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Abstract. Certain non-tempered liftings from PGL(2) ×
PGL(2) to PGSp(4) are constructed using the theory of (local

and global) theta lifts. The resulting representations on PGSp(4)

are the Saito–Kurokawa representations. The lifting is shown to

be functorial under certain reasonable assumptions on the local

Langlands correspondence for PGSp(4).

Introduction

The classical Saito–Kurokawa lifting associates to each eigenform f ∈ S2k−2(SL(2,Z)) with even k a
cuspidal Siegel eigenform F of degree 2 and weight k such that the (finite parts of the) L–functions of
f and F are related by the formula

L(s, F ) = ζ(s− k + 1)ζ(s− k + 2)L(s, f)

(see [5], §6). Within the framework of functoriality of automorphic representations, the Saito–
Kurokawa lifting can be explained as follows (see [17], §3). Let A be the ring of adeles of Q. Let
π1 be the automorphic representation of PGL(2,A) corresponding to the eigenform f . Let π2 be
the anomalous automorphic representation of PGL(2,A) whose archimedean component is the lowest
discrete series representation, and each of whose non-archimedean components is the trivial represen-
tation. We consider the (conjectural) lifting of PGL(2,A) × PGL(2,A) to PGSp(4,A) coming from
the standard embedding of L–groups

SL(2,C)× SL(2,C) −→ Sp(4,C). (1)

The image of the automorphic representation π1⊗π2 under this lifting turns out to be a (holomorphic)
cusp form Π on PGSp(4,A) that corresponds to the Saito–Kurokawa lift F of f .

The main purpose of this paper is to prove the following generalization of the Saito–Kurokawa lifting.
Let F be any number field and A its ring of adeles. Let π = ⊗πv be a cuspidal automorphic represen-
tation of PGL(2,A) and Σ the set of places v of F such that πv is square integrable. In generalization
of the above representation π2 we shall define a global representation πS of PGL(2,A) for any finite
set of places S. Our basic lifting theorem (Theorem 3.1) states that if S ⊂ Σ and the parity of #S is
such that (−1)#S = ε(1/2, π), then the representation π⊗πS of PGL(2,A)×PGL(2,A) has a cuspidal
lifting to PGSp(4,A), except when L(1/2, π) 6= 0 and S = ∅, where the lifting exists but is not cuspidal.
The class of representations so obtained coincides with the Saito–Kurokawa representations defined
in [4] in terms of packets. The main point here is however to show that Π(π ⊗ πS) is a functorial
lifting of π⊗ πS with respect to the L–morphism (1). To prove this we have to make some reasonable
assumptions on the conjectural local Langlands correspondence for GSp(4).

To prove the lifting theorem, we shall use the theory of local and global theta liftings as developed in
[39], [40]. First we shall define local representations Π(πv⊗πS,v) as theta liftings from the metaplectic
group, and then piece them together to obtain the global lifting. To show that the global representa-
tion of PGSp(4,A) thus obtained is automorphic, we use Waldspurger’s results, together with the
description of the residual spectrum of GSp(4,AF ) in [11]. The sign condition comes in since we argue
with global “Waldspurger packets” on S̃L(2,A).
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There is a conjectural description of local L–packets on GSp(4, Fv) in terms of theta lifts from or-
thogonal groups, see [30], [38]. By definition, our local liftings are another type of theta lift coming
from S̃L(2, Fv). What we will prove is an identity between local theta lifts on GSp(4, Fv) coming from
GO(X,Fv), where X is an anisotropic four-dimensional quadratic space with discriminant 1, and oth-
ers coming from S̃L(2, Fv) (Proposition 5.8). Assuming the above mentioned description of L–packets
for GSp(4, Fv), this will show that our lifting π ⊗ πS 7→ Π(π ⊗ πS) is functorial at every place.

To prove this local theta identity, we use a global method and a result of Piatetski-Shapiro [22] that
characterizes CAP representations on GSp(4,A) in terms of theta lifts from S̃L(2,A). The argument
only works if certain global theta lifts from GO(X,A) to GSp(4,A) do not vanish, where X is a four-
dimensional quadratic space. To assure this, we will modify the non-vanishing theorems of Roberts
[29], [30] to make them work in our (non-tempered) situation, see Theorem 5.4.

In section 1 we shall introduce the anomalous automorphic representations πS . Section 2 introduces
various groups and lifting maps that will be used in the following. In section 3 we shall prove the
main lifting theorem but without establishing functoriality. Section 4 is devoted to the archimedean
case, where the theta liftings can be computed explicitly. Since the archimedean local Langlands
correspondence is known, functoriality is easily established in this case. In section 5 we shall prove the
above mentioned local theta identity in the p–adic case. This implies our lifting is functorial also at
the finite places, assuming what is currently conjectured about the local Langlands correspondence for
GSp(4). In section 6 we shall also discuss a refinement of the base change theory for Saito–Kurokawa
representations in [4]. In the final section we shall give more explicit information on our liftings in the
p–adic case.

We mention that our results can be applied to holomorphic cusp forms f ∈ S2k−2(Γ0(N)), hence
generalizing the classical Saito–Kurokawa lifting. Since the parity condition is essentially all that has
to be observed in the choice of the set of places S above, a single modular form f can potentially have
many such Saito–Kurokawa lifts F . The main difficulty is to control the level of F . This application
to classical modular forms will be the subject of a separate paper.

Acknowledgements. This work is part of the author’s Habilitation at Universität des Saarlandes,
Germany. I would like to express my gratitude to J. Cogdell, T. Miyazaki and R. Schulze–Pillot for
numerous discussions on the topics treated in this paper. I would also like to thank D. Prasad, B.
Roberts and M. Tadić for some very helpful comments.

Notations and preliminaries

We shall set up notation and recall some basic facts about
theta liftings that will be needed in this paper.

Groups

Let Jn denote the n× n–matrix

Jn =

 1
. .

.

1

 . (2)

We shall realize the orthogonal group SO(n) using this matrix, i.e., SO(n) = {g ∈ SL(n) : tgJng = Jn}.
The symplectic group Sp(2n) and the similitude group GSp(2n) shall be realized using the matrix
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(
Jn

−Jn

)
. In particular, we let

GSp(4) =
{
g ∈ GL(4) : tgJg = λ(g)J for some λ(g) ∈ GL(1)

}
, J =

(
J2

−J2

)
.

If not stated differently, the symbol G will abbreviate the group GSp(4) throughout the paper. As
a Borel subgroup B of G we choose upper triangular matrices. The two conjugacy classes of proper
maximal parabolic subgroups are represented by the Siegel parabolic subgroup P , whose Levi factor is

MP =
{(

A
uA′

)
: u ∈ GL(1), A ∈ GL(2)

}
' GL(1)×GL(2),

where A′ :=
(

1
1

)
tA−1

(
1

1

)
, and the Klingen parabolic subgroup Q, whose Levi factor is

MQ =


 u

A
u−1 det(A)

 : u ∈ GL(1), A ∈ GL(2)

 ' GL(1)×GL(2).

Note that the Levi of the Siegel parabolic subgroup of PGSp(4) is isomorphic to GL(1)× PGL(2) via

MP −→ GL(1)× PGL(2),
(
A
uA′

)
7−→

(
u−1 det(A), [A]

)
, (3)

and the Levi of the Klingen parabolic subgroup of PGSp(4) is isomorphic to GL(2) via

MQ −→ GL(2),

 u
A

u−1 det(A)

 7−→ u−1A. (4)

The kernel of either map (3) or (4) is the center of GSp(4) consisting of scalar matrices.

Representations of GSp(4)

Let F be a local field. We shall employ the notations of [34] and [32] for induced representations of
the group GSp(4, F ). For characters χ1, χ2 and σ of F ∗ let χ1 × χ2 o σ be the representation of
G(F ) = GSp(4, F ) induced from the character

a ∗ ∗ ∗
b ∗ ∗

ub−1 ∗
ua−1

 7−→ χ1(a)χ2(b)σ(u)

of the Borel subgroup. The induction is always normalized. Provided that e(χ1) ≥ e(χ2) > 0,
where e(χi) denotes the real number with |χi(x)| = |x|e(χi) (the exponent), let L((χ1, χ2, σ)) be the
unique irreducible quotient (the Langlands quotient) of χ1 × χ2 o σ (see [34], section 6). If π is a
representation of GL(2, F ) and σ a character of F ∗ let π o σ be the representation of G(F ) induced
from the representation(

A ∗
uA′

)
7−→ σ(u)π(A)

of P (F ). The exponent e(π) is the unique real number such that | |−e(π)π is unitarizable. Provided that
π is essentially square integrable and e(π) > 0, the induced representation πoσ has a unique Langlands
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quotient, denoted by L((π, σ)). Finally, assume that χ is a character of F ∗ and σ a representation of
GL(2, F ). Then χo σ denotes the representation of G(F ) induced from the representation u ∗ ∗

A ∗
u−1 det(A)

 7−→ χ(u)σ(A)

of Q(F ). If e(χ) > 0 and σ is essentially tempered,
there is a unique Langlands quotient L((χ, σ)). For parabolically induced representations of GL(2, F )
we shall write either the common symbol π(χ1, χ2), as in [9], or χ1 × χ2, to fit into the systematic
notational context of [34].

As in [32] we shall write ν(x) = |x| for the normalized absolute value on the local field F .

Occasionally symbols like χ1×χ2oσ and πoσ will also denote the elements of the Grothendieck group
of the category of all smooth representations of G(F ) of finite length defined by the corresponding
induced representation (see the introduction to [32]). This should cause no confusion.

The theta correspondence

Let V be a finite-dimensional non-degenerate symmetric bilinear space andW a finite-dimensional non-
degenerate symplectic space, defined over a number field F . We view the orthogonal group H = O(V )
and the symplectic group G = Sp(W ) as algebraic F–groups. The well-known theta correspondence is
a correspondence between subsets of the set of irreducible, admissible representations of H and of the
metaplectic cover of G. If dim(V ) is even, the metaplectic cover can be replaced by G itself. There is
a local and a global version of the theta correspondence, and the two are compatible. See [21] for an
introduction to the p–adic theta correspondence.

The theta correspondence was extended to a correspondence for similitude groups (instead of isometry
groups) in [26]. We refer to that paper and the references therein for general background on the
subject. In this paper we shall be dealing with theta correspondences between the following groups.

i) S̃L(2) (metaplectic cover) and PGL(2) ' SO(3) (split orthogonal group).

ii) S̃L(2) and PD∗, where D is a quaternion algebra over F .

iii) S̃L(2) and PGSp(4) ' SO(5) (split orthogonal group).

iv) GSp(4) and GO(4). In the local case we assume that the 4–dimensional orthogonal space has
discriminant 1.

There is extensive local and global information on the first two types of correspondences in [39] and
[40]. For the third type of theta correspondence, see [4], [22], [23] and [40]. Finally, the correspondence
iv) was closely investigated in [27].

Let F be a local field and consider the local theta correspondence from H = GO(4, F ) to G =
GSp(4, F ). It is easy to prove that if π ∈ Irr(H) has trivial central character, then its theta lift
θ(π) ∈ Irr(G) has also. This fact will be used later without comment.

The relation between theta liftings and Langlands’ functoriality is not yet fully understood. In [25], the
theta correspondence for unramified representations was shown to be functorial with certain morphisms
on the L–group. However, global functoriality usually fails. The present work hopes to give some
insight into the relation between the theta correspondence and functoriality in a low–rank situation.
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1 Global induced representations on PGL(2)

Let F be a number field and A its ring of adeles. Let B be the standard Borel subgroup of G = GL(2),
and consider the global induced representation

IndG(A)
B(A)

(
| |1/2, | |−1/2

)
=

⊗
v

IndGvBv
(
| |1/2v , | |−1/2

v

)
. (5)

The constituents of this global representation are all automorphic ([16], Proposition 2), and are ob-
tained by taking an irreducible constituent of the local induced representation at each place v, with
the Langlands quotient for almost every v ([16], Lemma 1). The Langlands quotient is the trivial rep-
resentation 1v. There is exactly one other constituent (a subrepresentation), which we denote by Stv
because for finite v it is the Steinberg representation. We shall now describe these local representations
in more detail, in particular giving their L– and ε–factors.

v real: In this case Stv = D(1) is the lowest discrete series representation of PGL(2); it has a lowest
weight vector of weight 2 and a highest weight vector of weight −2. The corresponding local parameters
(representations of the Weil group) are as follows (see [13]). The Weil group is WR = C∗ t jC∗ with
j2 = −1 and jzj−1 = z̄. The parameter for the trivial representation is given by

z = reiϑ 7−→
(
r1/2

r−1/2

)
, j 7−→

(
1

1

)
. (6)

The parameter for D(1) is

z = reiϑ 7−→
(
eiϑ

e−iϑ

)
, j 7−→

(
−1

1

)
.

The L– and ε–factors for these representations can be taken from [37] or [13]; they are given by

Lv(s,1v) = 2(2π)−s+1/2 Γ
(
s− 1

2

)
, εv(s,1v, ψv) = 1,

resp.

Lv(s,Stv) = (2π)−s−1/2 Γ
(
s+

1
2

)
, εv(s,Stv, ψv) = −1.

Here we have chosen the standard character ψv(x) = e2πix of R.

v complex: In this case we shall not allow to take Stv, for reasons that will become clear later. Thus
we do not care about this representation, and only give the local factors for the trivial representation:

Lv(s,1v) = 2
√

2 (4π)1/2−2s Γ
(
2s− 1

2

)
, εv(s,1v, ψv) = 1.

Here the character is ψv(z) = e2πi(z+z̄) for z ∈ C.

v p–adic: In the p–adic case Stv is really the Steinberg or special representation. The local parameters
are representations ρ = (ρ̃, N) of the Weil-Deligne group, with ρ̃ a representation of the Weil group
Wv, and N a nilpotent endomorphism of the representation space such that ρ̃(w)Nρ̃(w)−1 = |w|N for
any w ∈ WF (see [37] (4.1.2)). Here | | is the character of WF coming from the absolute value on F ∗

via the isomorphism W ab
F ' F ∗ which the Weil group comes equipped with. The parameter ρtriv for

the trivial representation is given by

ρ̃(w) =
(
|w|1/2

|w|−1/2

)
, N = 0. (7)
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The parameter ρSt for the Steinberg representation is given by

ρ̃(w) =
(
|w|1/2

|w|−1/2

)
, N =

(
0 1
0 0

)
. (8)

The local factors are

Lv(s,1v) =
(
(1− q−s−1/2

v )(1− q−s+1/2
v )

)−1
, εv(s,1v, ψv) = 1,

resp.

Lv(s,Stv) =
(
1− q−s−1/2

v

)−1
, εv(s,Stv, ψv) = −q1/2−sv .

Here ψv must have conductor ov.

This concludes the description of the relevant local data. Let now S denote a finite set of places, not
including any complex ones, and let πS = ⊗πS,v be the constituent of the global induced representation
(5) such that

πS,v =
{

1v for v /∈ S,
Stv for v ∈ S. (9)

The global L–function of πS is given by

L(s, πS) =
( ∏
v/∈S

Lv(s,1v)
)( ∏

v∈S
Lv(s,Stv)

)
=

( ∏
v

Lv(s,1v)
)( ∏

v∈S

Lv(s,Stv)
Lv(s,1v)

)
= Z

(
s+

1
2

)
Z

(
s− 1

2

)( ∏
v∈S

Lv(s,Stv)
Lv(s,1v)

)
. (10)

Here Z(s) denotes the global L–function of the trivial character (if F = Q this is just the completed
Riemann zeta function). From the above description of local factors we get

Lv(s,Stv)
Lv(s,1v)

=

 1
4π (s− 1

2 ) v real,

1− q
−s+1/2
v v p-adic.

(11)

Thus we see that each place in S increases the order of the L–function at s = 1/2 by one.

1.1 Proposition. Let S be a finite set of places, not including any complex ones, and let πS be the
automorphic representation of PGL(2,A) with local components (9).

i) The global L–function L(s, πS) has simple poles at s = −1/2 and s = 3/2, and no other poles
except possibly at s = 1/2.

ii) The order of L(s, πS) at s = 1/2 is #S − 2.

iii) We have the functional equation L(s, πS) = ε(s, πS)L(1− s, πS) with

ε(s, πS) = (−1)#S
∏

v∈S, v-∞

q1/2−sv .

Proof: It is known that Z(s) is holomorphic except for simple poles at s = 0 and s = 1. The Euler
product for Z(s) is convergent for Re(s) > 1, so there are no zeros for Re(s) > 1 or Re(s) < 0. Thus
Z(s + 1/2)Z(s − 1/2) has simple poles at s = −1/2 and s = 3/2, and a double pole at s = 1/2. By
(10) and (11), every place in S adds another zero at s = 1/2, and nowhere else on the real axis. This
proves i) and ii). The last assertion is immediate from the above description of local factors.
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2 Various theta liftings

If (V, ( , )) is a symmetric bilinear space over some field F , let GO(V ) denote the group of linear
automorphisms g of V such that there exists a scalar λ(g) such that

(gx, gy) = λ(g)(x, y) for all x, y ∈ V.

The homomorphism λ : GO(V ) → F ∗ is called the multiplier. The relation with the determinant is
det(g)2 = λ(g)m, where m = dim(V ). If this dimension is even, consider the homomorphism

sgn : GO(V ) −→ {±1}, sgn(g) =
det(g)
λ(g)m/2

.

Its kernel is denoted by GSO(V ).

Now suppose that F is a non-archimedean local field of characteristic 0. To be able to apply results
involving the local theta correspondence, we shall make the (usual) assumption in this section that
F has odd residue characteristic. There are exactly two isomorphism classes of quadratic spaces of
dimension 4 and discriminant 1 over F , the split space V s, and the anisotropic space V a. Explicitly,
V s is a sum of two hyperbolic planes and may be realized as V s = M(2, F ) with the quadratic form
q(A) = −det(A). The anisotropic space V a can be realized as the unique quaternion division algebra
over F endowed with the reduced norm.

The groups GSO(V s) and GSO(V a) can be explicitly described as follows. Each element (g, h) ∈
GL(2, F ) × GL(2, F ) defines an automorphism ρ(g, h) of V s = M(2, F ) by ρ(g, h)(x) = gxh−1. It is
easy to see that ρ(g, h) ∈ GSO(V s), and it is known that the sequence

1 −→ F ∗
∆−→ GL(2, F )×GL(2, F )

ρ−→ GSO(V s) −→ 1

is exact, where ∆ is the diagonal embedding. Similarly, if D is the division quaternion algebra over
F , there is an exact sequence

1 −→ F ∗
∆−→ D∗ ×D∗ ρ−→ GSO(V a) −→ 1.

Therefore we have isomorphisms

GSO(V s) ' (GL(2, F )×GL(2, F ))/∆F ∗ and GSO(V a) ' (D∗ ×D∗)/∆F ∗.

As a consequence, the irreducible representations of GSO(V s) (resp. GSO(V a)) correspond bijectively
to the pairs of irreducible representations of GL(2, F ) (resp. D∗) with the same central character. If
(π1, π2) is such a pair, we denote the corresponding representation of GSO(V s) (resp. GSO(V a)) with
the symbol π1 ⊗ π∨2 . Its space is that of the tensor product representation π1 ⊗ π∨2 , where π∨2 denotes
the contragredient.

An irreducible representation τ of GSO(V s) (resp. GSO(V a)) is called regular if the induced represen-
tation of τ to GO(V s) (resp. GO(V a)) is irreducible. In this case we denote the induced representation
by τ+. The regular representations can easily be described (see [27], Proposition 3.1).

2.1 Lemma. An irreducible representation π1 ⊗ π2 of GSO(V s) (resp. GSO(V a)) is regular if and
only if π1 6' π∨2 .

The representations of GSO(V s) (resp. GSO(V a)) of the form τ = π⊗π∨ have exactly two extensions
to a representation of GO(V s) (resp. GO(V a)). Precisely one of these, denoted τ+, participates
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in the theta correspondence with GSp(4, F ) ([27], Theorem 6.8). Such representations do already
participate in the theta correspondence between GO(V s) (resp. GO(V a)) and GSp(2, F ) = GL(2, F )
([27], Theorem 7.4). For example, if π is a square integrable representation of GL(2, F ), and if
πJL ∈ Irr(D∗) corresponds to π under the Jacquet–Langlands correspondence, then the representation
(πJL ⊗ πJL∨)+ of GO(V a) lifts to π on GL(2, F ).

Now consider the following diagram of “lifting maps”, in which we have omitted the ground field F as
well as the symbol for admissible representations of the respective groups.

GSp(4)

GO(V a)

θ

99rrrrrrrrrr
GO(V s)

θ

eeLLLLLLLLLL

GSO(V a)

+

OO

S̃L(2)

θ′ψ

OO

GSO(V s)

+

OO

PD∗

⊗1

OO
θψ

99ssssssssss
oo JL // PGL(2)

θψ
eeKKKKKKKKKK

⊗1

OO

(12)

On the bottom we have the Jacquet–Langlands correspondence between irreducible representations
of PD∗ = D∗/F ∗ and discrete series representations (supercuspidal and special representations) of
PGL(2, F ). The map ⊗ 1 associates to a representation π of D∗ (resp. GL(2, F )) with trivial central
character the representation π ⊗ 1 of GSO(V a) (resp. GSO(V s)), where 1 denotes the trivial rep-
resentation. The arrows labeled “+” denote essentially induction, except for representations of the
type π ⊗ π∨, where they mean the unique extension of π ⊗ π∨ to GO(V a) (resp. GO(V s)) that has
non-zero theta–lift to GSp(4, F ). The upper θ’s denote the theta–correspondence between GO(V ∗)
and GSp(4, F ), see [27]. The arrows in the middle are also theta–correspondences, but, in contrast
to the upper θ’s, depend on the choice of an additive character ψ. Those local correspondences were
studied by Waldspurger in [40]. They are given by explicit integral transformations and can be
defined also in even residue characteristic and in the archimedean case. Note that the bottom triangle
is definitely not commutative. The target group on top is really PGSp(4, F ).

For π an irreducible representation of PD∗ or of PGL(2, F ), we define the local Saito–Kurokawa lift
of π as

SK(π) := θ′ψ(θψ(π)). (13)

This is an irreducible representation of PGSp(4, F ). By [4], Corollary to Proposition 2.1, SK(π) is
independent of
the choice of ψ; whence our notation. This result also holds in even residue characteristic.

Note that for a discrete series representation π of PGL(2, F ) there are four ways in the above diagram
to reach the top. Our main local result will be that (exactly) two of the resulting representations of
GSp(4) coincide. More precisely, we will prove in Proposition 5.8 that the left half of diagram (12)
is commutative. The three different representations we can obtain in this way from a discrete series
representation of PGL(2, F ) are the ones that appear in diagram (21) below.
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2.2 Lemma. Suppose F is a local field of characteristic 0. For any irreducible, unitary representation
π of PGL(2, F ) the Saito–Kurokawa lift of π can be described as

SK(π) = unique irreducible quotient of ν1/2π o ν−1/2.

This representation is unitary and not generic.

Proof: Translated into our notation, Lemme 49 in [40] says that SK(π) is a subrepresentation of
ν−1/2πoν1/2. Weyl group action gives an equality ν−1/2πoν1/2 = ν1/2πoν−1/2 in the Grothendieck
group, but the subrepresentation and the quotient become interchanged. Thus SK(π) is a quotient of
ν1/2π o ν−1/2.

In the p–adic case it follows from [32] Lemmas 3.3, 3.7, 3.8, 3.6 and Proposition 4.6 that ν1/2πoν−1/2

has length 2. Since the inducing representation is generic, it follows from [3] that the quotient is
not generic. It follows further from [32] Theorem 4.4 and [33] Theorem 5.1 that this quotient is
unitarizable.

If F = R and π is a discrete series representation, see section 4 where SK(π) is explicitly determined.
Suppose that F is archimedean and π = π(χ, χ−1) = χ×χ−1 is a unitary principal series representation.
We have formally

ν1/2π o ν−1/2 = ν1/2χ× ν1/2χ−1 o ν−1/2 = ν1/2χ× ν−1/2χo χ−1

= χStGL(2) o χ−1 + χ1GL(2) o χ−1

in the Grothendieck group. Since SK(π) is a quotient of the reducible representation ν1/2π o ν−1/2,
it is not generic. It is easily seen that χStGL(2) o χ−1 is a subrepresentation and χ1GL(2) o χ−1 is a
quotient of ν1/2π o ν−1/2. Hence SK(π) is a constituent of χ1GL(2) o χ−1. But this representation is
irreducible and unitary by [18].

3 The main lifting theorem

If F is a local field of characteristic zero, possibly archimedean, and if π is an irreducible, admissible,
infinite-dimensional representation of PGL(2, F ), we define a representation of PGSp(4, F ) as

Π(π ⊗ 1) := SK(π). (14)

By Lemma 2.2, Π(π ⊗ 1) can also be described as the unique irreducible quotient of ν1/2π o ν−1/2.
Provided π is square-integrable, we define another representation of PGSp(4, F ) as

Π(π ⊗ St) := SK(πJL) (π square-integrable). (15)

Assuming certain facts on the local Langlands correspondence, we will later recognize Π(π ⊗ 1) and
Π(π⊗ St) as functorial liftings from PGL(2)×PGL(2) to PGSp(4), which will explain our notations.

Now assume F is a global number field and π is a cuspidal automorphic representation of PGL(2,AF ).
Let S be a set of places of F contained in the set of places v where πv is a discrete series representation.
Let πS be the corresponding automorphic representation of PGL(2,AF ) considered in section 1. We
define a global representation of PGSp(4,AF ) by

Π(π ⊗ πS) :=
⊗

Π(πv ⊗ πS,v). (16)

The local liftings on the right hand side have been defined by (14) and (15). Our main result about
the representations Π(π ⊗ πS) is the following theorem. In the statement the number ε(1/2, π) for a
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global cusp form π on PGL(2,AF ) occurs. This number is just a sign. See section 3 of [31] for more
information on the signs defined by ε–factors.

3.1 Theorem. Let π = ⊗πv be a cusp form on PGL(2,A). Let S be a set of places of F such that
πv is a discrete series representation for each place v ∈ S, and let πS be the corresponding constituent
of the global induced representation (5). Assume that

i) The order at s = 1/2 of the L–function L(s, π)L(s, πS) is even.

An equivalent condition is

ii) (−1)#S = ε(1/2, π).

Then:

a) The global lifting Π(π ⊗ πS) is an automorphic representation of PGSp(4,A) which appears
discretely in the space of automorphic forms.

b) If L(1/2, π) = 0 or if S 6= ∅, then Π(π ⊗ πS) is a cuspidal automorphic representation.

Proof: Let us first assume that the cusp condition in b) is not fulfilled. This means that L(1/2, π) 6= 0
and S = ∅. In this case, by Lemma 2.2, the representation Π(π⊗πS) is the unique irreducible quotient
of the global induced representation

IndGSp(4,A)
P (A)

(
| |1/2A π ⊗ | |−1/2

A
)

(induction from the Siegel parabolic)

and is therefore automorphic. But such representations for L(1/2, π) 6= 0 are known to appear in the
residual spectrum of PGSp(4), see [11], Theorem 7.1.

From now on we may assume that the cusp condition ii) is fulfilled. Let Σ be the set of places v
where πv is a discrete series representation. We fix an additive character ψ = ⊗ψv of F . Denote
by Waldψ the global Waldspurger lifting from cuspidal automorphic representations of S̃L(2,A) to
cuspidal automorphic representations on PGL(2,A) defined in [39]. Similarly, denote by Waldψv the
local Waldspurger lifting from Irr(S̃L(2, F )) to Irr(PGL(2, F )) defined in [40] VI. The global and local
liftings are compatible. We have

#Wald−1
ψv

(πv) =
{

1, if πv is a principal series representation (i.e., if πv /∈ Σ),
2, otherwise. (17)

In each case these “local L–packets” for the metaplectic group contain the theta lift θ(πv, ψv), which is a
ψv–generic representation. We denote it by π̃v,gen. If πv is square integrable, then Wald−1

ψv
(πv) contains

moreover the ψv–non-generic representation π̃v,ng := θ(πJL
v , ψv), where πJL

v is the representation of
PD∗ corresponding to πv under the Jacquet–Langlands correspondence.

If π = ⊗πv is a cusp form on PGL(2,A), let C := Wald−1
ψ (π) be the corresponding fiber of the global

Waldspurger lifting. Let π̃ = ⊗π̃v be any element of C. Decompose

Σ = Σgen ∪ Σng,

where Σgen (resp. Σng) is the set of places v ∈ Σ such that π̃v = π̃v,gen (resp. π̃v = π̃v,ng). We claim
that

(−1)#Σng = ε(1/2, π), (18)
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where ε(s, π) =
∏
ε(s, πv) is the global ε–factor of π. To see this, let ε(π̃v, ψv) ∈ {±1} be the sign

attached to π̃v (and ψv), see [40] I.4 b). Since π̃ is automorphic, we have
∏
v ε(π̃v, ψv) = 1 (equation

(1) in [40] VI). By [40], Lemme 6 and Théorème 2, 3), we have

ε(π̃v,gen, ψv) = ε(1/2, πv) and ε(π̃v,ng, ψv) = −ε(1/2, πv).

It follows that

1 =
∏
v

ε(π̃v, ψv) =
( ∏
v∈Σng

ε(π̃v, ψv)
)( ∏

v/∈Σng

ε(π̃v, ψv)
)

= (−1)#Σng

( ∏
v∈Σng

ε(1/2, πv)
)( ∏

v/∈Σng

ε(1/2, πv)
)
,

hence our claim. These arguments can be reversed, and we see that if π̃ = ⊗π̃v is any global repre-
sentation with π̃v ∈ Wald−1

ψv
for all v, then π̃ ∈ C as soon as (18) holds.

Now assume the representation πS is as in the theorem. In view of Proposition 1.1 ii) we have the
equivalences

ε(1/2, π) = 1 ⇐⇒ ord1/2(L(s, π)) is even
⇐⇒ ord1/2(L(s, πS)) is even ⇐⇒ #S is even.

Therefore, if we define π̃ = ⊗π̃v by π̃v = π̃v,ng for v ∈ S and π̃v = π̃v,gen for v /∈ S, the condition (18)
is fulfilled and it follows that π̃ ∈ C.

We have assumed that the cusp condition in b) holds. If L(1/2, π) = 0, then, by [39], no τ ∈ C is
globally ψ–generic. On the other hand, if L(1/2, π) 6= 0, then there is exactly one ψ–generic member
in C, namely τ = ⊗τv with τv = π̃v,gen for all v. (It is this representation which participates in the
global theta correspondence with PGL(2,A).) If S 6= ∅, then our π̃ constructed above is different from
τ . We see that the cusp condition in b) implies that π̃ is not ψ–generic.

Now let θ′(·, ψ) denote the theta lifting from S̃L(2) to PGSp(4). Since π̃ is not ψ–generic, it follows from
[22], Theorem 2.3, that θ′(π̃, ψ) is a non-vanishing irreducible cuspidal automorphic representation of
PGSp(4,A). By our definitions (14) and (15) we have

θ′(π̃v, ψv) =
{

Π(πv ⊗ 1v) for v /∈ S,
Π(πv ⊗ Stv) for v ∈ S. (19)

Since θ′(π̃, ψ) ' ⊗θ′(π̃v, ψv), it follows from (19) that our global lift Π(π ⊗ πS) is a theta lift from
S̃L(2,A): θ′(π̃, ψ) ' Π(π ⊗ πS). This shows that Π(π ⊗ πS) is a cuspidal automorphic representation
of PGSp(4,A).

3.2 Remarks. a) As mentioned above, under some reasonable assumptions on the local Langlands
correspondence for GSp(4) (Conjecture 6.1 below), the representation Π(π⊗ πS) is a functorial lifting
of the representation π ⊗ πS of PGL(2,A) × PGL(2,A) under the natural embedding of L–groups
SL(2,C)× SL(2,C) → Sp(4,C). Assuming this, the L–function of the lift Π = Π(π ⊗ πS), defined via
local Langlands correspondence and using the standard representation of the L–group, is given by

L(s,Π) = L(s, π)L(s, πS).

Using Proposition 1.1, we see that L(s,Π) has simple poles at s = −1/2 and s = 3/2. The only
other possible pole is at s = 1/2. If the cuspidality condition in the theorem holds, then L(s,Π) is
holomorphic at s = 1/2.
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b) Since at almost all places our local liftings are quotients of induced representations ν1/2πv o ν−1/2,
the global liftings Π(π⊗πS) are examples for CAP representations (cuspidal associated to parabolics).

c) If Π = Π(π ⊗ πS) is one of the cuspidal representations constructed in the theorem, and if χ is an
idele class character, we can consider the twist χ⊗Π, where we put χ on the multiplier. This is another
cusp form on GSp(4,A), and if χ is quadratic, the central character remains trivial. Obviously χ⊗Π is
a lifting of (χπ)⊗ (χπS), and therefore is still a CAP representation. But, as soon as χ is non-trivial,
its L–function does not have poles, since, over Q say, the Riemann zeta functions are replaced by
Dirichlet L–functions. These twists must be taken into consideration in any proper formulation of the
Ramanujan conjecture for GSp(4).

d) By construction, the liftings that can be obtained through Theorem 3.1 are essentially the same as
the Saito–Kurokawa liftings defined in [4] in terms of packets. In section 6 we will comment on the
consequences of functoriality for the base change theory of Saito–Kurokawa representations.

3.3 Example. Assume that the ground field is Q and that π is the automorphic representation
corresponding to a classical eigenform f ∈ S2k−2(Γ), where Γ = SL(2,Z). For the global ε–factor
we have ε(1/2, π) = (−1)k−1. Thus, if k is even, we can put S = {∞} in Theorem 3.1 and get a
cuspidal lifting Π to PGSp(4,A). As we will see in the next section, the archimedean component Π∞
of the lift is the holomorphic discrete series representation σ+

k with scalar minimal K–type (k, k). At
every finite place we get an unramified representation. Therefore Π corresponds to a classical Siegel
modular form F of weight k and degree 2 for the full modular group Sp(4,Z) (see [2]). This F is the
classical Saito–Kurokawa lift of f .

3.4 Example. Assume that f ∈ S2k−2(Γ0(N))new is an eigenform for some level N > 1 and that
the corresponding automorphic representation π is square integrable at some finite place p (this is
the case, for example, if p divides N to an odd order). Then we can find a suitable S that does
not contain the archimedean place. The archimedean component of the resulting lift Π is then the
cohomological representation σ−k described more precisely in section 4. Thus we are able to produce
many non-holomorphic Saito–Kurokawa lifts.

4 The lifting at real places

We shall now examine more closely the liftings defined in (14) and (15) over the real field. Since the real
theta liftings can be computed explicitly, and since the archimedean local Langlands correspondence
is known, we will be able to check that the lifting constructed in Theorem 3.1 is functorial as described
in Remark 3.2 a) at least over archimedean places. The situation over R gives a good picture of what
is happening at finite places, where proofs are much harder.

The embedding SL(2,C)× SL(2,C) → Sp(4,C) in (1) is explicitly given by

(
a b
c d

)
×

(
a′ b′

c′ d′

)
7−→


a′ b′

a b
c d

c′ d′

 . (20)

If we have two local parameters ρ1, ρ2 : WR → SL(2,C), we shall denote by ρ1 ⊕ ρ2 the composition
of (ρ1, ρ2) with the L–morphism (20). Thus we associate to every parameter for PGL(2)× PGL(2) a
parameter for PGSp(4).

If π is any infinite-dimensional, unitary, irreducible, admissible representation of PGL(2,R) with local
parameter ρ, consider the parameter ρ ⊕ ρtriv, where ρtriv is given in (6). Its image is contained in



13

the Klingen parabolic subgroup of Sp(4,C), and the corresponding representation is therefore induced
from the Siegel parabolic subgroup of PGSp(4,R). More precisely, pulling back to GSp(4,R), the
parameter ρ ⊕ ρtriv corresponds to the unique irreducible quotient of ν1/2π o ν−1/2. By Lemma 2.2
and the definition in (14), Π(π ⊗ 1) is a functorial lifting of π ⊗ 1GL(2) under the morphism (20) of
L–groups.

We shall now give a more precise description of the real liftings. If π = π(χ, χ−1) is a unitary principal
series representation, then, as explained in the proof of Lemma 2.2, the lifting Π(π⊗ 1) is the unitary
and non-generic degenerate principal series representation χ1GL(2) o χ−1. Little more can be said in
this case, hence we shall from now on concentrate on the liftings of discrete series representations.

We are working with representations of PGSp(4,R), but it is convenient to consider the closely related
group Sp(4,R). Let e1, e2 be a basis for the character lattice of Sp(4) such that ±e1± e2 and ±2ei are
the roots of this group:

-

6

-�

6

?

�
��

�
�	

@
@I

@
@R

e2

e1

We will sometimes write (a, b) := ae1 + be2 for a point in this plane. Let the numbering be such that
±(e1−e2) are the compact roots. The possible K–types correspond to integer points (l, l′) with l ≥ l′.
Since we are interested in representations with trivial central character, only the K–types (l, l′) with
l + l′ even will be relevant.

Consider π = D(2k− 3) with k ≥ 2, the discrete series representation of PGL(2,R) with lowest weight
2k − 2. We shall first describe Π(π ⊗ 1), which by the definition in (14) is a double theta lifting
θ′(θ(π)). If the character used to define the theta correspondence is x 7→ eimx with m > 0, then,
by [40], Proposition 5, the inner lifting θ(π) is the discrete series representation of S̃L(2,R) with a
highest weight vector of weight −k + 1/2. One can then use the paper [19] to compute the lifting to
PGSp(4,R) ' SO(3, 2). Putting p = 3, q = 2, r = 1 and s = 0 in Example (I4) of this paper shows
that Π(π ⊗ 1) is a certain cohomologically induced representation Aq(λ) (notation of [14]), where
λ = (k − 3, 3 − k), and where q is the θ–stable parabolic subalgebra of sp(4,C) which has the short
non-compact roots in the Levi. Let us denote this representation by σ−k .

This σ−k has infinitesimal character (k−1, 2−k) and minimal K–type (k−1, 1−k). It can be realized
as the unique irreducible quotient of ν1/2π o ν−1/2. This induced representation has length 2 and
decomposes as πW + σ−k , where πW is a generic representation (a large discrete series representation
if k ≥ 3). Upon restriction to Sp(4,R) the large representation πW decomposes into two parts B and
C, and we get a picture of the K–types as follows.
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•
•
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C

B

σ−k

(k,2−k)

(k−1,1−k)

(k−2,−k)

To give another description of σ−k , define a character χ of the Siegel parabolic subgroup P = MN by(
A ∗
uA′

)
7−→

{
|u−1 det(A)|k−3/2 if k is odd,
sgn(u−1 det(A))|u−1 det(A)|k−3/2 if k is even,

and consider the degenerate principal series representation σχ := IndGSp(4,R)
P (R) (χ). This is really a

representation of PGSp(4,R), and σ−k appears as the unique non-trivial proper subrepresentation
of σχ. This follows from the paper [18], where the reducibilities of the degenerate principal series
representations have been determined. Our σ−k is L21 in Lee’s Theorem 5.2. From [18], Lemma 5.1,
we see that σ−k is unitarizable.

Next we consider the lift Π(π⊗St), where π = D(2k− 3) with k ≥ 2, and where St = D(1), the lowest
discrete series representation of PGL(2,R). By definition, Π(π ⊗ St) = θ′(θ(πJL)), see (15). By [40],
Proposition 9, θ(πJL) is a discrete series representation of S̃L(2,R) of lowest weight k− 1/2 (provided
the character used for the theta lifting is eimx with m > 0). By example (I4) in §6 of [19] (put p = 3,
q = 2, r = 0, s = 1), the theta lift of this representation to PGSp(4,R) is σ+

k , the holomorphic
discrete series representation on PGSp(4,R) with scalar minimal K–type (k, k). Actually, if k = 2,
this representation is only in the limit of the discrete series.

To see why this lifting is functorial, let ρn : WR → SL(2,R) be the parameter of the discrete series
representation D(n). Explicitly, it maps

z = reiϑ 7−→
(
einϑ

e−inϑ

)
, j 7−→

(
−1

1

)
(recall WR = C∗tjC∗). We note that ρSt = ρ1 and consider the parameter ρ2k−3⊕ρ1. If k ≥ 3, this is
recognized as the parameter for an L-packet on PGSp(4,R) containing discrete series representations
with Harish-Chandra parameter (k − 1, k − 2) (some care has to be taken with the duality between
PGSp(4) ' SO(5) and Sp(4)). This L-packet in particular contains the discrete series representation
σ+
k with one-dimensional minimal K-type of weight (k, k) (combining a holomorphic and an anti-

holomorphic discrete series representation of Sp(4,R)). This shows that Π(D(2k − 3)⊗ St) = σ+
k is a

functorial lifting of D(2k − 3)⊗ StGL(2) if k ≥ 3.

Now consider the case k = 2, i.e., the lift Π(St ⊗ St), with St = D(1). In this case, the parameter
ρ1⊗ρ1 can be conjugated into the standard Siegel parabolic subgroup of Sp(4,C) by a suitable Cayley
transformation. This shows that the functorial lifting of D(1)⊗D(1) is the unique irreducible quotient
of 1R∗ o D(1) (induction from the Klingen parabolic subgroup). It can be shown that this quotient
equals the lowest weight representation σ+

2 considered above. Hence our lifting is also functorial in
this case.

Since the large representation πW has a Whittaker model, σ−k has not. Neither has σ+
k , since it is

only the large discrete series representations that are generic. Thus neither of our lifts is generic. The



15

quotient σ−k is not tempered, while the σ+
k are tempered (and even square integrable for k ≥ 3). All

our lifts are unitary.

With π = D(2k−3) we see that we are dealing with three representations, any two of which constitute
some kind of “packet”:

πW::
ind. rep.

zzttttttttt ee
L–packet

%%JJJJJJJJJ

Π(π ⊗ 1) oo
A–packet

// Π(π ⊗ St)

(21)

Here the pair (Π(π⊗ 1),Π(π⊗ St)) = (σ−k , σ
+
k ) constitutes an Arthur packet, see Example 1.4.1 in [1].

The arrow “ind. rep.” indicates that the two representations are the two constituents of the induced
representation ν1/2π o ν−1/2. The pair (πW , σ+

k ) is an L–packet of discrete series representations.

4.1 Lemma. Let π = D(2k − 3).

i) The lifting Π(π ⊗ St) can be obtained as a theta lifting from the anisotropic GO(4,R):

Π(π ⊗ St) def= SK(π) = σ+
k = θ((πJL ⊗ 1D∗)+).

ii) The large discrete series representation πW with minimal K–type (k, 2− k) can be obtained as
a theta lifting from the split GO(2, 2), namely πW = θ((π ⊗D(1))+).

Proof: Both assertions can be deduced from example (I0) in [19]. For i) put n = 2, p = 4, q = 0, for
ii) put n = p = q = 2. For the relationship between theta liftings for isometry groups and similitude
groups in the real case see section 1 of [30].

Section 5 is devoted to proving the p–adic analogue of part i) of this lemma. Since the (conjectural)
L–packets on GSp(4) are defined in terms of theta liftings from GO(V ), where V is a four-dimensional
quadratic space, this is the key to proving that the lifting constructed in Theorem 3.1 is functorial.

We summarize the basic properties of the three representations in (21) for π a discrete series repre-
sentation of PGL(2,R). We will encounter exactly the same situation in the p–adic case.

• Π(π ⊗ 1) def= SK(π), unique irreducible quotient of ν1/2π o ν−1/2, unitary, non-generic, non-
tempered.

• Π(π ⊗ St) def= SK(πJL), unitary, non-generic, tempered, square-integrable if π 6= St, obtained as
a theta lifting θ((πJL ⊗ 1D∗)+) from the anisotropic GO(4).

• πW , unique irreducible subrepresentation of ν1/2π o ν−1/2, unitary, generic, tempered, square-
integrable if π 6= St, obtained as a theta lifting θ((π ⊗ StGL(2))+) from the split GO(4).

5 A local theta identity

As in section 2 let V s be the split quadratic space of dimension 4 over a local field F . After choosing
a suitable basis, we may realize SO(V s) and GSO(V s) as matrix groups using the form J4 as in (2).
Let B ⊂ SO(V s) be the subgroup of upper triangular matrices. If µ1 and µ2 are characters of F ∗, we
denote by µ1 × µ2 the representation of SO(V s) unitarily induced from the character

a ∗ ∗ ∗
b ∗ ∗

b−1 ∗
a−1

 7−→ µ1(a)µ2(b)
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of B. Assuming that µ1 and µ2 are unramified, µ1 × µ2 has a unique spherical constituent σ0(µ1, µ2).
Its L–factor is given by

L(s, σ0(µ1, µ2)) = L(s, µ1)L(s, µ−1
1 )L(s, µ2)L(s, µ−1

2 ). (22)

5.1 Lemma. Let π1 = π(χ1, χ
′
1) and π2 = π(χ2, χ

′
2) be two standard induced representations of

GL(2, F ) with χ1χ
′
1 = χ2χ

′
2. Let π = π1⊗π∨2 be the corresponding representation of GSO(V s). Then

π
∣∣
SO(V s)

is isomorphic to the induced representation µ1 × µ2 with

µ1 = χ1χ
−1
2 , µ2 = χ′1

−1
χ2.

Proof: This can be checked in a straightforward way. Realizing π1 and π2 in their standard mod-
els as functions on GL(2, F ), the space of π1 ⊗ π∨2 becomes a space of functions on (GL(2, F ) ×
GL(2, F ))/∆F ∗ ' GSO(V s) that transform correctly under upper triangular matrices. Restriction of
these functions to SO(V s) is an injective map.

For the next lemma see also [30], Lemma 8.1.

5.2 Lemma. Let π1 and π2 be unramified representations of GL(2, F ) with the same central character.
Let σ0 be the spherical component of the restriction of the corresponding representation π1 ⊗ π∨2 of
GSO(V s) to SO(V s). Then

L(s, σ0) = L(s, π1 × π∨2 ),

where on the right we have the Rankin–Selberg L–factor of π1 and π∨2 .

Proof: We can realize π1 and π2 as constituents of induced representations with unramified characters.
The assertion thus follows from Lemma 5.1 and (22).

The statement of the next lemma is analogous to the formula for Jacquet modules of induced repre-
sentations of GSp(4, F ) given in section 2 of [32]. It is a consequence of Theorem 5.3 of [35]. We shall
use the notations of these papers.

5.3 Lemma. Let π be an admissible representation of GL(2, F ) with Jacquet module m∗(π) = 1 ⊗
π +

∑
i π

1
i ⊗ π2

i + π ⊗ 1. Then the Jacquet module of the representation π o 1 of Sp(4, F ) (induction
from the Siegel parabolic) is given by

µ∗(π o 1) = 1⊗ π o 1 +

[∑
i

π1
i ⊗ π2

i o 1 +
∑
i

π̃2
i ⊗ π1

i o 1

]

+

[
π ⊗ 1 + π̃ ⊗ 1 +

∑
i

π1
i × π̃2

i ⊗ 1

]
.

For the next theorem, which is a modification of Theorem 8.3 of the paper [30], let F be an algebraic
number field. Let D be a global quaternion algebra over F . If π1 and π2 are automorphic represen-
tations of D∗(A) with the same central character, we can consider the automorphic representation
π = π1 ⊗ π∨2 of GSO(D,A). This π may have more than one “extension” to an automorphic repre-
sentation σ of GO(D,A); see [30], Theorem 7.1 (which in turn is taken from [7]) for a more precise
statement.
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5.4 Theorem. Let D be a quaternion algebra over the totally real number field F which ramifies
at all archimedean places. Let π be a cuspidal automorphic representation of PD∗(A) and let σ be
an automorphic representation of GO(D,A) lying over the representation π ⊗ 1 of GSO(D,A). If
πv = 1D∗(Fv) at a place v, then we assume that σv = 1GO(D,Fv). If

L(1/2, π) 6= 0,

then the global theta lift θ(σ) from GO(D,A) to GSp(4,A) is non-zero.

Proof: We will argue as in the proof of Theorem 8.3 in [30] and refer to that paper for some more
details. Let σ1 be an irreducible constituent of σ

∣∣
O(D,A)

. If we can show that σ1 has a non-zero theta
lift to Sp(4,A), we will be done. By our local hypothesis, each σv occurs in the theta correspondence
between GO(D,Fv) and GSp(4, Fv) (see [30], Theorem 3.4). It follows that each local component σ1,v

occurs in the theta correspondence between O(D,Fv) and Sp(4, Fv).

Let S be a finite set of places including all the archimedean ones and all places where σ1,v is ramified.
By Lemma 5.2,

LS(s, σ1) = LS(s, π × 1GL(2,A)) = LS(s− 1/2, π)LS(s+ 1/2, π).

Thus, by our hypothesis, LS(s, σ1) does not vanish at s = 1.

We would now like to apply the nonvanishing theorem (Theorem 1.2) of [29]. However, we need to find
a substitute for the temperedness condition for the local components of σ1 made in that theorem. As
explained in the introduction of [29], the temperedness condition can be replaced by the non-vanishing
of LS(s, σ1) at certain points sX(k), k > 3, together with an assumption on the Langlands data of the
local theta lifts of σ1,v to Sp(2(k + 1), Fv). The non-vanishing certainly holds, since in our case we
have sX(k) = k − 2.

Let θk(σ1,v) denote any representation of Sp(2k, Fv) corresponding to σ1,v in the theta correspondence
between O(D,Fv) and Sp(2k, Fv). We need to see that the Langlands data of θ3(σ1,v) and θ4(σ1,v)
looks as follows:

θ3(σ1,v) = L(ν, . . .), θ4(σ1,v) = L(ν2, . . .). (23)

If D is ramified at v, then σ1,v is tempered since O(D,Fv) is compact, and we can use the results
of [28]. By our hypothesis, this applies to all archimedean places. Let us therefore assume that v
is finite and D splits at v. Then πv is an irreducible, admissible representation of PGL(2, Fv). To
prove (23) in this case, one can essentially follow the arguments in the proof of Theorem 4.4 of [28].
The temperedness hypothesis made in this theorem is used only at one point in the proof (top of
page 1117), namely to exclude certain possibilities for irreducible subquotients of a Jacquet module of
τ := θ2(σ1,v). Thus everything comes down to computing these Jacquet modules. We will only prove
the first equation in (23), the argument for the second one being very similar.

Let R0(τ) be the (twisted) Jacquet module of τ along the Siegel parabolic subgroup of Sp(4), and let
R1(τ) be the Jacquet module along the Klingen parabolic. Thus R0(τ) is a representation of GL(2, Fv)
and R1(τ) is a representation of GL(1, Fv)× SL(2, Fv). To argue as in [28], we have to see that

R0(τ) has no irreducible subquotient of the form |det |−5/2, (24)

and

R1(τ) has no irreducible subquotient of the form | |−2 ⊗ . . . (25)
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(this excludes the cases i = 0 and i = 1 on page 1117 of [28]; it would be automatically true if τ were
tempered).

It is easily computed that the Jacquet module of the restriction of our representation πv⊗1 to SO(4, Fv)
along the Siegel parabolic is given by the representation ν1/2πv of GL(2, Fv). It follows by Frobenius
reciprocity that (πv ⊗ 1)

∣∣
SO(4)

is a constituent of ν1/2πv o 1 (induction from the Siegel parabolic
subgroup). The Bernstein–Zelevinski data of this representation is therefore given by

[(πv ⊗ 1)
∣∣
SO(4)

] =


[ν1/2πv], if πv is supercuspidal,
[ξν, ξ], if πv = ξ StGL(2),

[ν1/2χ, ν1/2χ−1], if πv = π(χ, χ−1).

It follows from Theorem 2.5 of [15] that the theta lift τ = θ2(σ1,v) on Sp(4, Fv) has the same Bernstein–
Zelevinski data. In other words,

τ is a constituent of


ν1/2πv o 1, if πv is supercuspidal,
ξν × ξ o 1, if πv = ξ StGL(2),

ν1/2χ× ν1/2χ−1 o 1, if πv = π(χ, χ−1).

The Jacquet modules of the representations on the right can be computed using the formula given in
Lemma 5.3. It is then easily seen that (24) and (25) are indeed true.

5.5 Lemma. Let v0 be a finite place of the totally real number field F and let D0 be the unique
division quaternion algebra over Fv0 . For any irreducible, admissible representation τ of PD∗

0(Fv0)
there exist a global quaternion algebra D over F and an automorphic cuspidal representation π = ⊗πv
of PD∗(A) with the following properties:

i) D ×F Fv0 = D0, i.e., D is ramified at v0.

ii) D is ramified at the archimedean places.

iii) πv0 = τ .

iv) L(1/2, π) 6= 0.

Proof: If F has an even number of real places, choose any finite place v2 6= v0 and let D be the unique
quaternion algebra that is ramified precisely at v0, v2 and the real places. If F has an odd number of
real places, let D be the unique quaternion algebra that is ramified precisely at v0 and the real places.
To have a unified notation, let in this case v2 be any finite place different from v0. In either case we can
find some cuspidal automorphic representation π̃ = ⊗π̃v of PD∗(A) (greater than one-dimensional)
such that π̃v0 = τ , see, for example, the end of [8]. Let σ = ⊗σv be the Jacquet–Langlands lift of
π̃. This is a cuspidal automorphic representation of PGL(2,A). To achieve iv) we are going to apply
suitable quadratic twists.

Let v1 be one of the real places of F . Let ξ = ⊗ξv be a quadratic Hecke character of A∗F such that

ξv1(−1) = −1, ξv = 1 for all real v 6= v1, ξv0 = 1, ξv2 = 1,
and ξv = 1 for all finite v such that σv is square integrable

(one can find such a ξ by considering suitable quadratic extensions of F ). Since σv1 is a discrete series
representation of PGL(2,R), it is invariant under quadratic twisting, so that in particular

ε(1/2, ξv1 ⊗ σv1) = ε(1/2, σv1).
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On the other hand, for principal series representations, the ε–factor changes as follows:

ε(1/2, ξv ⊗ σv) = ξv(−1)ε(1/2, σv) for all v 6= v1

(this trivially holds for real v 6= v1, for v = v0, v = v2, and all finite v such that σv is square integrable).
It follows for the global ε–factors that

ε(1/2, ξ ⊗ σ) =
( ∏
v 6=v1

ξv(−1)
)
ε(1/2, σ) = ξv1(−1)ε(1/2, σ) = −ε(1/2, σ).

We may thus assume from the beginning that ε(1/2, σ) = 1. Theorem B of [6] then tells us that
L(1/2, χ⊗σ) 6= 0 for some quadratic character χ = ⊗χv such that χv0 = 1. If we let π be the cuspidal
automorphic representation of D∗(A) that corresponds to χ⊗ σ under the Jacquet–Langlands lifting,
then all the conditions stated in the lemma are satisfied.

5.6 Lemma. Let F be a p–adic field and let π = π(χ, χ−1) be a spherical (unramified) principal series
representation of PGL(2, F ). Then for the theta lift from GO(V s) to GSp(4, F ) we have

θ((π ⊗ 1)+) = SK(π) = L((ν1/2χ, ν1/2χ−1, ν−1/2))

= unique irreducible quotient of ν1/2π o ν−1/2.

Proof: Theta lifts for spherical representations are known, see [25], section 6. For the Langlands data
see [32], Lemma 3.3.

5.7 Lemma. Any p–adic field can be realized as the completion of a totally real number field.

Proof: The following short argument uses the approximation theorem and
is due to D. Prasad. Let the given p–adic field be generated over Qp by the element α, and let f be
the minimal polynomial of α.
Since Q is dense in Qp × R, we can find a rational
polynomial g that is p–adically arbitrarily close to f
and has only real roots. By Krasner’s Lemma, one of these
roots will generate the same field as α, proving our
result.

5.8 Proposition. Let F be a p–adic field or F = R, and let D be the unique quaternion division
algebra over F . Then, using the notations of section 2, we have

SK(τ) = θ((τ ⊗ 1D∗)+) (26)

for every irreducible, admissible representation τ of PD∗.

Proof: For F = R this is just Lemma 4.1 i). Let F be p–adic. We shall write Fv0 instead of F and
assume that Fv0 is the completion of the totally real number field F at the place v0 (Lemma 5.7).
Let us write D0 instead of D and choose a global quaternion algebra D and a representation π of
D∗(A) as in Lemma 5.5. Let σ be any cusp form on GO(D,A) lying above the representation π ⊗ 1
of GSO(D,A). We may assume that σv = 1GO(D,Fv) whenever πv = 1D∗(Fv). According to Theorem
5.4, the theta lift Π := θ(σ) is non-zero. Knowing the description of the local theta correspondence
between GO(4) and GL(2) from [27], Theorem 7.4, it is an easy exercise to show that Π is cuspidal.
By Lemma 5.6, Π is clearly a CAP representation of PGSp(4,A). More precisely, in the language
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of [22], Π is strongly associated to (P, JL(π), | |1/2), where JL(π) is the Jacquet–Langlands lift of π.
According to [22], Theorem 2.2, there exists a cusp form π̃ on S̃L(2,A) such that θ′ψ(π̃) = Π. Here
θ′ψ is the theta lifting from S̃L(2) to PGSp(4) ' SO(5) constructed using the additive character ψ. In
particular we have

θ′ψ0
(π̃v0) = Πv0 = θ((τ ⊗ 1v0)

+).

To identify π̃v0 , consider the Waldspurger lift Waldψ(π̃), see [39], [40]. This is a cusp form on
PGL(2,A), and for almost every place v we have

Waldψ(π̃)v = θ−1
ψv

(π̃v) = θ′
−1
ψv

(
θ−1
ψv

(Πv)
)

= πv,

where θψ denotes the lifting from PGL(2) to S̃L(2). For the last equality we have used Lemma 5.6
again. By strong multiplicity one it follows that Waldψ(π̃) = JL(π). Thus we have at least identified
the L–packet of π̃v0 :

π̃v0 ∈ Wald−1
ψv

(JL(τ)) =
{
θψ(τ), θψ(JL(τ))

}
.

But θ((τ ⊗ 1D∗)+) is tempered (see [28], Theorem 4.2), and θ′ψ0
(θψ0(JL(τ))) = SK(JL(τ)) is not

(Lemma 2.2). Consequently θ((τ ⊗ 1D∗)+) = θ′ψ(θψ(τ)) = SK(τ).

Remark: By [30], Theorem 1.8, the formulation of Proposition 5.8 makes sense even if F is an
extension of Q2.

6 Functoriality

Let F be a local field of characteristic 0. If we have two local parameters ρ1, ρ2 : W ′
F → SL(2,C) for

PGL(2, F ), their direct sum ρ1⊕ρ2 will be considered a parameter for PGSp(4, F ). In the p–adic case
its semisimple part is obtained by composing (ρ̃1, ρ̃2) with the L–morphism (20).

The local Langlands correspondence for GSp(4) is presently not known, but some parts of it are
conjectured with a certain amount of evidence. For this paper we are interested in the following
special cases.

6.1 Conjecture. Let F be local field of characteristic zero, possibly archimedean. Let ρ : W ′
F →

SL(2,C) be the local parameter of the infinite-dimensional, irreducible, admissible, unitary represen-
tation π of PGL(2, F ). Then we have the following special cases of the local Langlands correspondence
for PGSp(4, F ).

i) The L–packet attached to the local parameter ρ⊕ρtriv consists of a single representation, namely
the unique irreducible quotient of the induced representation ν1/2π o ν−1/2.

ii) If π is square-integrable, then the L–packet attached to the local parameter ρ ⊕ ρSt consists of
two elements, namely

πng = θ((πJL ⊗ 1D∗)+) and πW = θ((π ⊗ StGL(2))+).

Here πW is obtained as a theta lift from GO(V s) and is a generic representation. πng is a theta
lift from GO(V a) and is non-generic. (For notations see section 2.)

Remark: The fact that πW is generic and πng is not generic is known. See [38], section 6. Note that
by [30], Theorem 1.2, the formulation in ii) makes sense even if F is an extension of Q2.
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It is very reasonable to assume part i) of this conjecture. The local parameter in question has image in
the Klingen parabolic subgroup of Sp(4,C) and should therefore correspond to a representation induced
from the Siegel parabolic subgroup of GSp(4,C). Strong evidence for part ii) of the conjecture is given
in [30], where more general L–packets have been defined. See also Theorem 7, 1, of [24], which in turn
is based on [38]. The archimedean case of the conjecture is true, see Lemma 4.1.

6.2 Proposition. Let F be a local field of characteristic zero. We assume that Conjecture 6.1 holds.
Let π be an infinite-dimensional, irreducible, admissible, unitary representation of PGL(2, F ).

i) Π(π ⊗ 1) as defined in (14) is a local functorial lifting of the representation π ⊗ 1GL(2) of
PGL(2, F )× PGL(2, F ) with respect to the L–morphism (20).

ii) If π is square-integrable, then Π(π ⊗ St) as defined in (15) is a local functorial lifting of the
representation π ⊗ StGL(2).

Consequently, if F is now a number field, the global representation Π(π⊗πS) constructed in Theorem
3.1 is a functorial lifting of the representation π ⊗ πS of PGL(2,A) × PGL(2,A) (at every place v of
F ).

Proof: i) follows from Lemma 2.2, and ii) follows from Proposition 5.8.

We now make some comments on base change for the representations Π(π⊗πS) constructed in Theorem
3.1. In [4] a theory of base change for these representations was developed on the level of packets.
More precisely, let F be a number field and E a cyclic extension of F of prime degree. For π a cusp
form on PGL(2,AF ), let Σ(π) be the set of places v of F such that πv is square integrable. Let SK(π)
be the set of equivalence classes of representations Π(π ⊗ πS), where S runs through subsets of Σ(π)
such that (−1)#S = ε(1/2, π). In [4], the base change of the packet SK(π) is defined as

BCE/F (SK(π)) := SK(BCE/F (π)),

provided the right side exists (BCE/F (π) might no longer be cuspidal). With our knowledge on the
functorial behaviour of Saito–Kurokawa liftings we can define base change on the level of individual
representations. The definition that is compatible with L–groups is obviously

BCE/F
(
Π(π ⊗ πS)

)
:= Π

(
BCE/F (π)⊗BCE/F (πS)

)
,

provided the right side exists. Note that BCE/F (πS) is the automorphic representation πT of
GL(2,AE), where T is the set of all places of E dividing a place in S. According to Theorem 3.1, there
are the following obstructions for BCE/F

(
Π(π ⊗ πS)

)
to be a Saito–Kurokawa representation.

i) BCE/F (π) might no longer be a cusp form.

ii) For some w ∈ T the local component BCE/F (π)w might be a principal series representation.
Equivalently, for some v ∈ S the square integrable representation πv lifts to a principal series
representation under BCEw/Fv for some w|v.

iii) The sign condition (−1)#T = ε(1/2, BCE/F (π)) might be violated.

It turns out that if the degree [E : F ] is an odd prime number, that none of i), ii) or iii) can occur.
This follows from known properties of base change for GL(2) and easy computations similar to those
in section 4 of [4]. It also turns out that if the cuspidality condition in part b) of Theorem 3.1 is
fulfilled for Π(π ⊗ πS), then it is also fulfilled for BCE/F

(
Π(π ⊗ πS)

)
. Thus, in the odd degree case,

the base change of a (cuspidal) Saito–Kurokawa representation is again a (cuspidal) Saito–Kurokawa
representation. It may however happen that BCE/F

(
Π(π⊗ πS)

)
is cuspidal even if Π(π⊗ πS) is not.
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The situation is more complicated if [E : F ] = 2, since in this case each of the obstructions above can
occur. We refrain from formulating the precise conditions under which the base change of a Saito–
Kurokawa representation is again a Saito–Kurokawa representation. A precise count of the number of
elements of the packet BCE/F (SK(π)) is given in Theorem 4.2 of [4].

7 Description of the p–adic liftings

In the following we shall describe in more detail the local lifts Π(π ⊗ 1) and Π(π ⊗ St) for π ∈
Irr(PGL(2, F )), where F is a p–adic field We shall make use of the notation of [32] for induced
representations of GSp(4, F ).

Principal series representations

Assume that the local field F is p–adic. Let π = π(χ, χ−1) = χ×χ−1 be a principal series representation
of PGL(2, F ), with χ a character of F ∗. We shall only be interested in unitary representations, hence
we assume that |χ| = | |e with 0 ≤ e < 1/2. By the definition in (14) and Lemma 2.2, Π(π ⊗ 1) is the
unique irreducible quotient of the induced representation ν1/2π o ν−1/2 = ν1/2χ × ν1/2χ−1 o ν−1/2.
In the notation of [32],

Π
(
π(χ, χ−1)⊗ 1

)
= L((ν1/2χ, ν1/2χ−1, ν−1/2)). (27)

This is a unitary representation by [32], Theorem 4.4 (iii) and (v). Note that by [32], Lemma 3.3 (for
χ2 6= 1) resp. Lemma 3.7 (for χ2 = 1) we have

Π
(
π(χ, χ−1

)
⊗ 1) ' χ1GL(2) o χ−1, (28)

a degenerate principal series representation.

The Steinberg representation

Now consider the Steinberg representation StGL(2) which has the two liftings Π(St⊗1) and Π(St⊗St).
By definition, Π(St⊗1) equals the Langlands quotient L((ν1/2 StGL(2), ν

−1/2)). We shall now determine
Π(St⊗ St) more explicitly. By the definition given in (15) we have

Π(St⊗ St) = θ′(θ(StJL)) = θ′(θ(1D∗)),

where the inner theta is the lifting from the quaternion unit group PD∗ to the metaplectic group
S̃L(2, F ). By [39], [40], the lifting θ(1D∗) is a special representation of the metaplectic group, which
is a consituent of a certain induced representation. Hence we know the Bernstein–Zelevinski data of
θ(1D∗). By the results of [15], we then know the Bernstein–Zelevinski data of θ′(θ(1D∗)), which is a
representation of SO(5, F ) ' PGSp(4, F ). Pulling back to GSp(4, F ), the result is that Π(St⊗St) is a
constituent of the induced representation ν × 1F∗ o ν−1/2. We quote from [32], Lemma 3.8, how this
representation decomposes:

ν × 1F∗ o ν−1/2 = ν1/2 St o ν−1/2︸ ︷︷ ︸
sub

+ ν1/2 1GL(2) o ν−1/2︸ ︷︷ ︸
quot

= 1F∗ o St︸ ︷︷ ︸
sub

+1F∗ o 1GL(2)︸ ︷︷ ︸
quot

, (29)

and each of the four representations on the right side again decomposes into two irreducible con-
stituents. These are summarized in the following table. The quotients are on the bottom resp. on the
right.

1F∗ o St 1F∗ o 1GL(2)

ν1/2 St o ν−1/2 τ(S, ν−1/2) L((ν1/2 St, ν−1/2))

ν1/2 1GL(2) o ν−1/2 τ(T, ν−1/2) L((ν,1F∗ o ν−1/2))

(30)
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Here τ(S, ν−1/2) and τ(T, ν−1/2) are certain essentially tempered but not square integrable represen-
tations. By Proposition 5.8 we have Π(St ⊗ St) = θ((1D∗ ⊗ 1D∗)+). It therefore follows from [28],
Theorem 4.2, that Π(St ⊗ St) is tempered. Since the constituents of 1F∗ o 1GL(2) are not tempered,
Π(St⊗ St) must be equal to either τ(S, ν−1/2) or τ(T, ν−1/2). But we know from [38], section 6, that
θ((1D∗ ⊗ 1D∗)+) is not generic, while τ(S, ν−1/2) is generic. It follows that

Π(St⊗ St) = τ(T, ν−1/2). (31)

We have stated in Proposition 6.2 that if Conjecture 6.1 ii) is true, then Π(St ⊗ St) is a functorial
lifting of the representation StGL(2)⊗StGL(2) of PGL(2, F )×PGL(2, F ). We now give two more reasons
why the conjectural local Langlands correspondence should indeed attach the parameter ρSt ⊕ ρSt to
τ(T, ν−1/2).

• The image of the parameter ρSt ⊕ ρSt can be conjugated by a suitable Cayley transformation
into the standard Siegel parabolic subgroup of Sp(4,C). The representation(s) of PGSp(4, F )
corresponding to this parameter should therefore be induced from the Klingen parabolic sub-
group. More precisely, after pulling back to GSp(4, F ), the induced representation is 1F∗ o St.
The unique irreducible quotient of this representation is τ(T, ν−1/2).

• With all the constituents of ν × 1F∗ o ν−1/2 being Iwahori–spherical, one can compute their
local parameters attached by Kazhdan and Lusztig, see [10]. The result is that τ(S, ν−1/2)
and τ(T, ν−1/2) constitute an L–packet with parameter ρSt ⊕ ρSt.

The fact that the generic representation τ(S, ν−1/2) has local parameter ρSt⊕ρSt is also supported by
Theorem 4.1 of [36], where the Novodvorski L–factor of τ(S, ν−1/2) is computed as L(s, τ(S, ν−1/2)) =
L(s+ 1/2,1F∗)2 = L(s,StGL(2))2.

Twists of the Steinberg representation

Let ξ be a character of F ∗ of order two (thus ξ is quadratic but non-trivial), and consider π = ξ StGL(2),
a twist of the Steinberg representation. By Conjecture 6.1 i), the parameter ρξ St⊕ρtriv corresponds to
the unique irreducible quotient of the induced representation ν1/2ξ StGL(2) o ν−1/2. By [32], Lemma
3.6, this representation has length 2. It is reasonable to suspect that the subrepresentation has local
parameter ρξ St⊕ ρSt. It is square integrable and is denoted by δ([ξ, νξ], ν−1/2) in [32]. We abbreviate
this by δ(ξ). Another indication that δ(ξ) has local parameter ρξ St ⊕ ρSt comes from the paper [36],
where the Novodvorski L–factor of δ(ξ) is computed as L(s, δ(ξ)) = L(s+ 1/2,1F∗)L(s+ 1/2, ξ).

But since δ(ξ) is generic, it is not equal to Π(ξ St ⊗ St). By Conjecture 6.1 ii), the L-packet with
parameter ρξ St ⊕ ρSt has two members, and by Proposition 5.8, our Π(ξ St⊗ St) = θ((ξ 1D∗ ⊗ 1D∗)+)
is the non-generic member of this packet. Hence the situation is as in (21).

By [40], Proposition 8, the theta lifting θ(ξ 1D∗) from D∗ to S̃L(2, F ) is an “odd” Weil representation,
which is supercuspidal. By the first occurrence principle, Π(ξ St⊗ St) = θ′(θ(ξ 1D∗)) is also supercus-
pidal. The supercuspidal representation of GSp(4, F ) with local parameter ρξ St ⊕ ρSt was considered
in the paper [12] and was identified as a representation of type θ10.

Supercuspidal representations

Now assume that π is a supercuspidal representation of PGL(2, F ) with local parameter ρ. By Con-
jecture 6.1 i), the parameter ρ ⊕ ρSt corresponds to the Langlands quotient of the representation
ν1/2π o ν−1/2. The following theorem concerning this induced representation is due to Shahidi (see
[33], Theorem 5.1 and the examples in section 6).



24 REFERENCES

7.1 Theorem. The induced representation ν1/2π o ν−1/2 on GSp(4, F ) has length 2. The subrepre-
sentation is generic and square integrable. The Langlands quotient is unitary, non-tempered and not
generic.

Thus we see that our lift Π(π ⊗ 1) = L((ν1/2π, ν−1/2)) is unitary and non-generic, as all the others
before. The subrepresentation of ν1/2π o ν−1/2 should have parameter ρ ⊕ ρSt (supported by the
L–function computation of [36]). However, it cannot be equal to our lifting Π(π ⊗ St) because the
latter is supercuspidal by a similar reasoning as above invoking the first occurrence principle. Again
we have the same situation as in (21) with Π(π⊗St) = θ((πJL⊗1D∗)+) being the non-generic member
of a (conjectural) L–packet.

Summary

The following table summarizes all the local liftings Π(π ⊗ 1) and Π(π ⊗ St) we defined. All the
PGSp(4) representations in the table are unitary and non-generic.

PGL(2)× PGL(2) PGSp(4) remarks

principal series representations

L((ν1/2χ, ν1/2χ−1, ν−1/2))
π(χ, χ−1)⊗ 1

' χ1GL(2) o χ−1
non-tempered

p− adic

St⊗ 1 L((ν1/2St, ν−1/2)) non-tempered

St⊗ St τ(T, ν−1/2) tempered

ξ St⊗ 1, ord(ξ) = 2 L((ν1/2ξ St, ν−1/2)) non-tempered

ξ St⊗ St, ord(ξ) = 2 θ((ξ 1D∗ ⊗ 1D∗)+) supercuspidal

π ⊗ 1, π supercusp. L((ν1/2π, ν−1/2)) non-tempered

π ⊗ St, π supercusp. θ((πJL ⊗ 1D∗)+) supercuspidal

real

D(1)⊗ 1 σ−2 non-tempered

D(1)⊗ St σ+
2 limit of disc. ser.

D(2k − 3)⊗ 1 L((ν1/2D(2k − 3), ν−1/2))

(k ≥ 3) ' σ−k

non-tempered

D(2k − 3)⊗ St holomorphic discrete

(k ≥ 3)
σ+
k

series representation
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[32] Sally, P., Tadić, M.: Induced representations and classifications for GSp(2, F ) and
Sp(2, F ). Bull. Soc. Math. France 121 (supp.), Mem. 52 (1993), 75–133

[33] Shahidi, F.: Langlands’ conjecture on Plancherel measures for p-adic groups. in: Barker, W.,
Sally, P. (ed.): Harmonic Analysis on Reductive Groups. Birkhäuser, Progress in Mathematics
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