
Local Maaß Lifts

by Rolf Berndt1 and Ralf Schmidt2

Abstract. We call a Maass lift a prescription to associate an irreducible admissible resp. uni-
tary representation of G = PGSp(4) to an irreducible admissible resp. unitary representation of
the Jacobi group GJ = SL(2) n H. Such a prescription is constructed in the general local case
for the principal series representations πJ

m,χ of GJ and moreover in the real case for the discrete
series representation πJ+

m,k of GJ(R). This prescription goes via induction from GJ to the maximal
parabolic subgroup Q of G with non-abelian radical and uses an intertwining operator im relating
the induced representation of Q to a restriction to Q of a representation of G. Moreover in the real
case, some infinitesimal considerations of perhaps independent interest come in.

Introduction

For k an even positive integer consider the following spaces of various types of modular forms:

Sk(Γ2) : Siegel cuspforms of weight k and degree 2,
S2k−2(Γ1) : elliptic cuspforms of weight 2k − 2,
Sk−1/2(Γ0(4)) : cuspforms of half-integer weight k − 1/2,
J cusp

k,1 : Jacobi cuspforms of weight k and index 1.

Then we have the following commutative diagram of “lifting maps” between these spaces:
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Here Sk−1/2(Γ0(4))+ is Kohnen’s “+”-space, a certain subspace of Sk−1/2(Γ0(4)) characterized by
properties of Fourier coefficients; the lifting between this space and J cusp

k,1 is a more or less canonical
isomorphism; S denotes the Shimura isomorphism; θ is a special theta-correspondence; M is the Maaß
lift, constructed in the series of papers [Ma1-3] (see also [An] and [Za]); and SK is the Saito-Kurokawa-
lift, whose existence was conjectured in [Ku], and which was eventually constructed as the composition
of the other lifts, in particular utilizing the Maaß lift. A comprehensive reference for all these maps is
[EZ].

The above diagram can be reinterpreted and generalized using the representation theory of the un-
derlying groups. If G is an algebraic group defined over some number field, then denote by Ĝ the
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space of cuspidal automorphic representations of G(A), where A is the ring of adeles of F . Then, in
analogy to the above diagram of lifting maps between spaces of classical modular forms, we should
have a commutative diagram as follows:

̂PGSp(4)

ĜJ
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(1)

Here GJ is the Jacobi group, a certain semidirect product of SL(2) with a three-dimensional Heisen-
berg group; Mp denotes the metaplectic group, the two-fold cover of SL(2) (this is not an algebraic
group, but can nevertheless be globalized in a well-known way, and it makes sense to talk about its
automorphic representations); θ is again a special instance of the theta-correspondence; W is the
Waldspurger-lift, essentially also a version of theta-correspondence, see [Wa1] and [Wa2]; and the lift
from the Jacobi group to PGL(2) is described in [Sch1]. The Maaß lift M and the Saito-Kurokawa-lift
SK are not yet constructed. It is however explained in [Sch2] to what extend the Saito-Kurokawa-lift
is an example for Langlands functoriality. (This diagram is somewhat oversimplified: θ and W depend
on a parameter, and a choice of this parameter corresponds to considering only elements of ĜJ with
a certain fixed index, but we neglect these details for the purpose of this introduction.)

The purpose of this note is to get some insight into the way the still hypothetical Maaß lift on the
level of representations ought to be constructed. We shall in particular obtain local versions (both
archimedean and p-adic) of the Maaß lift for all principal series representations. These local lifts will
be shown to be compatible with the classical map J cusp

k,1 → Sk(Γ2), and will provide an “explanation”
for the classical construction.

Following Piatetski-Shapiro [PS2], let us call the image of the lifting maps to PGSp(4) special repre-
sentations, both in a local or global context. Here is the fundamental idea of how to construct special
representations from representations of GJ . Let Q be the maximal parabolic subgroup of GSp(4) with
non-abelian radical. Of course Q contains the center C. Consider an irreducible representation πJ of
GJ , and denote by

σ = C − IndQ
GJ (πJ)

the subspace of C–invariant elements in IndQ
GJ (πJ). At least in the global context, we can extract

from [PS1] that this representation σ should now extend uniquely to a representation of PGSp(4), and
this extension will be a special representation, namely the lift of πJ .

We take the following approach to prove this fact for local principal series representations of the Jacobi
group. Let F be a local field, which may be archimedean. For each character χ of F ∗ we have the
principal series representation

πJ
χ,m
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of GJ , where m ∈ F ∗ is a fixed index. To the same χ we will also attach a representation σχ of
PGSp(4) as a subrepresentation of a certain induced representation. This is our candidate for the lift
of πJ

χ,m. We then define a Q-intertwining operator

im = iχ,m : σχ −→ C − IndQ
GJ (πJ

χ,m).

We shall prove that iχ,m is an isomorphism. As a corollary we obtain that C − IndQ
GJ (πJ

χ,m) indeed
extends to a representation of PGSp(4), but also that σχ remains irreducible when restricted to Q.

In the real holomorphic case more details will be given in section 3. There are additional insights
coming from Lie algebra combinatorics on the infinitesimal level. We shall also compute the image
of the lowest weight vector on G under our intertwining operator im. When restricted to GJ , this
image coincides with the lowest weight vector in holomorphic discrete series representations of GJ

(Proposition 3.4). Thus distinguished vectors map to distinguished vectors.

By Frobenius reciprocity, an equivalent viewpoint is to say that the special representations σ of G =
PGSp(4) are the ones that have a Fourier-Jacobi model, i.e., the ones for which there exists a Jacobi
representation πJ such that

dim
(
HomG

(
σ, IndG

GJ (πJ)
))

≥ 1.

This point of view has been pursued in the p-adic case by Baruch-Rallis [BR], proving here via dis-
tribution theory the other inequality, i.e., the uniqueness of the Fourier-Jacobi models. And in the
real case there is a lot of information about the dimensions of these spaces coming from a method
via solutions of systems of partial differential equations initiated by Yamashita [Ya] and Oda [O], and
applied to this situation in Hirano [Hi]. In particular, part of [Hi] Theorem 6.3 can be looked at as
another aproach to our result in section 3 below on the existence of a Maaß lifting of the holomorphic
discrete series representation of the Jacobi group.

In a subsequent paper we are planning to give additional details in the p-adic case, mainly concerning
unramified vectors. We shall also try to connect our local results with the classical global theory of
the Maaß lift.

This paper is part of a larger plan which has found support by several sources. The first author is
indebted to the IHES and Purdue University for granting their hospitality for stays in January and
February 1999 resp. October 1999, and the second author to the DAAD allowing his stay at Purdue
University from Mai 1998 to March 2000. We both are happy to thank in particular F. Shahidi
and D. Goldberg for their continued interest and also J. Adams and M. Vergne for some essential
encouragement.

1 Groups

1.1 The symplectic group

The group containing all the other groups of current interest is

G = GSp(4) = {g ∈ GL(4) : ∃ µ̃(g) ∈ GL(1) gJ tg = µ̃(g)J}, J =
(

0 1
−1 0

)
.
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The function µ̃ is a character of G, called the multiplier, and its kernel is the symplectic group Sp(4).
As a Borel subgroup of G we choose B = AN with the maximal torus

A =
{
t = d(u, a, a′) := diag(a, a′, ua−1, ua′

−1) : u, a, a′ ∈ GL(1)
}

and the unipotent radical

N =

n(x, λ, µ, κ) :=


1 x µ

1 µ κ
1

1




1
λ 1

1 −λ
1

 : x, λ, µ, κ ∈ Ga

 .

The two standard maximal parabolics are then

P = MS,

where

M =
{(

A 0
0 u tA−1

)
: A ∈ GL(2), u ∈ F ∗

}
' GL(2)×GL(1),

S =
{(

1 s
0 1

)
: s symmetric

}
,

and

Q = FH,

where

F =




a b
1

c d
1




1
a′

u

ua′
−1

 :
(
a b
c d

)
∈ SL(2), u, a′ ∈ GL(1)

 , (2)

H =

(λ, µ, κ) =


1 µ
λ 1 µ κ

1 −λ
1

 : λ, µ, κ ∈ Ga

 . (3)

The four positive roots are

α1(t) = a2u−1, α2(t) = a′a−1,

α3(t) = aa′u−1, α4(t) = a′
2
u−1.

(α1 is the long simple root, α2 is the short simple root). The Weyl group of G is generated by

w1 =


1

1
−1

1

 ∈ Q, w2 =


1

1
1

1

 ∈ P.
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We have the relation (w1w2)4 = 1. The other six elements of the Weyl group are the identity and

w1w2 =


1

1
−1

1

 , w2w1 =


1

1
1

−1

 ,

w1w2w1 =


1

1
−1

−1

 , w2w1w2 =


1

1
1

−1

 ,

w1w2w1w2 = w2w1w2w1 =


1

1
−1

−1

 (longest element).

The modular factors of the parabolics P , Q and B = P ∩Q are easily computed as

δB


a

b
c

d

 = |a2bd−3| (ac = bd), (4)

δP

(
A
u tA−1

)
= |u−1 det(A)|3, (5)

δQ


a b

1
c d

1

 = 1, δQ


1

a′

u

ua′
−1

 = |a′4u−2|. (6)

Recall that there is an isomorphism PGSp(4) ' SO(5), which can be described as follows. Let us
realize the orthogonal groups SO(3) and SO(5) using the quadratic forms

 1
1

1

 resp.


1

1
1

1
1

 .

There is an isomorphism PGL(2) ' SO(3) explicitly given by

GL(2) 3
(
a b
c d

)
ϕ7−→ 1

ad− bc

 a2 −2ab −2b2

−ac ad+ bc 2bd
−c2/2 cd d2

 .

Then the isomorphism PGSp(4) ' SO(5) maps

GSp(4) 3
(
A 0
0 u(At)−1

)
7−→

 u−1(ad− bc)
ϕ(A)

u(ad− bc)−1

 , (7)
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where A =
(
a b
c d

)
∈ GL(2). In particular, on the maximal torus the map is given by


a

b
c

d

 7−→


ad−1

ab−1

1
ba−1

da−1

 . (8)

1.2 The parabolic Q and the Jacobi group

Let Q be the standard parabolic of G = GSp(4) described above. We shall consider several subgroups
of Q.

Let C be the center of Q; it consists of the scalar matrices, and is also the center of G. Assume GL(2)
is embedded in Q via

A =
(
a b
c d

)
7−→


a b

1
c d

det(A)

 .

The Jacobi group is the subgroup

GJ := SL(2) nH ⊂ Q

Here H is the Heisenberg group, the unipotent radical of Q. The group Q can be written in various
ways as the direct product of the center and a subgroup, e.g.

Q = C × ({d(u, 1, 1)}nGJ) or Q = C × ({d(v, 1, v)}nGJ). (9)

It will be useful to keep this in mind, because we shall consider exclusively C-invariant functions, and
are hence in effect working on one of these subgroups. The choice is by convenience. If we are over R,
being able to take square roots, there are even more possible choices, cf. section 3.5.

The center Z of the Jacobi group coincides with the center of the Heisenberg group; we denote its
elements by

nκ := (0, 0, κ), κ ∈ Ga

(see (3)). Obviously Z ' Ga.

Now assume we are over a local or global field F . In the first case, let ψ be a fixed non-trivial character
of F , in the second case a fixed non-trivial character of AF /F , where AF is the ring of adeles of F .
We also consider ψ a character of Z. For m ∈ F let ψm be the shifted character ψm(x) = ψ(mx). If a
representation πJ of GJ has central character ψm, then we say that m is the index of πJ . We usually
only consider representations of GJ with non-zero index. Information about the representation theory
of GJ can be found in [BeS].



7

Let πJ be an irreducible representation of GJ with non-zero index m, and consider the induced
representation

IndQ
GJ (πJ).

Inside this induced representation we consider the invariant subspace consisting of C-invariant vectors,
where C denotes as before the center of G. To have a short notation, we denote this subspace (and
the Q-representation on it) by

σ := C − IndQ
GJ (πJ). (10)

We shall see that this Q-representations is in fact (at least for principal series representations) the
restriction of a G-representation.

2 Special representations

In this section F is a local field of characteristic zero, possibly archimedean. We let G = GSp(4, F ),
and also B, T ,. . . denote F -points.

2.1 Induced representations on GSp(4)

We define a class of induced representations on G. Let χ1, χ2 be characters of F ∗. They define a
character χ of the maximal torus T of G by

χ
(
d(u, a, a′)

)
= χ1(aa′u−1)χ2(aa′

−1).

Then χ extends to a character of B, and we let

π(χ1, χ2) = IndG
B(χ)

(normalized induction). The space of this induced representation is

I(χ1, χ2) =
{
f : G→ C

∣∣∣ f(
d(u, a, a′)n(x, λ, µ, κ)g

)
= χ1(aa′u−1)χ2(aa′

−1)|a2a′
4
u−3|1/2f(g)

}
.

Of course, there are also some regularity conditions imposed on the functions in I(χ1, χ2). Those look
slightly different in the archimedean and non-archimedean cases, and we therefore do not mention
them for the sake of a simple and unified formulation.

Note that π(χ1, χ2) has trivial central character, is thus a representation of PGSp(4). Equation (8)
shows that we obtain each representation of PGSp(4) parabolically induced from the Borel subgroup
in this way. From the paper [ST] one can get detailed information on the reducibility of these repre-
sentations in the p-adic case.

We now specialize and consider the representations I(χ, | |1/2) for an arbitrary character χ of F ∗ (it
follows from the global considerations in [Sch2] that it is inside this space where we should be looking
for the Maaß lifts). Its space consists of functions f : G→ C with

f
(
d(u, a, a′)n(x, λ, µ, κ)g

)
= χ(aa′u−1)|aa′u−1|3/2f(g).
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There is an obvious G-invariant subspace, namely

Iχ :=

{
f : G→ C

∣∣∣ f ((
A ∗
u tA−1

)
g

)
= χ(det(A)u−1)

∣∣det(A)u−1
∣∣3/2

f(g)

}
. (11)

We let σχ be the representation of G (via right translation) on Iχ, and call (σχ, Iχ) the special repre-
sentation of PGSp(4) attached to χ. We have

σχ = IndG
P (σ̃χ),

where σ̃χ is the character of P given by

σ̃χ

(
A ∗
u tA−1

)
= χ(u−1 det(A)).

2.2 Induced representations on GJ and on Q

Again let χ be a character of F ∗. In 1.2 we also fixed an additive character ψ of F . Consider the
“Borel subgroup” BJ ⊂ GJ consisting of elements of the form

bJ =
(
a x
a−1

)
(0, µ, κ) = n(ax, 0, aµ, κ)d(1, a, 1).

Let m ∈ F ∗, and consider the character of BJ given by

bJ 7−→ χ(a)ψm(κ). (12)

Let πJ
χ,m be the representation of GJ induced from this character. Its space consists of functions

f : GJ → C with the transformation property

f
(
bJg

)
= χ(a)|a|3/2ψm(κ)f(g) (g ∈ GJ).

In the real case we also require that∫
R
|f(λ, 0, 0)|2 dλ <∞. (13)

This means that f is square integrable on BJ\GJ ; see [BeS] 3.3.

2.1 Lemma. If F is non-archimedean, then πJ
χ,m is irreducible unless χ2 = | |±1. If F = R, then πJ

χ,m

is irreducible unless χ = | |k−3/2 or χ = sgn | |k−3/2. In each reducible case, the length of πJ
χ,m is 2,

meaning there is exactly one proper, nontrivial invariant subspace.

See [BeS] 3.1 and Theorem 5.4.4 for a proof of these statements. Now let πJ be any irreducible
representation of GJ , and consider C − IndQ

GJ (πJ) as in (10). We get an equivalent representation if
we first extend πJ trivially to the group CGJ , and then induce to Q. Because of

Q = T1 n (CGJ), T1 = {d(u, 1, 1) : u ∈ GL(1)},
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see (9), and because a non-trivial element of T1 conjugates πJ to a non-isomorphic representation (with
different index), it follows from Mackey’s theory that C − IndQ

GJ (πJ) is irreducible. Thus irreducibles
go to irreducibles under the C − Ind operation.

It follows that

C − IndQ
GJ

(
πJ

χ,m

)
decomposes the same way as it is described in Lemma 2.1 for πJ

χ,m. In particular the two representations
have the same length.

2.3 An intertwining operator

For f ∈ I(χ1, χ2) and any m ∈ F ∗, we define

(imf)(g) :=
∫
F

f (w1w2nκg)ψ−m(κ) dκ, nκ =


1

1 κ
1

1

 . (14)

2.2 Lemma. Let |χi| = | |si with si ∈ R. If F 6= C, then the integral (14) converges absolutely for
s1 + s2 > 0. In particular, it converges for (χ1, χ2) = (χ, | |1/2) with |χ| = | |s, − 1

2 < s. If F = C, then
the integral converges for s1 + s2 > 1.

Proof: First let F be a p-adic field. Using(
1

−1

)(
1 κ

1

)
=

(
−κ−1 1

−κ

)(
1
κ−1 1

)
,

one estimates for large enough compact sets C ⊂ F

∫
F\C

∣∣∣∣∣f
w1w2


1

1 κ
1

1

 g


∣∣∣∣∣ dκ

=
∫

F\C

∣∣∣∣∣f



−κ−1 1

1
−κ

1




1
1

κ−1 1
1

w2g


∣∣∣∣∣ dκ

=
∫

F\C

∣∣∣χ1(−κ−1)χ2(−κ−1)|κ|−1f(g)
∣∣∣ dκ

=
∫

F\C

|κ|−(s1+s2+1) dκ · |f(g)|.
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From this the assertion follows easily. Next assume that F is archimedean. First find a constant c > 0
such that∣∣f (rw2g)

∣∣ < c for all r in a maximal compact subgroup K.

Then, using the Iwasawa decomposition, we have, with certain rκ ∈ K,∫
F

∣∣∣∣∣f (w1w2nκg)

∣∣∣∣∣ dκ

=
∫

F∗

∣∣∣∣∣f



1/

√
1 + |κ|2 κ̄/

√
1 + |κ|2

1 √
1 + |κ|2

1

 rκw2g


∣∣∣∣∣ dκ

=
∫

F∗

∣∣∣∣∣f



1/

√
1 + |κ|2

1 √
1 + |κ|2

1

 rκw2g


∣∣∣∣∣ dκ

=
∫

F∗

∣∣∣χ1

(√
1 + |κ|2

)−1
χ2

(√
1 + |κ|2

)−1√1 + |κ|2
−1
f
(
rκw2g

)∣∣∣ dκ
< c

∫
F

(
1 + |κ|2

)−(s1+s2+1)/2
dκ.

If F = R, then this last integral converges for s1 + s2 > 0. If F = C, then it converges for s1 + s2 > 1.

From now on we consider the case

I(χ1, χ2) = I(χ, | |1/2),

and assume that the integral (14) converges. The following important formula is straightforward to
check from the definitions.

2.3 Lemma. For each f ∈ I(χ, | |1/2), we have

(imf)
(
d(u, a, a′)n(x, 0, µ, κ)g

)
= χ(aa′−1)|a3a′u−2|1/2ψm′

(κ)(im′f)(g), (15)

where m′ = ma′
2
u−1, for every x, µ, κ ∈ F, u, a, a′ ∈ F ∗.

2.4 Lemma. The restriction of imf to Q is an element of

C − IndQ
GJ (πJ

χ,m),

provided |χ| = | |s with s > − 1
4 .
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Proof: First of all the hypothesis ensures the convergence by Lemma 2.2. The Jacobi representation
πJ

χ,m is itself induced from the character

GJ 3 bJ 7−→ χ(a)ψm(κ)

of the “Borel subgroup” of the Jacobi group, see (12). By induction in stages, the space of the
representation C − IndQ

GJ (πJ
χ,m) may be realized as functions F : Q→ C with the property

F
(
d(1, a, 1)n(x, 0, µ, κ)cq

)
= χ(a)|a|3/2ψm(κ)F (q)

for each a ∈ F ∗, x, µ, κ ∈ F , c ∈ C, q ∈ Q. But imf |Q has this property, see (15). What remains to
be checked is the integrability condition (13) in the real case, i.e.,∫

R

∣∣(imf)(λ, 0, 0)
∣∣2 dλ <∞.

The estimates are similar to the ones in the convergence lemma 2.2. We have

(imf)(λ, 0, 0) =
∫
R

f
(
w1w2(λ, 0, κ)

)
e−2πimκ dκ

=
∫
R

f




1
1

−κ −λ 1
−λ 1

w1w2

 e−2πimκ dκ. (16)

Let g(κ, λ) be this matrix. We write down an Iwasawa decomposition

g(κ, λ) = g′(κ, λ)c(κ, λ) with c(κ, λ) ∈ K (17)

(K ' U(2) the maximal compact subgroup of Sp(4,R)), and with g′(κ, λ) of the form

g′(κ, λ) = n
(
x(κ, λ), λ′(κ, λ), µ′(κ, λ), κ′(κ, λ)

)
d
(
1, a(κ, λ), a′(κ, λ)

)
.

By acting with both sides of (17) on the element I =
(
i
i

)
of the Siegel upper half space, one

determines the parameters in g′(κ, λ). We shall only need

a(κ, λ)2 =
1 + λ2

(1 + λ2)2 + κ2
, a′(κ, λ)2 =

1
1 + λ2

. (18)

Plugging this into (16), we get, with a suitable constant c,∣∣(imf)(λ, 0, 0)
∣∣ ≤ c

∫
R

∣∣a(κ)a′(κ))|s+3/2 dκ

= c

∫
R

( 1
(1 + λ2)2 + κ2

)(s+3/2)/2

dκ
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= c
( 1

1 + λ2

)s+1/2
∫
R

( 1
1 + κ2

)(s+3/2)/2

dκ.

The integral on the right is convergent and independent of λ. As a function of λ, the whole expression
is square integrable by our hypothesis.

2.5 Lemma. For each f ∈ I(χ, | |1/2), we have

f(w1w2g) = |m|
∫

F∗

(imf) (d(u, 1, 1)g) d∗u for all g ∈ G

(d∗u = du/|u| is the multiplicative Haar measure).

Proof: For fixed g ∈ G, consider the function

F (κ) := f (w1w2nκg) .

Then F̂ (m) = (imf)(g), where F̂ denotes Fourier transformation. Fourier inversion thus yields

F (κ) =
∫
F

(imf)(g)ψm(κ) dm,

which for κ = 0 becomes

f(w1w2g) =
∫
F

(imf)(g) dm.

Now from (15) it follows that

(imf) (d(u, 1, 1)g) = |u|−1(imu−1f)(g) for all m,u ∈ F ∗. (19)

Using this, one can write

f(w1w2g) =
∫

F∗

(iuf)(g)|u| du
|u|

=
∫

F∗

(imu−1f)(g)|mu−1| d∗u

= |m|
∫

F∗

(imf) (d(u, 1, 1)g) d∗u

Now assume that f ∈ Iχ, the space of the special representation σχ; see (11). Suppose that imf
∣∣
Q

= 0.
Then from Lemma 2.5 we see that f vanishes on w1w2Q. By the transformation properties of f , it
vanishes even on Pw1w2Q. But this double coset contains Bw2w1w2w1B, which is the big cell and
therefore dense in G. This forces f to be zero. We have proved the following.

2.6 Proposition. The restriction of the Q-intertwining map f 7→ imf
∣∣
Q

to the space Iχ of the special

representation σχ is injective.
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2.4 Local Maaß lifts

Recall that πJ
χ,m is usually irreducible, and in any case contains a unique non-zero irreducible, invariant

subspace (Lemma 2.1). Our results thus far yield the following theorem.

2.7 Theorem. If πJ
χ,m is irreducible, then C−IndQ

GJ (πJ
χ,m) extends to an irreducibleG-representation,

which is isomorphic to the special representation σχ. If πJ
χ,m is not irreducible, then the same is true

provided σχ is not G-irreducible.

Proof: The map f 7→ imf
∣∣
Q

defines a Q-intertwining operator

σχ −→ C − IndQ
GJ (πJ

χ,m).

We know it is injective by Proposition 2.6. If πJ
χ,m is irreducible, then so is C − IndQ

GJ (πJ
χ,m), and we

get an isomorphism. If neither πJ
χ,m nor σχ is irreducible, then both representations must have length

2 by Lemma 2.1, and we also get an isomorphism.

Definition: If πJ is an irreducible representation of GJ , and if C − IndQ
GJ (πJ) extends to a represen-

tation σ of G, then we say that σ is a Maaß lift of πJ , and we also call σ a special representation of
PGSp(4).

The theorem says that every principal series representation of GJ has a Maaß lift.

Conjecture: Every irreducible, admissible representation of GJ has a unique Maaß lift.

This conjecture is supported by the global situation, see diagram (1). In fact, it should be possible to
lift every automorphic representation πJ of GJ(A) to an automorphic representation σ of PGSp(4,A).
The constructions in [PS1] show that σ, when restricted to the Q(A)-action, should be isomorphic to
C − IndQ(A)

GJ (A)
(σ).

Obviously a Maaß lift in the above sense of an irreducible GJ -representation is not only G-irreducible,
but even Q-irreducible. In fact, from our results we see the following:

2.8 Corollary. If πJ
χ,m is irreducible, then σχ is irreducible when restricted to Q. If σχ is not G-

irreducible, then it has length 2, and the unique proper, nontrivial invariant subspace is Q-irreducible.

3 Maaß lifts for real representations

The conjecture above is also supported by the following result which is most natural in view of the
fact that the classical Maaß lift is a map

Jk,1 −→Mk(Γ2),

and that holomorphic forms f ∈ Jk,m and F ∈ Mk(Γ2) are “lowest weight vectors” for holomorphic
discrete series representations πJ+

m,k of GJ(R) (see [BeS] 4.1) resp. σ+
k of G(R) (see [Na] or [AS]).
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3.1 Theorem. The holomorphic discrete series representation σ+
k of GSp(4,R) with Blattner param-

eter λ = (k, k) is the Maaß lift of the representation πJ+
m,k of GJ(R).

This theorem will be proved in section 3.4. As the representations of the groups in the real case
F = R may be characterized (at least up to infinitesimal equivalence) by the representations of the
Lie algebras, we have to introduce some more notation.

3.1 The Lie algebras

Following [BeS], p. 12, and our preliminary text on the Maaß lift [Be2], we write for gJ = Lie(GJ(R))

gJ
C = gJ ⊗R C = sl(2) + hC, sl(2) = 〈Z,X±〉, hC = 〈Y±, Z0〉

with the relations [Z0, g
J
C] = 0 and

[Z,X±] = ±2X±, [X±, Y∓] = −Y±, [X+, X−] = Z,

[Z, Y±] = ±Y±, [X±, Y±] = 0, [Y+, Y−] = Z0.

Moreover, we will use the abelian subalgebras

kJ
C = 〈Z,Z0〉 and pJ

± = 〈X±, Y±〉

For gC := sp(4)×R C we choose a basis

gC = 〈Z,Z ′, N±, P0±, P1±, X±〉.

Here kC = 〈Z,Z ′, N±〉 is the complexification of k = Lie(K), the subalgebra 〈Z,Z ′〉 is a compact
Cartan, and

p± = 〈P0±, P1±, X±〉

are maximal abelian subalgebras. Among others we have the relations

[Z,P0±] = 0, [Z ′, P0±] = ±2P0±,

[Z,P1±] = ±P1±, [Z ′, P1±] = ±P1±,

[Z,X±] = ±2X±, [Z ′, X±] = 0,
[Z,N±] = ±N±, [Z ′, N±] = ∓N±.

symbolized by the root diagram
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P0+

P0−

P1+

P1−
N+

N−

Z ′-eigenvalue

Z-eigenvalue

gJ
C is a subalgebra of gC with

Y± =
1
2
(P1± −N±) and Z0 =

1
2
(P0− − P0+ + Z ′).

Another subalgebra is given by

q̃1,C = 〈gJ
C, U〉 with U = P0+ + P0−;

the relations are

[U,Z] = [U,X±] = 0, [U,Z0] = 2Z0, [U, Y±] = Y±.

3.2 Infinitesimal representations

Now we construct representations of the (complex) Lie algebras by the usual procedure.

The representations σ̂+
k of gC

We take the one-dimensional complex representation ρ̂k of kC = 〈Z,Z ′, N+, N−〉 given by

Z1 = Z ′1 = k, N±1 = 0,

extend ρ̂k trivially to kC + p−, and induce from here to gC to get a lowest weight representation σ̂+
k

with space

Sk = U(gC)⊗U(kC+p−) C =
∑

i,j,l∈N0

C P i
0+P

j
1+X

l
+w0,

where w0 denotes a lowest weight or “vacuum” vector, here fixed by

X−w0 = P1−w0 = P0−w0 = N±w0 = 0, Zw0 = Z ′w0 = kw0. (20)

This is the infinitesimal representation belonging to the holomorphic discrete series representation σ+
k

with Harish-Chandra parameter Λ = (k− 1, k− 2) resp. Blattner parameter λ = (k, k) (corresponding
to the minimal K-type (k, k)).
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The representation π̂J+
m,k of gJ

C

As in [BeS] 3.1 we take the one-dimensional complex representation ρ̂J
m,k of kJ

C = 〈Z,Z0〉 given by

Z1 = k, Z01 = 2πm =: µ,

extend it trivially to kJ
C + pJ

−, and induce form here to gJ
C to get a “lowest weight” representation π̂+

m,k

with space

V +
m,k = U(gJ

C)⊗U(kJ
C +pJ

−) C =
∑

j,l∈N0

C X l
+Y

j
+v0,

where v0 denotes a vacuum vector fixed by

X−v0 = Y−v0 = 0, Zv0 = kv0, Z0v0 = µv0. (21)

Though not all of it will be needed for the construction of the Maaß lift, we will assemble some material
perhaps of independent interest.

Remark 1: The fundamental fact (see [BeS] 2.8) that each representation πJ of GJ with index m 6= 0
is a tensor product of a projective standard representation πm

SW of GJ and a projective representation
π0 of SL(2) reflects in the decomposition

V +
m,k = V 1/2

m ⊗Wk−1/2 = 〈vj ⊗ wl〉j∈N, l∈2N0 ,

where V 1/2
m belongs to ˆπSW

m (of weight 1/2) and Wk−1/2 is the space of a representation π̂k−1/2 of
sl(2)C. Then, for the subspaces of Z-weights λ

V (λ) =
{
v ∈ V +

m,k : Zv = (k + λ)v
}

we have

dimV (λ) = ]{(j, l) ∈ N2
0 : j + 2l = λ},

i.e. dimV (0) = dimV (1) = 1, dimV (2) = dimV (3) = 2, . . . . One might visualize the space V +
m,k as

follows:

-

6

• • •
v0 ⊗ w0 v0 ⊗ w2 v0 ⊗ w4

• •
v1 ⊗ w0 v1 ⊗ w2

•
v2 ⊗ w2

•
v2 ⊗ w0

•
v3 ⊗ w0

•
v4 ⊗ w0
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(elements along vertical lines have the same Z-weight).

Remark 2: For the representation σ̂+
k of gC we have a decomposition

Sk =
∞⊕

λ,λ′=0

Sλ,λ′ , Sλ,λ′ =
{
w ∈ Sk : Zw = (k + λ)w, Z ′w = (k + λ′)w

}
.

The dimensions of the weight spaces are obviously given by

dimSλ,λ′ = ]
{
(i, j, l) ∈ N3

0 : 2i+ j = λ, j + 2l = λ′
}
.

(By the way, this may be recognized as a very special instant of the wonderful Blattner formula.) So
we get the following picture of the space Sk (the numbers denote the above dimensions).

-

6

Z-eigenvalue

Z ′-eigenvalue

• • • •
1 1 1 1

• • • •
1 1 1 1

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

2 2 2

2 2 2

3 3

3 3

4

4

1

1

1

1

1

1

2

2

2

2

3

3

We remark that this picture may be obtained if infinitely many of the triangles from the previous
picture are stacked together, translating each one by two units in the Z ′-direction. Even after some
efforts to interprete this, we still lack a nice algebraic explanation.

Remark 3: For k = 1/2 there is an irreducible representation σ̂+
1/2 with dimSλ,λ′ = 1 for all (λ, λ′).

This is the (infinitesimal version of the) Weil representation of sp and may be characterized in this
context as the unique lowest weight representation fulfilling the additional condition

4X+P0+ = P 2
1+.

This corresponds to the “heat equation” condition

2µX+ = Y 2
+ (µ = 2πm)

characterizing the Schrödinger–Weil representation of gJ
C (see [Be1]) among the lowest weight repre-

sentations.

Remark 4: There is also a nice interpretation of σ̂+
1/2 by “doubling” the gJ

C–representation π̂m
SW

acting on V 1/2
m = 〈vj〉j∈N0 in the following way. We take

V 1/2
m ⊗ V ′

1/2
m = 〈vi ⊗ v′j〉i,j∈N0
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and define the operation of gC by

Z(vi ⊗ v′j) = (1/2 + i)(vi ⊗ v′j)

Z ′(vi ⊗ v′j) = (1/2 + j)(vi ⊗ v′j)

X+(vi ⊗ v′j) = X+vi ⊗ v′j = (−1/(2µ))vi+2 ⊗ v′j

P0+(vi ⊗ v′j) = (−1/(2µ))vi ⊗ v′j+2

P1+(vi ⊗ v′j) = (1/µ) vi+1 ⊗ v′j+1

N+(vi ⊗ v′j) = −j vi+1 ⊗ v′j−1

N−(vi ⊗ v′j) = i vi−1 ⊗ vj+1

P1−(vi ⊗ v′j) = −µij vi−1 ⊗ vj−1

etc. Then

S+
1/2 = 〈vi ⊗ v′j〉i+j even

is a copy of the lowest weight representation σ̂+
1/2.

Remark 5: An easy but somewhat lengthy calculation, similar to the one giving the proof of the
previous remark, allows to verify the following description of the representation σ̂+

k .

3.2 Proposition. π̂k is a lowest weight representation, given on the C-vector space

S =
∑

λ,µ≥0

Sλµ

by the following formulae

ZSλµ = (k + λ)Sλµ, Z ′Sλµ = (k + µ)Sλµ

Sλµ =
∑

2i+l=µ
2j+l=λ

Cvi,j,l, vi,j,l := P i
0+X

j
+P

l
1+v,

with the lowest weight vector v fixed by

Zv = Z ′v = kv,

N+v = N−v = P0−v = P1−v = X−v = 0

and the relations

N+vi,j,l = 2lvi,j+1,l−1 + ivi−1,j,l+1

N−vi,j,l = −2lvi+1,j,l−1 − jvi,j−1,l+1

P0−vi,j,l = −i(k + l + i− 1)vi−1,j,l − l(l − 1)vi,j+1,l−2

P1−vi,j,l = −l(2k + 2i+ 2j + l − 1)vi,j,l−1 − ij vi−1,j−1,l+1

X−vi,j,l = −j(k + l + j − 1)vi,j−1,l − l(l − 1)vi,j,l−2.
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3.3 Lowest weight vectors

We now come back to the problem of constructing the Maaß lift of the representation πJ+
m,k of GJ(R).

To do so, we shall first exhibit distinguished (lowest weight) vectors in various induced representations.

Lowest weight vectors in Jacobi representations

We take over from [BeS] 3.3 that πJ+
m,k can be realized as a subrepresentation of

πJ
m,s = IndGJ

BJ (χψm) for χ = | |k−3/2.

The lowest weight vector v0 = φ0 is then given by

φ0(gJ) = yk/2e(m(κ+ pz))eikϑ

where gJ is fixed by the coordinates from [BeS]

gJ = (p, q, κ)n(x, 0, 0, 0)d(1, y1/2, 1)r1(ϑ).

But if, as used here mostly,

gJ = n(x, λ, µ, κ)d(1, a, 1)r1(ϑ), a ∈ R∗, x, λ, µ, κ, ϑ ∈ R,

then

ϕ0(gJ) = |a|ke(m(κ+ i(λa)2)eikϑ. (22)

For (22) to be well-defined, we assume from now on that k is even.

Lowest weight vectors in special representations

As is well known (see for instance [Na]), we have, using the coordinates

g = n(x, λ, µ, κ)d(u, a, a′)r, r ∈ K,

a lowest weight vector

Ψ0(g) = |aa′/u|kξ(r), (23)

which fixes the holomorphic discrete series representation σ+
k as a subrepresentation of σ(χ, | |1/2) for

χ = | |k−3/2. Here ξ denotes the one-dimensional (k, k)-representation of K ' U(2) (the identity
component of the maximal compact subgroup of G), i.e.,

ξ(r) = eik(ϑ+ϑ′),

where r is meant as the product of the elements

r1(ϑ) =


cos(ϑ) sin(ϑ)

1
− sin(ϑ) cos(ϑ)

1

 , r2(ϑ′) =


1

cos(ϑ′) sin(ϑ′)
1

− sin(ϑ′) cos(ϑ′)

 ,
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r3(ϕ) =
(
r(ϕ)

r(ϕ)

)
, r4(ϕ′) =


cos(ϕ′) sin(ϕ′)

cos(ϕ′) sin(ϕ′)
− sin(ϕ′) cos(ϕ′)

− sin(ϕ′) cos(ϕ′)

 .

We also have

ξ(r) = j(r, I)−k, r ∈ K, I =
(
i
i

)
,

where j(g, Z) = det(CZ + D) is the usual automorphic factor, for g =
(
A B
C D

)
∈ Sp(4) and Z an

element of the Siegel upper half plane. It is immediate that

Ψ0

((
A ∗
u tA−1

)
g

)
= |det(A)u−1)|kΨ0(g),

and therefore Ψ0 is an element of the special representation σχ, see (11). It can be verified directly
that Ψ0 is indeed annihilated by the operators P0−, P1−, X−, N±. Thus, in the infinitesimal picture,
Ψ0 identifies with the vacuum vector w0 from (20).

Special vectors on Q

By the recipe given in 2.4, we induce from the representation πJ
m,s of GJ to a representation τm,s of

Q with a space BQ
χ,m = BQ

s,m. Then we search in this space for a distinguished “vacuum vector” ṽ0
spanning a representation τ+

m,k equivalent to σ+
k restricted to Q, via the intertwining operator im. It

is not too hard to guess that ṽ0 = Φ0
m does the trick, if we put

for m > 0 : Φ0
m(q) =

{
|aa′/u|ke(mτ ′)eikϑ if u > 0,
0 if u < 0. (24)

for m < 0 : Φ0
m(q) =

{
0 if u > 0,
|aa′/u|ke(mτ ′)eikϑ if u < 0. (25)

This defines a smooth function, since u is the multiplier, and its sign determines the connected com-
ponent of G; we used the coordinates

q = n(x, λ, µ, κ)d(u, a, a′)r1(ϑ), τ ′ = κ+ i(λ2a2 + a′
2)/u.

Note that

Φ0
m(d(−1, 1, 1)q) = Φ0

−m(q) (26)

for all m and all q. Note also that Φ0
m is invariant under the center. It is obviously an element of

C − IndQ
GJ (πJ+

m,k). In the following we shall give several explanations for this choice of Φ0
m.
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3.4 The Maaß lift of πJ+
m,k

Again let χ = | |k−3/2. Recall from Proposition 2.6 that we have an injective Q-intertwining operator

im : σχ −→ C − IndQ
GJ (πJ

χ,m). (27)

By Lemma 2.1 and the remarks following it, the representation on the right has Q-length 2. It follows
that σχ has G-length no more than 2. We already know a subrepresentation of σχ, namely the (anti-)
holomorphic discrete series representation σ+

k spanned by the lowest weight vector (23). But we can
also write down the vector

Ψ0(g) = |aa′/u|kei(k−2)(ϑ+ϑ′),

which is an element of Iχ, but not contained in σ+
k , since the latter representation does not contain a

vector of weight (k − 2, k − 2). Hence we see that the G-length of σχ is in fact 2. It now follows that
(27) is an isomorphism, and that the subspace σ+

k really maps Q-isomorphically onto the subspace
C − IndQ

GJ (πJ+
k,m). This proves Theorem 3.1.

We shall now show that Φ0
m as in (24) resp. (25) is (up to scalars) the image of Ψ0 under the intertwining

operator im.

3.3 Lemma. For each positive integer k the integral

Ik,m =
∫
R

(1− iκ)−ke−2πimκ dκ, m ∈ R∗,

converges, and has the value

Ik,m = 2π
(2πm)k−1

(k − 1)!
e−2πm for m > 0,

and Ik,m = 0 for m < 0.

Proof: Partial integration yields the recursion formula

Ik,m =
2πm
k − 1

Ik−1,m.

Thus we are reduced to the case k = 1. In this case one decomposes into real and imaginary parts,
and obtains

I1,m =
∫

1
1 + κ2

cos(2πmκ) dκ+
∫

κ

1 + κ2
sin(2πmκ) dκ.

The values of these integrals can be looked up in tables. The first one is πe−2π|m|, the second one is
sgn(m)πe−2π|m|.

3.4 Proposition. Let Ψ0 be as in (23) and Φ0
m as in (24) resp. (25). If im denotes the intertwining

operator (14), then

imΨ0
∣∣∣
Q

= 2π
(2πm)k−1

(k − 1)!
Φ0

m. (28)
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Proof: It follows from (15) that

(imΨ0)(d(−1, 1, 1)q) = (i−mΨ0)(q).

In view of (26) it is therefore enough to check equality of both sides of (28) on elements of positive
multiplier. By the transformation properties of both sides (see (15) and (24), (25)) it is further enough
to check that both sides are equal when evaluated at elements (λ, 0, 0). In other words, we have to
compute

(imΨ0)(λ, 0, 0) =
∫
R

Ψ0
(
w1w2(λ, 0, κ)

)
e−2πimκ dκ

=
∫
R

Ψ0


1

1
−κ −λ 1
−λ 1

 e−2πimκ dκ. (29)

We proceed as in the proof of Lemma 2.4. If g(κ) denotes the matrix, then we write down an Iwasawa
decomposition

g(κ) = g′(κ)c(κ) with c(κ) ∈ K, (30)

and with g′(κ) of the form

g′(κ) = n
(
x(κ), λ′(κ), µ′(κ), κ′(κ)

)
d
(
1, a(κ), a′(κ)

)
.

The parameters are as before, in particular

a(κ)2 =
1 + λ2

(1 + λ2)2 + κ2
, a′(κ)2 =

1
1 + λ2

. (31)

Furthermore, by (30) we get j(g(κ), I) = j(g′(κ), I)j(c(κ), I), and thus

ξ(c(κ)) = j(c(κ), I)−k =
(
j(g′, I)
j(g, I)

)k

=
(

1 + λ2 − iκ√
(1 + λ2)2 + κ2

)−k

(to compute j(g′, I) one uses (31)). Putting this into (29), we get

(imΨ0)(λ, 0, 0) =
∫
R

Ψ0
(
g′(κ)c(κ)

)
e−2πimκ dκ

=
∫
R

(a(κ)a′(κ))kξ(c(κ))e−2πimκ dκ

=
∫
R

(1 + λ2 − iκ)−ke−2πimκ dκ

= (1 + λ2)1−kIk,m(1+λ2)
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with Ik,m(1+λ2) as in Lemma 3.3. Plugging in the value given in this lemma, the assertion follows.

Remark: Assume we would be working on Sp(4) instead of PGSp(4). Then we would have only one
connected component, and no negative multipliers. In our definitions (24) and (25) we would just
forget about u < 0. Proposition 3.4 would imply that imΨ0, the image of the holomorphic lowest
weight vector, is non-vanishing if and only if m is positive. There is also an anti-holomorphic highest
weight vector (given by σ+

k (d(−1, 0, 0))Ψ0), and its image would be non-zero if and only if m < 0.
This is consistent with Theorems 6.3 – 6.6 in [Hi]; these imply that the holomorphic discrete series
representations appear as lifts precisely for m > 0, and the antiholomorphic ones do so precisely for
m < 0.

3.5 Differential operators

As usual we realize the elements X of a Lie algebra as left-invariant differential operators LX =: X
acting on smooth functions φ living on the groups by

(Xφ)(g) = (LXφ)(g) :=
d

ds
φ(g exp(sX))

∣∣∣∣
s=0

.

We will now work under the assumption that m > 0; the other case yields symmetric results. We shall
again consider the function Φ0

m on Q defined by (24). Obviously this function is only interesting on
the connected component Q+ of the identity, which consists of all elements with positive multiplier.
We shall therefore work on this connected component only, noting that (since we are over the reals)

Q+ = C ×Q1, Q1 = T+
1 nGJ ,

where T+
1 = {d(1, 1, a′) : a′ ∈ R>0}. Since all our functions are invariant under the center, we can

restrict further to Q1. The Lie algebra q1 of this group is generated by gJ and the element

U = diag(0, 1, 0,−1) = P0+ + P0−

spanning the Lie algebra of T+
1 . It is easy to deduce from the Jacobi theory in [BeS] 3.2 the realization

of the elements of q1,C as differential operators acting on smooth functions on Q1. If Q1 is coordinatized
by

q1 = n(x, λ, µ, κ) d
(
1, y1/2, y′

1/2)
r1(ϑ) = gJ d

(
1, 1, y′1/2)

,

such that with I =
(
i
i

)
q〈I〉 =

(
τ z
z τ ′

)
, τ = x+ iy, z = µ+ iλy, τ ′ = κ+ i(λ2y + y′),

then

LU = 2y′∂y′ , LZ0 = −iy′∂κ, LZ = −i∂ϑ,

LX± = ± i

2
e±2iϑ

(
2y

(
∂x + λ∂µ + λ2∂κ ∓ i∂y

)
− ∂ϑ

)
,

LY± =
1
2
e±iϑ(y′/y)1/2

(
∂λ ± iy∂µ ± 2iyλ∂κ

)
.

By a small calculation, one can verify
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3.5 Proposition. The function Φ0
m on Q1 fulfills

X−Φ0
m = Y−Φ0

m = 0, ZΦ0
m = (U + 2Z0)Φ0

m = kΦ0
m,

and is (up to a constant factor) uniquely determined by these equations and the additional condition

Φ0
m(nκq) = e2πimκΦ0

m(q).

This leads to the interpretation that v0 = Φ0
m is the vacuum vector for a representation τ̂+

m,k of q1,C
given on the space

V +
m,k =

∑
i,j,l∈N0

CU iY j
+X

l
+v0,

and τ+
m,k is fixed as the associated representation of Q1 generated by Φ0

m in the induced representation
IndQ1

BJ (χψm), χ = | |k−3/2.

Remark: This representation space is isomorphic to

U(q1,C)/〈X−, Y−, Z − k, U + 2Z0 − k〉,

where the brackets here denote the left ideal generated by the elements in the brackets. By our previous
results, this q1,C-module should extend to a representation of sp(4)C which is isomorphic to the special
representation we called σ̂+

k . The space of the latter can be realized as

Sk =
∑

i,j,l∈N0

CP i
0+P

j
1+X

l
+w0

' U(sp(4)C)/〈X−, P1−, P0−, N±, Z − k, Z ′ − k〉.

In passing from v0 to w0 we are adding the conditions N±w0 = P0−w0 = 0. Furthermore, we have

P0+ = U − P0−, P1± = 2Y± +N±, Z ′ = U + 2Z0 − P0−.

Thus our condition (U + 2Z0)Φ0
m = kΦ0

m in Proposition 3.5 is forced by P0−w0 = 0 and Z ′w0 = kw0.
A bit more formally this may also be understood by realizing that the choice of the vacuum vector v0
is the one such that its annihilator is just the intersection of the annihilator of w0 with U(q1,C).

3.6 The Fourier and Fourier-Jacobi developments

There is still another explanation for the special form (24), (25) for the vacuum vector Φ0
m mediating

the lift from πJ+
m,k to σ+

k . We simply take a Jacobi form f ∈ Jk,m and a Siegel modular form F ∈Mk(Γ2)
and lift their Fourier developments

f(τ, z) =
∑

n,r∈Z
4mn−r2≥0

c(n, r)e(nτ + rz)

resp.

F (τ, z, τ ′) =
∑

n,r,m∈Z
4mn−r2≥0

c(n, r,m)e(nτ + rz +mτ ′)
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in a familiar way (see [BeS] 4.1 resp. [Na] 10) to functions on GJ(R) resp. Sp(4,R) given by

Φf (gJ) =
∑
n,r

c(n, r)yk/2e(nτ + rz +m(κ+ iλ2y))eikϑ (32)

resp.

Ψf (g) =
∑

n,r,m

c(n, r,m)(yy′)k/2e(nτ + rz +mτ ′)eik(ϑ+ϑ′). (33)

F also has a Fourier-Jacobi expansion

F (τ, z, τ ′) =
∑
m

f̃m(τ, z, τ ′), f̃m(τ, z, τ ′) = fm(τ, z)e(mτ ′),

where fm ∈ Jk,m by the definition of Jacobi forms. Here the functions f̃m, as well as any f̃ of the form

f̃(τ, z, τ ′) = f(τ, z)e(mτ ′), f ∈ Jk,m

(cf. [Gr]) can be lifted to functions Φ̃f on Q1 which are ΓQ = Γ2 ∩ Q1-leftinvariant, of SO(2)-type k
from the right, and given by

Φ̃f (q) =
∑
n,r

c(n, r)(yy′)k/2e(nτ + rz +mτ ′)eikϑ. (34)

Apparently, the series (32), (34) and (33) are built up from functions

W (n,r)(gJ) = yk/2e(nτ + rz +m(κ+ iλ2y))eikϑ,

W̃ (n,r)(q) = (yy′)k/2e(nτ + rz +mτ ′)eikϑ,

W (n,r,m)(g) = (yy′)k/2e(nτ + rz +mτ ′)eik(ϑ+ϑ′)

All this here has a “Whittaker-type” background. One may ask to realize models of πJ+
m,k, τ+

k = σ+
k

∣∣
Q

and σ+
k on spaces of functions W on GJ , Q resp. G of the transformation type

W (ng0) = ψn,r,m(n)W (g0) for all g0 = gJ , q resp. g,

and n ∈ N1 := {n(x, 0, µ, κ)}, where ψn,r,m is the character of N1 given by

ψn,r,m(n(x, 0, µ, κ)) = e(nx+ rµ+mκ).

Equivalently, one looks for realizations of πJ+
m,k, τ+

k and σ+
k as subrepresentations of

IndGJ

N1

(
ψ(n,r,m)

)
, IndQ

N1

(
ψ(n,r,m)

)
resp. IndG

N1

(
ψ(n,r,m)

)
.

Using differential operators as before, one can easily verify that the functions W (n,r), W̃ (n,r) and
W (n,r,m) are vacuum vectors for ψ(n,r,m)-models of πJ+

m,k, τ+
k resp. σ+

k .
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3.7 Final remarks

We have associated to the vacuum vector Ψ0 of σ+
k the system of vacuum vectors

Φ0
m = imΨ0, m ∈ R∗.

These functions belong to equivalent representations of Q, and are connected by the index shift formula

(imΨ0)(q) = |m|−1(i1Ψ0)
(
diag(1, 1,m−1,m−1)q

)
,

see (15). This goes well along with the fact that a special Siegel form Ff , coming as a Maaß lift from
a Jacobi form f ∈ Jk,1, is characterized (see [EZ] Theorem 6.2) by the condition that the Fourier-
Jacobi coefficients fm of F grow out of f1 = f by the application of a Hecke-type index shift operator
Vm : Jk,1 → Jk,m. There is a p-adic explanation for this Hecke operator which will be discussed in a
subsequent paper.
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