}^{D}$ to functions $D_{\mathbf{A}}^{\times} \rightarrow \mathbf{C}$ (new vectors in the representations $\left.\pi_{1}^{\prime D}, \pi_{2}^{\prime D}\right)$.

With $R_{\mathrm{A}}^{\times}=D_{\infty}^{\times} \times \prod_{p} R_{p}^{\times}$we have the double coset decomposition

$$
D_{\mathrm{A}}^{\times}=\cup_{i=1}^{r} D^{\times} y_{i} R_{\mathrm{A}}^{\times}
$$

(r the number of classes of left ideals of the order R).
$e_{i}=\left|\left(y_{i} R y_{i}^{-1}\right)^{\times}\right|$is the number of units of the order $R_{i}=y_{i} R y_{i}^{-1}$ of D.
The Yoshida lifting of degree 2 of $\varphi_{1}^{D}, \varphi_{2}^{D}$ is:

$$
Y^{(2)}\left(\varphi_{1}^{D}, \varphi_{2}^{D}\right)(Z)=\sum_{i, j=1}^{r} \frac{1}{e_{i} e_{j}} \varphi_{1}^{D}\left(y_{i}\right) \varphi_{2}^{D}\left(y_{j}\right) \vartheta^{2}\left(y_{i} R y_{j}^{-1}, Z\right)
$$

where $\vartheta^{2}\left(y_{i} R y_{j}^{-1}, Z\right)=\sum_{\left(x_{1}, x_{2}\right) \in\left(y_{i} R y_{j}^{-1}\right)^{2}} \exp \left(2 \pi i \operatorname{tr}\left(\left(\begin{array}{cc}n\left(x_{1}\right) & \operatorname{tr}\left(\overline{x_{1}} x_{2}\right) \\ \operatorname{tr}\left(\bar{x}_{1} x_{2}\right) & n\left(x_{2}\right)\end{array}\right) Z\right)\right.$.
It is nonzero (Bö-SP), cuspidal if $h_{1} \neq h_{2}$.
It is the theta lifting of $\varphi_{1}^{D} \otimes \varphi_{2}^{D}$ from $S O(D)$ to $S p(2 \cdot 2)$.

$$
\begin{gathered}
Y^{(2)}\left(\varphi_{1}^{D}, \varphi_{2}^{D}\right)(Z)=\sum_{i, j=1}^{r} \frac{1}{e_{i} e_{j}} \varphi_{1}^{D}\left(y_{i}\right) \varphi_{2}^{D}\left(y_{j}\right) \vartheta^{2}\left(y_{i} R y_{j}^{-1}, Z\right) \\
\text { where } \vartheta^{2}\left(y_{i} R y_{j}^{-1}, Z\right)=\sum_{\left(x_{1}, x_{2}\right) \in\left(y_{i} R y_{j}^{-1}\right)^{2}} \exp \left(2 \pi i \operatorname{tr}\left(\left(\begin{array}{cc}
n\left(x_{1}\right) & \operatorname{tr}\left(\overline{x_{1}} x_{2}\right) \\
t r\left(\overline{\left.x_{1} x_{2}\right)}\right. & n\left(x_{2}\right)
\end{array}\right) Z\right) .\right.
\end{gathered}
$$

It is nonzero (Bö-SP), cuspidal if $h_{1} \neq h_{2}$.
It is the theta lifting of $\varphi_{1}^{D} \otimes \varphi_{2}^{D}$ from $S O(D)$ to $S p(2 \cdot 2)$.
If h_{1}, h_{2} have even weights $2+2 \nu_{1}, 2+2 \nu_{2}$ get similar construction, φ_{i}^{D} take values in harmonic polynomials of degree ν_{i} on $D^{0}(\mathbf{R})$.
$Y^{(2)}\left(\varphi_{1}^{D}, \varphi_{2}^{D}\right)(Z)$ is then a vector valued modular form of type $\left(\nu_{1}+\nu_{2}, \nu_{1}-\nu_{2}\right)$, a linear combination of theta series with harmonic polynomials on $D(\mathbf{R})$.

The same construction with

$$
\vartheta^{1}\left(y_{i} R y_{j}^{-1}, z\right)=\sum_{x \in\left(y_{i} R y_{j}^{-1}\right)} \exp (2 \pi i n(x) z)
$$

gives zero for $h_{1} \neq h_{2}$, the Jacquet-Langlands lift as constructed by Eichler if $h_{1}=h_{2}$.

Back to our seesaw (D ramified at ∞ as above)

$$
\begin{array}{cc}
F=Y^{2}\left(\varphi_{1}^{D}, \varphi_{2}^{D}\right) & \left(\psi_{1}^{D} \otimes \psi_{1}^{D}\right) \otimes\left(\psi_{2}^{D} \otimes \psi_{2}^{D}\right) . \\
G\left(S L_{2} \times S L_{2}\right) & G O(D) \times G O(D) \\
\left(f_{1}, f_{2}\right) & G O(D) \\
\varphi_{1}^{D} \otimes \varphi_{2}^{D} \\
\left(h_{1}, h_{2}\right)
\end{array}
$$

Sketch of computation (Weights 2, put $e_{i}=\left|\left(y_{i} R y_{i}^{-1}\right)^{\times}\right|=1$). Compute the period integral

$$
\begin{aligned}
& \int Y^{(2)}\left(\varphi_{1}^{D}, \varphi_{2}^{D}\right)\left(\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{2}
\end{array}\right)\right) f\left(z_{1}\right) f\left(z_{2}\right) d z_{1} d z_{2} \\
& \left.\quad=\int \sum_{i, j=1}^{r} \varphi_{1}^{D}\left(y_{i}\right) \varphi_{2}^{D}\left(y_{j}\right) \vartheta^{2}\left(y_{i} R y_{j}^{-1},\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{2}
\end{array}\right)\right)\right) f\left(z_{1}\right) f\left(z_{2}\right) d z_{1} d z_{2}
\end{aligned}
$$

We have:

$$
\begin{aligned}
& \int \vartheta^{2}\left(y_{i} R y_{j}^{-1},\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{2}
\end{array}\right)\right) f_{1}\left(z_{1}\right) f_{2}\left(z_{2}\right) d z_{1} d z_{2}= \\
& \quad=\left(\int \vartheta^{1}\left(y_{i} R y_{j}^{-1}, z_{1}\right) f_{1}\left(z_{1}\right) d z_{1}\right)\left(\int \vartheta^{1}\left(y_{i} R y_{j}^{-1}, z_{2}\right) f_{2}\left(z_{2}\right) d z_{2}\right) \\
& =c\left\langle f_{1}, f_{1}\right\rangle\left\langle f_{2}, f_{2}\right\rangle \psi_{1}^{D}\left(y_{i}\right) \psi_{1}^{D}\left(y_{j}\right) \psi_{2}^{D}\left(y_{i}\right) \psi_{2}^{D}\left(y_{j}\right) \quad c \neq 0 \text { explicit, hence } \\
& \quad \int Y^{(2)}\left(\varphi_{1}^{D}, \varphi_{2}^{D}\right)\left(\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{2}
\end{array}\right)\right) f\left(z_{1}\right) f\left(z_{2}\right) d z_{1} d z_{2} \\
& \quad=c\left\langle f_{1}, f_{1}\right\rangle\left\langle f_{2}, f_{2}\right\rangle \sum_{i, j} \varphi_{1}^{D}\left(y_{i}\right) \varphi_{2}^{D}\left(y_{j}\right) \psi_{1}^{D}\left(y_{i}\right) \psi_{1}^{D}\left(y_{j}\right) \psi_{2}^{D}\left(y_{i}\right) \psi_{2}^{D}\left(y_{j}\right)
\end{aligned}
$$

which gives

$$
\begin{aligned}
& \int Y^{(2)}\left(\varphi_{1}^{D}, \varphi_{2}^{D}\right)\left(\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{2}
\end{array}\right)\right) f_{1}\left(z_{1}\right) f_{2}\left(z_{2}\right) d z_{1} d z_{2} \\
& \quad=c\left\langle f_{1}, f_{1}\right\rangle\left\langle f_{2}, f_{2}\right\rangle \sum_{i, j} \varphi_{1}^{D}\left(y_{i}\right) \varphi_{2}^{D}\left(y_{j}\right) \psi_{1}^{D}\left(y_{i}\right) \psi_{1}^{D}\left(y_{j}\right) \psi_{2}^{D}\left(y_{i}\right) \psi_{2}^{D}\left(y_{j}\right) \\
& \quad=c\left\langle f_{1}, f_{1}\right\rangle\left\langle f_{2}, f_{2}\right\rangle\left(\sum_{i} \varphi_{1}^{D}\left(y_{i}\right) \psi_{1}^{D}\left(y_{i}\right) \psi_{2}^{D}\left(y_{i}\right)\right)\left(\sum_{j} \varphi_{2}^{D}\left(y_{j}\right) \psi_{1}^{D}\left(y_{j}\right) \psi_{2}^{D}\left(y_{j}\right)\right)
\end{aligned}
$$

The square of $\left(\sum_{i} \varphi_{1}^{D}\left(y_{i}\right) \psi_{1}^{D}\left(y_{i}\right) \psi_{2}^{D}\left(y_{i}\right)\right)$ is (Bö-SP) (up to an explicit constant) equal to

$$
\frac{L\left(h_{1}, f_{1}, f_{2}, 1 / 2\right)}{\left\langle h_{1}, h_{1}\right\rangle\left\langle f_{1}, f_{1}\right\rangle\left\langle f_{2}, f_{2}\right\rangle}
$$

(Aside: The version of this formula for harmonic polynomials leads (in a smilar way as in Watson's talk to a result about equidistribution of spherical functions on the 2-sphere that are Hecke eigenforms, Böcherer/Sarnak/SP).

Theorem: Let newforms f_{1}, f_{2} of even weights k_{1}, k_{2} and h_{1}, h_{2} of weights $k_{1}^{\prime}=2+2 \nu_{1}, k_{2}^{\prime}=2+2 \nu_{2}$, all of squarefree level N and trivial character, be given, h_{1}, h_{2} with the same Atkin-Lehner eigenvalues ϵ_{p}^{\prime}, f_{i} with AtkinLehner eigenvalues $\epsilon_{i, p}$, assume that $\prod_{p \mid N} \epsilon_{p}^{\prime} \epsilon_{1, p} \epsilon_{2, p}=-1$ and that the triples $\left(k_{1}, k_{2}, k_{1}\right),\left(k_{1}, k_{2}, k_{2}^{\prime}\right)$ are balanced.

Then there is a unique quaternion algebra D ramified at ∞, unramified outside N (depending on the Atkin-Lehner eigenvalues) such that the period integral

$$
I\left(h_{1}, h_{2}, f_{1}, f_{2}, D\right)=\int Y^{(2)}\left(\varphi_{1}^{D}, \varphi_{2}^{D}\right)\left(\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{2}
\end{array}\right)\right) f_{1}\left(z_{1}\right) f_{2}\left(z_{2}\right) d z_{1} d z_{2}
$$

is not trivially zero.
For this choice of D one has with an explicit constant c :

$$
I\left(h_{1}, h_{2}, f_{1}, f_{2}, D\right)^{2}=\frac{c}{\left\langle h_{1}, h_{1}\right\rangle\left\langle h_{2}, h_{2}\right\rangle} L\left(h_{1}, f_{1}, f_{2} ; \frac{1}{2}\right) L\left(h_{2}, f_{1}, f_{2} ; \frac{1}{2}\right) .
$$

In particular the period integral is nonzero if and only if (with $F=Y^{(2)}\left(\varphi_{1}^{D}, \varphi_{2}^{D}\right)$) the central critical value of $L\left(\operatorname{Spin}(F), f_{1}, f_{2}, s\right)=L\left(h_{1}, f_{1}, f_{2} ; s\right) L\left(h_{2}, f_{1}, f_{2} ; s\right)$ is nonzero.

Remarks: a) If the triples of weights are balanced as stated but have $k_{1}+k_{2}>$ $2 \min \left(k_{1}^{\prime}, k_{2}^{\prime}\right)$ one has to modify the Yoshida-lifting by applying a differential operator that raises its weight (which amounts to changing the form in its representation space) in order to obtain the formula given in the Theorem.
b) The variation in D mimicks the variation of the inner form in the GrossPrasad conjecture.

Recall: Gross-Prasad conjecture:

$S O(n)=G, \quad S O(n-1)=G^{\prime} \subseteq G, \quad H=G^{\prime} \stackrel{\Delta}{\hookrightarrow} G^{\prime} \times G$,
π, π^{\prime} irred. rep. of G, G^{\prime} resp. (cuspidal automorphic resp. admissible), central character of $\pi \times \pi^{\prime}$ trivial.

Locally H-invariant functional exists for precisely one inner form $\widetilde{G}, \widetilde{G}^{\prime \prime}$ and $\tilde{\pi}, \tilde{\pi}^{\prime}$ of $\tilde{G}, \widetilde{G}^{\prime}$ corresponding to π, π^{\prime} (assume π, π^{\prime} to have generic parameters), nonzero on spherical vector at places where π, π^{\prime} are unramified.

Global nonvanishing of $I_{\tilde{H}}$ (on some inner form) depends on central value of L-function $L\left(\pi \otimes \pi^{\prime}, s\right)$.

Remarks: c) Regrouping of terms changes, if $h_{1} \neq h_{2}$, (again with $F=$ $\left.Y^{(2)}\left(\varphi_{1}^{D}, \varphi_{2}^{D}\right)\right)$ the original expression

$$
I\left(h_{1}, h_{2}, f_{1}, f_{2}, D\right)^{2}=\frac{c}{\left\langle h_{1}, h_{1}\right\rangle\left\langle h_{2}, h_{2}\right\rangle} L\left(h_{1}, f_{1}, f_{2} ; \frac{1}{2}\right) L\left(h_{2}, f_{1}, f_{2} ; \frac{1}{2}\right)
$$

to

$$
I\left(h_{1}, h_{2}, f_{1}, f_{2}, D\right)^{2}=\frac{c\langle F, F\rangle}{L^{(N)}\left(F, \operatorname{Sym}^{2}, 1\right)} L\left(\operatorname{Spin}(F), f_{1}, f_{2} ; \frac{1}{2}\right) .
$$

This formulation could be true for an arbitrary Siegel modular cusp form F.
d) There are versions for the degenerate cases that one of h_{1}, h_{2} is the Eisenstein series of weight 2 (which gives Saito-Kurokawa cusp forms). It is not clear how to prove the result in the case of a Saito-Kurokawa cusp form of level 1.

The case of a group $G^{\prime}=S O(4)$ which is split at infinity but not globally split leads to the integration of the restriction of F against a Hilbert modular cusp form f over an embedded Hilbert modular surface.
The result is similar, with $L\left(\operatorname{Spin}(F), f_{1}, f_{2}\right)$ replaced by $L(\operatorname{Spin}(F), \operatorname{Asai}(f))$.

