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Abstract. A theory of local old– and newforms for rep-
resentations of GSp(4) over a p–adic field with Iwahori–
invariant vectors is developed. The results are applied to
Siegel modular forms of degree 2 with square-free level with
respect to various congruence subgroups.

Introduction

For representations of GL(2) over a p–adic field F there is a well-known theory of local newforms
due to Casselman, see [Cas]. This local theory together with the global strong multiplicity one
theorem for cuspidal automorphic representations of GL(2) is reflected in the classical Atkin–
Lehner theory for elliptic modular forms. On the other hand, there is currently no satisfactory
theory of local newforms for the group GSp(4, F ). As a consequence, there is no analogue of
Atkin–Lehner theory for Siegel modular forms of degree 2. It is the goal of this paper to provide
such theories for the “square-free” case. In the local context this means that the representations
in question are assumed to have non-trivial Iwahori–invariant vectors. In the global context it
means that we are considering various congruence subgroups of square-free level.

This paper is organized into three parts. In the first part we shall take from [ST] the complete
list of irreducible, admissible representations of GSp(4, F ) supported in the minimal parabolic
subgroup and list their basic properties (Table 1). We shall describe the local Langlands corre-
spondence for these representations and give all the local parameters and local factors (Table 2).
Assuming the inducing characters are unramified, we shall compute the dimensions of the spaces
of fixed vectors under any parahoric subgroup for each of these representations (Table 3).

In the second part of this paper we shall define local new– and oldforms with respect to a
parahoric subgroup. Our main local result is Theorem 2.3.1, saying that, with respect to a fixed
parahoric subgroup, a representation has either oldforms or newforms, but never both. In Table
3 the spaces of newforms have been indicated by writing their dimensions in bold face. We see
that in almost all cases the space of newforms (with respect to a fixed parahoric subgroup) is
one-dimensional, but there are two exceptions.

In the third part we will apply the previously obtained local results to prove several theorems
on classical Siegel modular forms “of square-free level”. We will need the spin (degree 4) L–
function of GSp(4) as a global tool. Even though we only need the usual analytic properties
of this L–function for global representations whose local components at finite places are all
Iwahori–spherical, none of the current results on this L–function seems to satisfy all our needs.
We shall therefore assume that an L–function theory with the desired properties exists. Under
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this assumption, we shall prove something similar to a “strong multiplicity one” result for certain
cuspidal automorphic representations of GSp(4), but without actually knowing multiplicity one.
We shall then define old– and newforms for Siegel modular forms with respect to three different
congruence subgroups: The “minimal” congruence subgroup U∅(N) (corresponding to the local
Iwahori subgroups), the usual Hecke subgroup Γ0(N) (for systematic reasons here called U1(N)),
and the paramodular group U02(N). In each case we shall prove several results that would be
expected from any reasonable notion of newforms. For example, if a newform is an eigenform at
almost all good places, then it is an eigenform at all good places. We shall also describe Euler
factors at bad places and define the completed spin L–function for these modular forms.

We shall now make some more comments on the local data given in Table 3. As mentioned
above, if a dimension in this table is typed in bold face, then the space consists entirely of
newforms, otherwise entirely of oldforms. We see that many representations have newforms
with respect to two different parahoric subgroups. Amongst the unitary representations only
those of type IIIa have a two-dimensional space of newforms with respect to P1, the “Hecke”
subgroup. In a sense, this can be naturally repaired in the global theory by considering a certain
Hecke operator T2, see section 3.3.

The signs in Table 3 indicate eigenvalues of the Atkin–Lehner involution where this makes
sense, namely for the “symmetric” parahoric subgroups and for representations with trivial
central character. The column “ε” gives the value of the ε–factor of the representation at 1/2.
Investigating Table 3, we find an interesting relation between Atkin–Lehner eigenvalues and
ε–factors. Roughly speaking, the trace of the Atkin–Lehner involution on the full space of
newforms is closely related to the sign defined by the ε–factor. See Proposition 1.3.1 for a more
precise statement.

There have been several attempts in the literature to define a good notion of old and new
Siegel modular forms. The first one seems to be Ibukiyama [Ib1], who defines old– and new-
forms for the minimal congruence subgroup B(p). Then there is [Ib2], where definitions for the
paramodular group of prime level are given. In both cases the definitions coincide with ours. The
motivation to single out newforms in [Ib1] and [Ib2] comes from the comparison of global dimen-
sion formulas, providing further evidence that these are the “correct” definitions. Andrianov
[An2] has defined newforms for Γ0(N) for any N , not only in the square-free case. Recently, a
definition of newforms for Γ0(p) that is equivalent to ours has been given by Rastegar [Ra] in
a more geometric setting.

I would like to thank D. Prasad, B. Roberts and R. Schulze–Pillot for various helpful remarks. Most of
this work was done while I was a research fellow at Rikkyo University, Tokyo, in 2002. I am very grateful
to Rikkyo University for their generous support, and most of all to Tsuneo Arakawa, whose untimely
death does not allow me to thank him personally.
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Notation

We shall realize the algebraic group GSp(4) as the set of matrices g ∈ GL(4) that satisfy

tgJg = λ(g)J for some λ(g) ∈ GL(1), where J =


1

1
−1

−1

 .

This defines a homomorphism λ : GSp(4) → GL(1), called the multiplier homomorphism, whose
kernel is by definition the symplectic group Sp(4). As a minimal parabolic subgroup of GSp(4)
we choose upper triangular matrices. There are two conjugacy classes of maximal parabolic
subgroups, represented by the Siegel parabolic subgroup P , whose Levi factor is

MP =
{(

A
uA′

)
: u ∈ GL(1), A ∈ GL(2)

}
' GL(1)×GL(2),

where A′ :=
(

1
1

)
tA−1

(
1

1

)
, and the Klingen parabolic subgroup Q, whose Levi factor is

MQ =


 u

A
u−1 det(A)

 : u ∈ GL(1), A ∈ GL(2)

 ' GL(1)×GL(2).

Let F be a non-archimedean local field. We shall employ the notations of [ST] for representations
of GSp(4, F ). For characters χ1, χ2 and σ of F ∗ let χ1 × χ2 o σ be the representation of
G(F ) = GSp(4, F ) induced from the character

t1 ∗ ∗ ∗
t2 ∗ ∗

ut−1
2 ∗

ut−1
1

 7−→ χ1(t1)χ2(t2)σ(u)

of the Borel subgroup. The induction is always normalized, i.e., the standard space of χ1×χ2oσ
consists of C–valued functions on GSp(4, F ) with the transformation property

f




t1 ∗
t2

ut−1
2

ut−1
1

 g

 = χ1(t1)χ2(t2)σ(u) |t21t2| |u|−3/2f(g). (1)

The central character of this representation is χ1χ2σ
2. Provided that e(χ1) ≥ e(χ2) > 0, where

e(χi) denotes the real number with |χi(x)| = |x|e(χi) (the exponent), let L((χ1, χ2, σ)) be the
unique irreducible quotient (the Langlands quotient) of χ1×χ2 oσ (see [ST], section 1). If π is a
representation of GL(2, F ) and σ a character of F ∗ let πoσ be the representation of GSp(4, F )
induced from the representation(

A ∗
uA′

)
7−→ σ(u)π(A)
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of P (F ). The exponent e(π) is the unique real number such that | |−e(π)π is unitarizable.
Provided that π is square integrable and e(π) > 0, the induced representation π o σ has a
unique Langlands quotient, denoted by L((π, σ)). Finally, assume that χ is a character of F ∗

and σ a representation of GSp(2, F ) = GL(2, F ). Then χ o σ denotes the representation of
GSp(4, F ) induced from the representation u ∗ ∗

A ∗
u−1 det(A)

 7−→ χ(u)σ(A)

of Q(F ). If e(χ) > 0, there is a unique Langlands quotient L((χ, σ)). For the familiar induced
representation π(χ1, χ2) of GL(2, F ) we shall use the symbol χ1 × χ2. Note that if GL(2) is
considered as the group of symplectic similitudes GSp(2), then χ1 oχ2 = χ1χ2×χ2. As in [ST]
we shall write ν(x) = |x| for the normalized absolute value on the local field F .

1 Representations supported in the minimal parabolic subgroup

By [Bo2], the Iwahori–spherical representations we are interested in are precisely the constituents
of representations parabolically induced from an unramified character of the minimal parabolic
subgroup. We shall therefore begin by making a complete list of such induced representations
and document their basic properties. Most results are taken from [ST]. In addition we shall
describe the local Langlands correspondence for these representations and compute all the local
factors (Table 2). After that we will compute the dimensions of spaces of fixed vectors under
each parahoric subgroup for each representation in our list. The results are summarized in Table
3, which is quite important for this paper.

1.1 The list of irreducible representations

The reducibilities of the representations of GSp(4, F ) parabolically induced from a character of
the minimal parabolic subgroup were all determined in the paper [ST]. This paper contains
also a complete list of unitary, tempered and square integrable representations supported in the
Borel subgroup. In the following we shall divide the irreducible representations of GSp(4, F )
supported in the minimal parabolic subgroup into six groups I–VI and briefly describe each
group.

Group I: Irreducible representations of the form χ1 × χ2 o σ with characters χ1, χ2, σ of F ∗.

By [ST], Lemma 3.2, the induced representation χ1×χ2oσ is irreducible if and only if χ1 6= ν±1,
χ2 6= ν±1 and χ1 6= ν±1χ±1

2 .

Group II: Constituents of ν1/2χ× ν−1/2χo σ, where χ /∈ {ν±1, ν±3}.

By [ST], Lemma 3.3 and Lemma 3.7, there are two constituents. The unique irreducible sub-
representation is χStGL(2) o σ, and the quotient is isomorphic to χ1GL(2) o σ.

Group III: Constituents of χ× ν o ν−1/2σ, where χ /∈ {1, ν±2}.
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By [ST], Lemma 3.4 and Lemma 3.9, there are the two irreducible constituents χ o σStGSp(2)

and χo σ1GSp(1), the latter one being the quotient.

Group IV: Constituents of ν2 × ν o ν−3/2σ.

By [ST], Lemma 3.5, we have (in the Grothendieck group)

ν2 × ν o ν−3/2σ = ν3/2StGL(2) o ν−3/2σ + ν3/21GL(2) o ν−3/2σ

= ν2 o ν−1σStGSp(2) + ν2 o ν−1σ1GSp(2).

Each of the four representations on the right is reducible and has two irreducible constituents
as shown in the following table. The quotients are on the bottom resp. on the right.

ν3/2StGL(2) o ν−3/2σ ν3/21GL(2) o ν−3/2σ

ν2 o ν−1σStGSp(2) σStGSp(4) L((ν2, ν−1σStGSp(2)))

ν2 o ν−1σ1GSp(2) L((ν3/2StGL(2), ν
−3/2σ)) σ1GSp(4)

(2)

Group V: Constituents of νξ0 × ξ0 o ν−1/2σ, where ξ0 is a non-trivial quadratic character.

According to [ST] Lemma 3.6 we have

νξ0 × ξ0 o ν−1/2σ = ν1/2ξ0 StGL(2) o ν−1/2σ︸ ︷︷ ︸
sub

+ ν1/2ξ0 1GL(2) o ν−1/2σ︸ ︷︷ ︸
quot

= ν1/2ξ0 StGL(2) o ξ0ν
−1/2σ︸ ︷︷ ︸

sub

+ ν1/2ξ0 1GL(2) o ξ0ν
−1/2σ︸ ︷︷ ︸

quot

.

Each of the representations on the right side has two constituents as indicated in the following
table. The quotients appear on the bottom resp. on the right.

ν1/2ξ0 StGL(2) o ξ0ν
−1/2σ ν1/2ξ0 1GL(2) o ξ0ν

−1/2σ

ν1/2ξ0 StGL(2) o ν−1/2σ δ([ξ0, νξ0], ν−1/2σ) L((ν1/2ξ0 StGL(2), ν
−1/2σ))

ν1/2ξ0 1GL(2) o ν−1/2σ L((ν1/2ξ0 StGL(2), ξ0ν
−1/2σ)) L((νξ0, ξ0 o ν−1/2σ))

(3)

Here δ([ξ0, νξ0], ν−1/2σ) is a square integrable representation.

Group VI: Constituents of ν × 1F ∗ o ν−1/2σ.

By [ST] Lemma 3.8, we have

ν × 1F ∗ o ν−1/2σ = ν1/2 StGL(2) o ν−1/2σ︸ ︷︷ ︸
sub

+ ν1/2 1GL(2) o ν−1/2σ︸ ︷︷ ︸
quot

= 1F ∗ o σStGSp(2)︸ ︷︷ ︸
sub

+1F ∗ o σ1GSp(2)︸ ︷︷ ︸
quot

,
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and each representation on the right side is again reducible. Their constituents are summarized
in the following table. Again the quotients appear on the bottom resp. on the right.

1F ∗ o σStGSp(2) 1F ∗ o σ1GSp(2)

ν1/2 StGL(2) o ν−1/2σ τ(S, ν−1/2σ) L((ν1/2 StGL(2), ν
−1/2σ))

ν1/2 1GL(2) o ν−1/2σ τ(T, ν−1/2σ) L((ν,1F ∗ o ν−1/2σ))

(4)

The representations τ(S, ν−1/2σ) and τ(T, ν−1/2σ) are tempered but not square integrable.

Table 1 below summarizes the basic properties of the irreducible representations of GSp(4, F )
supported in the minimal parabolic subgroup. Complete information on unitarizability can
be found in [ST], Theorem 4.4. The same paper tells us which of the unitary representations
are tempered or square–integrable. In the column labeled “g” we have indicated the generic
representations. If the characters are in the “Langlands position”, then these are always the
subrepresentations, see [CS]. The last column of Table 1 indicates the local Saito–Kurokawa
liftings. These are certain local functorial liftings from PGL(2) × PGL(2) coming from the
standard embedding of L–groups

SL(2,C)× SL(2,C) −→ Sp(4,C).

For the global theory it is interesting to know which local representations are Saito–Kurokawa
lifts, because, as the name indicates, these are the local components of the classical (and some
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less classical) Saito–Kurokawa liftings. See [Sch3] and [Sch4] for more information.

constituent of representation tempered L2 g SK

I χ1 × χ2 o σ (irreducible) χi, σ ∈ (F ∗)̂ •

a ν1/2χ× ν−1/2χo σ χStGL(2) o σ χ, σ ∈ (F ∗)̂ •
II

b (χ2 /∈ {ν±1, ν±3}) χ1GL(2) o σ •

a χ× ν o ν−1/2σ χo σStGSp(2) χ, σ ∈ (F ∗)̂ •
III

b (χ /∈ {1, ν±2}) χo σ1GSp(2)

a σStGSp(4) σ ∈ (F ∗)̂ • •

b L((ν2, ν−1σStGSp(2)))IV
c

ν2 × ν o ν−3/2σ
L((ν3/2StGL(2), ν

−3/2σ))

d σ1GSp(4)

a δ([ξ0, νξ0], ν−1/2σ) σ ∈ (F ∗)̂ • •

b νξ0 × ξ0 o ν−1/2σ L((ν1/2ξ0StGL(2), ν
−1/2σ)) •

V
c (ξ20 = 1, ξ0 6= 1) L((ν1/2ξ0StGL(2), ξ0ν

−1/2σ)) •

d L((νξ0, ξ0 o ν−1/2σ))

a τ(S, ν−1/2σ) σ ∈ (F ∗)̂ •

b τ(T, ν−1/2σ) σ ∈ (F ∗)̂ •
VI

c
ν × 1F ∗ o ν−1/2σ

L((ν1/2StGL(2), ν
−1/2σ)) •

d L((ν,1F ∗ o ν−1/2σ))

Table 1: Irreducible representations of GSp(4) supported in the
minimal parabolic subgroup.

1.2 The local Langlands correspondence

The dual group of GSp(4) is the complex Lie group GSp(4,C), see [Bo1]. Hence, by the con-
jectural local Langlands correspondence, there is a parameterization of the set of equivalence
classes of irreducible, admissible representations of GSp(4, F ) by conjugacy classes of admissible
homomorphisms

ϕ : W ′
F −→ GSp(4,C), (5)

where W ′
F = WF × SL(2,C) is the Weil–Deligne group. To every local parameter ϕ as in (5)

there is associated an L–factor L(s, ϕ) and an ε–factor ε(s, ϕ, ψ), the latter one also depending
on the choice of an additive character ψ of F , see [Ta] (in this paper we shall not consider the
more general factors involving a finite-dimensional representation of the dual group; this finite-
dimensional representation is here always the “standard” representation GSp(4,C) → GL(4,C)).



8 1 REPRESENTATIONS SUPPORTED IN THE MINIMAL PARABOLIC SUBGROUP

If ϕ corresponds to the representation π of GSp(4, F ), then the factors associated to π are by
definition L(s, π) := L(s, ϕ) and ε(s, π, ψ) := ε(s, ϕ, ψ). Giving a representation ϕ : W ′

F →
GSp(4,C) is equivalent to giving a pair (%,N), where % : WF → GSp(4,C) is a homomorphism
whose image consists of semisimple elements and where N is a nilpotent element of the Lie
algebra of GSp(4,C) such that %(w)N = |w|N%(w) for all w ∈ WF . In the analogous situation
for GL(2), the pair (%,N) with

%(w) =
(
|w|1/2

|w|−1/2

)
, N =

(
0 1
0 0

)
(6)

is the local parameter for the Steinberg representation StGL(2). Since we shall only consider
representations of GSp(4, F ) that are supported in the minimal parabolic subgroup, we shall be
exclusively concerned with parameters of the form (%,N), where % = (%1, %2, %3, %4) is a quadruple
of characters of WF (identified with characters of F ∗). This means that the semisimple part of
the local parameter is given by w 7→ diag(%1(w), %2(w), %3(w), %4(w)). Conjugating N by this
diagonal matrix must yield |w|N .

The local Langlands correspondence for GSp(4, F ) remains a conjecture, but for the type of
representations we are interested in (those supported in the minimal parabolic subgroup) it is
easy to “guess” the local parameters. Constituents of the same induced representation should
have the same semisimple part and only differ in the N part. The parameter with N = 0 should
belong to the Langlands quotient. We have listed the information on local parameters in Table
2 below. The last column of this table shows the resulting L–factors. We note that for generic
representations, the L–factors given in Table 2 coincide with those defined via Novodvorski
integrals, see [Tak], Theorem 4.1. All we shall assume in our global applications is that there
exists an L–function theory which assigns the local L–factors listed in Table 2 in the case of
Iwahori–spherical representations. One can check that for Iwahori–spherical representations the
local parameters listed coincide with the local parameters given in [KL]; hence it is very likely
that the L–factors in Table 2 are the “correct” factors.
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% N L–factor

I χ1χ2σ, χ1σ, χ2σ, σ 0 L(s, σ)L(s, χ1σ)L(s, χ2σ)L(s, χ1χ2σ)

a χ2σ, ν1/2χσ, N1 L(s, σ)L(s, ν1/2χσ)L(s, χ2σ)
II

b ν−1/2χσ, σ 0 L(s, σ)L(s, ν1/2χσ)L(s, ν−1/2χσ)L(s, χ2σ)

a ν1/2χσ, ν−1/2χσ, N4 L(s, ν1/2σ)L(s, χν1/2σ)
III

b ν1/2σ, ν−1/2σ 0 L(s, ν−1/2σ)L(s, χν−1/2σ)L(s, ν1/2σ)L(s, χν1/2σ)

a N5 L(s, ν3/2σ)

b ν3/2σ, ν1/2σ, N4 L(s, ν−1/2σ)L(s, ν3/2σ)
IV

c ν−1/2σ, ν−3/2σ N1 L(s, ν−3/2σ)L(s, ν1/2σ)L(s, ν3/2σ)

d 0 L(s, ν−3/2σ)L(s, ν−1/2σ)L(s, ν1/2σ)L(s, ν3/2σ)

a N3 L(s, ν1/2σ)L(s, ν1/2ξ0σ)

b ν1/2σ, ν1/2ξ0σ, N1 L(s, ν−1/2σ)L(s, ν1/2σ)L(s, ν1/2ξ0σ)
V

c ν−1/2ξ0σ, ν
−1/2σ N2 L(s, ν−1/2ξ0σ)L(s, ν1/2σ)L(s, ν1/2ξ0σ)

d 0 L(s, ν−1/2σ)L(s, ν−1/2ξ0σ)L(s, ν1/2σ)L(s, ν1/2ξ0σ)

a N3 L(s, ν1/2σ)2

b ν1/2σ, ν1/2σ, N3 L(s, ν1/2σ)2
VI

c ν−1/2σ, ν−1/2σ N1 L(s, ν−1/2σ)L(s, ν1/2σ)2

d 0 L(s, ν−1/2σ)2L(s, ν1/2σ)2

Table 2: Local parameters.

For each representation we have listed the pair (%,N), using the following abbreviations for the
nilpotent part.

N1 =


0

0 1
0

0

 , N2 =


0 1

0
0

0

 , N3 =


0 1

0 1
0

0

 ,

N4 =


0 1

0
0 −1

0

 , N5 =


0 1

0 1
0 −1

0

 .

There is one case of L–indistinguishability in Table 2, namely, the two tempered representations
τ(S, ν−1/2σ) and τ(T, ν−1/2σ) (VIa and VIb) constitute a 2–element L–packet. Regarding the
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representation δ([ξ0, νξ0], ν−1/2σ) of type Va, by [Pr], Theorem 7.1, there should exist a super-
cuspidal (and non-generic) representation of GSp(4, F ) with the same local parameter (%,N3).
This supercuspidal representation should be the θ10 type representation considered in [KPS].

1.3 Iwahori–spherical representations

Consider the Dynkin diagram of the affine Weyl group C2:

• • •
s0 s1 s2

We are going to realize the three generators s0, s1, s2 for the affine Weyl group as the matrices

s0 =


−$−1

1
1

$

 , s1 =


1

1
1

1

 , s2 =


1

1
−1

1

 . (7)

The elements s1 and s2 generate the usual 8–element Weyl group W . Consider further the
element

η =


1

1
−$

−$

 s2s1s2 =


1

1
$

$

 ∈ GSp(4, F ). (8)

Since conjugation by this matrix corresponds to classical Atkin–Lehner involutions, we call η
also the Atkin–Lehner element. Note that

ηs0η
−1 = s2, ηs1η

−1 = s1, ηs2η
−1 = s0,

i.e., η induces the non-trivial automorphism of the Dynkin diagram. The parahoric subgroups PS

correspond to proper subsets S of {s0, s1, s2}, the correspondence being that PS =
⊔

w∈〈S〉 IwI,
where I is the Iwahori subgroup. We shall briefly describe each parahoric subgroup and introduce
notations.

• S = {s1, s2}. This is the standard special maximal compact subgroup GSp(4, o), which
we also denote by K.

• S = {s0, s1} defines the maximal compact subgroup P01 consisting of matrices of the block

form
(

o p−1

p o

)
. We have P01 = ηKη−1.

• S = {s0, s2} defines another maximal compact subgroup P02 of smaller volume. It consists
of all g ∈ GSp(4, F ) such that

g ∈


o o o p−1

p o o o

p o o o

p p p o

 and det(g) ∈ o∗. (9)



1.3 Iwahori–spherical representations 11

This parahoric subgroup is also called the paramodular group. In a classical context this
group appears, for instance, in [IO]. The two groupsK and P02 represent the two conjugacy
classes of maximal compact subgroups of GSp(4, F ).

• S = {s1}. This is the Siegel congruence subgroup P1 consisting of elements of the block

form
(

o o

p o

)
. It is the inverse image of the Siegel parabolic subgroup under the natural

map K → GSp(4, k), where k = o/p is the residue field.

• S = {s2}. This is the inverse image of the Klingen parabolic subgroup under the natural
map K → GSp(4, k). We denote it by P2.

• S = {s0} defines a group P0 which is conjugate to P2 by η. It is not contained in K.

• S = ∅ defines the Iwahori subgroup which we denote by I. It consists of all matrices that
are upper triangular mod p.

Let χ1, χ2, σ be unramified characters of F ∗ and consider the representation χ1 × χ2 o σ in its
standard realization V . Table 3 further below lists the dimension of the space of fixed vectors
under each parahoric subgroup in each irreducible constituent of χ1 × χ2 o σ. Since some of
these groups are conjugate we only have to consider K, P02, P1, P2 and I.

We shall explain how the dimension information in this table was obtained, starting with type
I representations. These are full induced representations, so the dimensions for I, P1, P2 and
K are obtained by counting Weyl group elements. As for P02–invariant vectors it is not hard to
prove that a P2–invariant function f in the standard model for χ1 × χ2 o σ is P02–invariant if
and only if

f(s2s1) = χ2($)q−1f(s1) and f(s1s2s1) = χ1($)q−2f(1). (10)

Thus we get dimension 2 for the P02–invariant vectors. These arguments hold for every full
induced representation, irreducible or not. The rest comes down to determining how these di-
mensions are distributed amongst the irreducible constituents. The dimensions for IIb and IIIb
can also be determined by counting Weyl group elements. Subtracting from the dimensions for
the full induced representations, we get the numbers for IIa and IIIa. For the other representa-
tions we observe the tables (2), (3) and (4), which tell us how the full induced representation
decomposes. What we need is the information for just one representation in each table, and the
rest will follow formally. As for type IV, the dimensions for σ1GSp(4) are 1 for each parahoric
subgroup, and the rest follows. The hardest cases are V and VI, where additional work needs
to be done. But this work was carried out in the paper [Sch4], where the dimensions for the
Saito–Kurokawa representations Vb,c and VIb,c were determined.
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representation K P02 P2 P1 I ε a

I χ1 × χ2 o σ (irreducible) 1 2
+−

4 4
++
−−

8
++++
−−−−

1 0

a χStGL(2) o σ 0 1
−

2 1
−

4
+−−−

−(σχ)($) 1
II

b χ1GL(2) o σ 1 1
+

2 3
++−

4
+++−

1 0

a χo σStGSp(2) 0 0 1 2
+−

4
++−−

1 2
III

b χo σ1GSp(2) 1 2
+−

3 2
+−

4
++−−

1 0

a σStGSp(4) 0 0 0 0 1
−

−σ($) 3

b L((ν2, ν−1σStGSp(2))) 0 0 1 2
+−

3
++−

1 2
IV

c L((ν3/2StGL(2), ν
−3/2σ)) 0 1

−
2 1

−
3

+−−
−σ($) 1

d σ1GSp(4) 1 1
+

1 1
+

1
+

1 0

a δ([ξ0, νξ0], ν−1/2σ) 0 0 1 0 2
+−

−1 2

b L((ν1/2ξ0StGL(2), ν
−1/2σ)) 0 1

+

1 1
+

2
++

σ($) 1
V

c L((ν1/2ξ0StGL(2), ξ0ν
−1/2σ)) 0 1

−
1 1

−
2
−−

−σ($) 1

d L((νξ0, ξ0 o ν−1/2σ)) 1 0 1 2
+−

2
+−

1 0

a τ(S, ν−1/2σ) 0 0 1 1
−

3
+−−

1 2

b τ(T, ν−1/2σ) 0 0 0 1
+

1
+

1 2
VI

c L((ν1/2StGL(2), ν
−1/2σ)) 0 1

−
1 0 1

−
−σ($) 1

d L((ν,1F ∗ o ν−1/2σ)) 1 1
+

2 2
+−

3
++−

1 0

Table 3: Invariant vectors.

The signs under some of the entries denote Atkin–Lehner eigenvalues, to be explained further
below. The next-to-last column gives the signs defined by ε–factors, see also below. The numbers
in bold face indicate newforms, to be defined in sections 2.2 and 2.3. The last column contains
the exponent of the conductor of the local parameter (as listed in Table 2).
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Atkin–Lehner eigenvalues

The parahoric subgroups normalized by the Atkin–Lehner element η (see (8)) are precisely the
“symmetric” groups I, P1 and P02. Therefore, if H denotes one of these groups, then η acts on
the space of H–invariant vectors, for any representation (π, V ) of GSp(4, F ). Let us assume in
addition that π has trivial central character. Then π(η) acts as an involution, because η2 = $1.
We call these operators Atkin–Lehner involutions. They split the space V H of H–invariant
vectors into ±1–eigenspaces V H

+ and V H
− . The plus and minus signs under the dimensions of the

spaces V H in Table 3 indicate how these spaces split into Atkin–Lehner eigenspaces (provided
the central character is trivial). The signs listed in Table 3 are correct if one assumes that

• in Group II, where the central character is χ2σ2, the character χσ is trivial.

• in Groups IV, V and VI, where the central character is σ2, the character σ itself is trivial.

If these assumptions are not met, then one has to interchange the plus and minus signs in Table
3 to get the correct dimensions.

Now we shall explain how the information on Atkin–Lehner eigenvalues in Table 3 can be
obtained. In a full induced representation, the distribution of the signs is as given in the type
I row. This follows from direct computations in the standard induced model. If the induced
representation is reducible, we have to see how these signs are distributed amongst irreducible
constituents, for which we observe the tables (2), (3) and (4). The additional information
we require comes from the trivial representation in case IV, and from the Saito–Kurokawa
representations in cases V and VI. As for the latter, the necessary computations were carried
out in [Sch4].

ε–factors

Let ε(s, π, ψ) be the local ε–factor attached to an irreducible representation π of GSp(4, F ) and
an additive character ψ (and the standard representation of the L–group). Here we mean the
local factors defined via the local Langlands correspondence and representations of the Weil–
Deligne group, but these factors should coincide with the ones defined in [PS2] via local zeta
integrals. We have the general relation

ε(s, π, ψ)ε(1− s, π̂, ψ) = ωπ(−1), (11)

where π̂ is the contragredient representation and ωπ is the central character of π. It is known
that if ωπ is trivial, then π ' π̂. In this case it follows from (11) that ε(1/2, π, ψ) ∈ {±1}. By
general properties of ε–factors, this sign is independent of the choice of ψ. Hence there is a
sign ε(1/2, π) canonically attached to any irreducible, admissible representation of PGSp(4, F )
(provided we know the local Langlands correspondence).

If π is not square integrable, then the image of the local parameter W ′
F → GSp(4,C) lies in a

Levi component of a proper parabolic subgroup and the ε–factor is easy to determine since it
factorizes. For example, if π = χ1 × χ2 o σ is irreducible, then

ε(s, π, ψ) = ε(s, σ, ψ)ε(s, σχ1, ψ)ε(s, σχ2, ψ)ε(s, σχ1χ2, ψ).
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Provided all the characters are unramified and χ1χ2σ
2 = 1, it follows that ε(1/2, π) = 1. Using

the information from Table 2 it is thus easy to compute the signs for most of the representations
in our list. For the square-integrable representation of type Va, note that the image of the local
parameter is not contained in a proper Levi subgroup of GSp(4,C). It is however contained in
a Levi subgroup of GL(4,C), and hence the ε–factor still factorizes. The only representation in
our list where this is not the case is the Steinberg representation (and its unramified quadratic
twist). But there we can use the formula in section (4.1.6) of [Ta], which tells us that the sign
is −σ($).

In the next-to-last column of Table 3 we have listed the signs defined by ε–factors under the
assumption that the central character is trivial and all inducing characters are unramified. The
number a in the last column contains the exponent of the conductor of the local parameter (this
number is denoted by a(V ) in section (4.1.6) of [Ta]). Its relevance is that the ε–factor is a
constant multiple of q−as.

In the next section we will define newforms with respect to a fixed parahoric subgroup P . If a
representation contains such newforms with respect to P , we have indicated this in Table 3 by
writing the corresponding dimension in bold face. For example, IIIa contains a one-dimensional
space of newforms with respect to P2, and a two-dimensional space of newforms with respect to
P1. Note that if there are newforms with respect to P2 (resp. P12), then there are also newforms
with respect to the conjugate group P0 (resp. P01) which are not listed in the table.

For irreducible representations of PGL(2, F ) the sign defined by the ε–factor coincides with the
eigenvalue of the Atkin–Lehner involution on the one-dimensional space of local newforms; see
section 3.2 of [Sch1]. We can observe a similar phenomenon in the present situation. We have
distinguished 17 types of representations supported in the minimal parabolic subgroup. Types
VIa and VIb constitute an L–packet, so let us instead talk about 16 types of L–packets that
contain Iwahori–invariant vectors. Then we observe:

1.3.1 Proposition. The following are equivalent for an L–packet π of PGSp(4, F ) containing
Iwahori–fixed vectors.

i) The exponent a of the conductor of the L–packet π is even.

ii) The ε–factor does not change when the representations in π are twisted with ξ0, the
non-trivial unramified quadratic character of F ∗.

iii) π contains newforms with respect to one of the “non–symmetric” groups K or P2.

iv) The trace of the Atkin–Lehner involution on the full space of newforms is 0.

If these conditions are not fulfilled, then every local newform in π is an eigenvector for the
Atkin–Lehner involution, and the eigenvalue coincides with ε(1/2, π).

Proof: Everything follows by examining Table 3. The equivalence of i) and ii) also follows from
the definitions of a and ε(s, π).
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2 Local newforms

We shall now define local old– and newforms for the Iwahori–spherical representations. Our main
tool is the Iwahori–Hecke algebra I. Once we have chosen a suitable basis of the 8–dimensional
space of Iwahori–fixed vectors of a full induced representation, we can compute the action of I
explicitly. Then all our results follow essentially from elementary linear algebra.

2.1 The Iwahori–Hecke algebra

The Iwahori–Hecke algebra I of GSp(4, F ) is the convolution algebra of left and right I–invariant
functions on GSp(4, F ). It acts on the space of I–invariant vectors V I of any irreducible, admis-
sible representation (π, V ) of GSp(4, F ). If V I 6= 0, then this finite-dimensional representation
determines the isomorphism class of π, see [Bo2].

The structure of I is as follows. The identity element e is the characteristic function of I. For
j = 0, 1, 2 let ei be the characteristic function of IsiI (see (7)). If η is as in (8), we denote the
characteristic function of ηI again by η. Then I is generated by e0, e1, e2 and η, and we have
the following relations.

• e2i = (q − 1)ei + qe for i = 0, 1, 2.

• ηe0η
−1 = e2, ηe1η

−1 = e1, ηe2η
−1 = e0.

• e0e1e0e1 = e1e0e1e0, e1e2e1e2 = e2e1e2e1, e0e2 = e2e0.

All of this follows from general structure theory. There are other relations, but we will not need
them.

Let χ1, χ2, σ be unramified characters of F ∗, and let V be the standard space of the induced
representation χ1 × χ2 o σ. We shall now explicitly compute the action of I on V I . This 8–
dimensional space has the basis fw, w ∈ W , where fw is the unique I–invariant function with
fw(w) = 1 and fw(w′) = 0 for w′ ∈W , w′ 6= w. It is convenient to order the basis as follows:

fe, f1, f2, f21, f121, f12, f1212, f212, (12)

where we have abbreviated f1 = fs1 and so on. Having fixed this basis, the operators e0, e1, e2
and η on V I become 8× 8–matrices. These are given in the following lemma.

2.1.1 Lemma. Let notations be as above. With respect to the basis (12) of V I , the action of
the elements e1 and e2 on V I is given by the following matrices.

π(e1) =



0 q

1 q−1

0 q

1 q−1

0 q

1 q−1

0 q

1 q−1


, π(e2) =



0 0 q 0 0 0 0 0

0 0 0 0 0 q 0 0

1 0 q−1 0 0 0 0 0

0 0 0 0 0 0 0 q

0 0 0 0 0 0 q 0

0 1 0 0 0 q−1 0 0

0 0 0 0 1 0 q−1 0

0 0 0 1 0 0 0 q−1


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The action of η is given by

π(η) =



γq3/2

γq3/2

βγq1/2

βγq1/2

αγq−1/2

αγq−1/2

αβγq−3/2

αβγq−3/2


.

The action of e0 is given by the matrix π(η)π(e2)π(η)−1.

Proof: A standard system of representatives for Is1I is given by
1 x

1
1 −x

1

 s1, x ∈ o/p, (13)

and similarly for Is2I. Using these representatives and the identity(
1
λ 1

)
=

(
−λ−1

−λ

)(
1 λ

1

)(
1

−1

)(
1 λ−1

1

)
, (14)

our claims follow by straightforward computations which are left to the reader.

Let us introduce a partial ordering on the set of standard parahoric subgroups as follows:

P01

!!DD
DD

DD
DD

����

P12

}}zz
zz

zz
zz

�� ��

P02

}}zz
zz

zz
zz

!!DD
DD

DD
DD

P0

""DD
DD

DD
DD

D P1

��

P2

||zz
zz

zz
zz

z

I

(15)

Groups on a higher level have a bigger volume. On top we have the special maximal compact
subgroups K = P12 and its η–conjugate. For parahoric subgroups R and R′ let us write R′ � R
if there is an arrow from R′ to R.

2.1.2 Proposition. Let (π, V ) be an Iwahori–spherical unitary representation of GSp(4, F ).
Let 〈 , 〉 be a GSp(4, F )–invariant scalar product on V . Then the elements e0, e1, e2 of the
Iwahori–Hecke algebra act as self–adjoint operators on V I . If π has central character ωπ, then
we further have

〈π(η)v, w〉 = ωπ($)〈v, π(η)w〉 for all v, w ∈ V. (16)
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Proof: The last assertion is obvious since η2 = $1. As for e1, let us abbreviate the 4×4–matrix
in (13) by n(x). Then, since the scalar product is K–invariant,

〈π(e1)v, w〉 =
∑

x∈o/p

〈π(n(x)s1)v, w〉 =
∑

x∈o/p

〈v, π(s1n(−x))w〉.

If w is I–invariant, we can eliminate the n(−x) in the last expression. If v is also I–invariant, we
can insert a π(n(−x)) in front of the v. We can then use the K–invariance again and arrive at∑
〈v, π(n(x)s1)w〉 = 〈v, π(e1)w〉. The proof for e2 is similar. The assertion for e0 follows using

ηe2η
−1 = e0 and (16).

2.1.3 Remark. Even if the induced representation π1 × π2 o σ is not unitary, it will be useful
to consider the K–invariant scalar product∫

K

f1(g)f2(g) dg (17)

on the standard space of this representation. If the measure is normalized to give I volume
1, then the matrix of this scalar product restricted to the space of I–invariant vectors with
respect to the basis (12) is diag

(
1, q, q, q2, q3, q2, q4, q3

)
(the exponents are the lengths of the

Weyl group elements). The argument in the proof of Proposition 2.1.2 shows that e1 and e2 act
as self–adjoint operators with respect to this scalar product.

Special elements in the Iwahori–Hecke algebra are the projection operators

dS =
1

vol(PS)
char(PS), (18)

where “char” stands for characteristic function. Here S is a subset of {s0, s1, s2} and PS is the
corresponding subgroup. The measure is normalized so that I has volume 1. In particular, we
have d∅ = char(I) = e and di = 1

q+1(e+ ei) for i = 0, 1, 2. Since the projection operators satisfy
d2

S = dS , we have

V I = im(π(dS))⊕ ker(π(dS)) (19)

for any representation (π, V ), where π(dS) is considered as an endomorphism of V I . Thus the
space of PS–fixed vectors V PS = im(π(dS)) always has a natural complement in V I . It follows
from Proposition 2.1.2 that if π is a unitary representation, then ker(π(dS)) coincides with the
orthogonal complement of V PS in V I .

2.2 Newforms for I

Let (π, V ) be an irreducible, admissible representation of GSp(4, F ). For any of the parahoric
subgroups R of GSp(4, F ) we shall give a separate definition of “local newform with respect
to R”. The idea is that if there is a “bigger” parahoric subgroup R′ such that V R′ 6= 0, then
certain elements of V R will be “old” since they can be obtained in a simple way from V R′

. More
precisely, we shall do the following.
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• Whenever R′ � R (see diagram (15)), we shall define natural linear operators from V R′
to

V R. If R′ ⊃ R, then one such operator is the identity.

• The image of all these operators for all R′ � R is by definition the space of oldforms
with respect to R. If π is unitary, we can define the space of newforms as the orthogonal
complement of the space of oldforms.

• By Proposition 2.1.2, newforms can also be characterized as the kernel of certain linear
operators. This leads to a definition of newforms that does not require unitarity.

• We shall prove that if there exists an R′ with R′ � R and V R′ 6= 0, then V R consists
entirely of oldforms. Otherwise, by definition, V R consists entirely of newforms.

• If V R consists of newforms, then its dimension is 1 or 2. The second case can only happen
for R = P1, and in this case, if π has trivial central character, there are two linearly
independent newforms that can be distinguished by their Atkin–Lehner eigenvalue.

As an illustration, let us define local newforms with respect to the Iwahori subgroup I. Since I
is minimal parahoric, it is natural to consider an I–invariant vector “old” if it is invariant under
some bigger parahoric subgroup. In other words, the subspace V I0 +V I1 +V I2 of V I constitutes
the space of oldforms, and if π is a unitary representation, we define its orthogonal complement
as the space of newforms. In this case, by (19) and the remarks thereafter,

V I =
(
V I0 + V I1 + V I2

)
⊕

(
ker(π(d0)) ∩ ker(π(d1)) ∩ ker(π(d2))

)
(20)

(orthogonal decomposition). Thus, newforms with respect to I can be characterized as the
common kernel of the projection operators d0, d1, d2. The following proposition shows that this
leads to a very restricted set of representations containing local newforms with respect to I.

2.2.1 Proposition. The following three conditions are equivalent for an irreducible, admissible
representation (π, V ) of GSp(4, F ).

i) π is an unramified twist of the Steinberg representation.

ii) There exists a non-zero v ∈ V I such that

d0(v) = d1(v) = d2(v) = 0.

iii) V P0 + V P1 + V P2 is a proper subspace of V I .

Proof: For unitary representations, ii) and iii) are equivalent by (20). In general it can be
checked case by case using Table 3. Statement ii) says that the Iwahori–Hecke algebra acts by
the sign character sending each ei to −1. It is well known that this characterizes the Steinberg
representation, see [Bo2] (it also follows by examining Table 3).

The proposition says that it is only the unramified twists of the Steinberg representation that
admit local newforms with respect to I. If we restrict to representations with trivial central
character, then there are precisely two such representations, StGSp(4) and ξ0 StGSp(4), where ξ0 is
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the non-trivial unramified quadratic character. These two representations can be distinguished
by the eigenvalue of the Atkin–Lehner involution on the local newform. Hence the situation
is completely analogous to GL(2). We note that condition ii) in Proposition 2.2.1 leads to a
characterization of classical newforms in terms of Fourier coefficients, see section 3.3.

2.3 Newforms for P1, P2 and P02

Let (π, V ) be an irreducible, admissible representation of GSp(4, F ). We consider the following
natural linear operators between spaces of vectors fixed under parahoric subgroups. Their images
will define oldforms.

• Whenever R′ ⊃ R, we have an inclusion V R′ ⊂ V R.

• There is a natural operator from V K to V P1 provided by the element e0e1e0 of the Iwahori–
Hecke algebra. Note that this element commutes with e1. Symmetrically, we have the
operator e2e1e2 from V P01 to V P1 .

• Since the element e1e2e1 commutes with e2, it provides a natural operator from V P02 to
V P2 . Similarly, e1e0e1 defines an operator V P02 → V P0 .

• From V K to V P02 we have the “trace operator” d0. Similarly we have d2 : V P01 → V P02 .

Now if R is any of the standard parahoric subgroups, we define the space of oldforms (V R)old

with respect to R as the space spanned by the image of all these operators for all R′ � R (see
diagram (15)). For unitary representations, the space of newforms (V R)new with respect to
R is defined as the orthogonal complement of (V R)old within V R. By Proposition 2.1.2, this
orthogonal complement can be described as the intersection of the kernels of the operators given
in the last column of table (21) below. It is this description as a common kernel that we take
as our definition of (V R)new for an arbitrary representation.

2.3.1 Theorem. Let (π, V ) be an irreducible, admissible representation of GSp(4, F ). Let R
be one of the parahoric subgroups I, P1, P2 or P02. We define subspaces (V R)old and (V R)new

of the space V R as in the following table.

R (V R)old = (V R)new = common kernel of

I V P0 + V P1 + V P2 d0, d1, d2

P1 V P01 + e2e1e2V
P01 + V K + e0e1e0V

K d01, d01e2e1e2, d12, d12e0e1e0

P2 V K + V P02 + e1e2e1V
P02 d12, d02, d02e1e2e1

P02 d2V
P01 + d0V

K d01d2, d12d0

(21)

Then exactly one of the following alternatives is true.

i) There exists a parahoric subgroup R′ such that V R′ 6= 0 and such that R′ � R (see diagram
(15)). In this case V R = (V R)old and (V R)new = 0.

ii) There exists no parahoric subgroup R′ as in i). In this case V R = (V R)new and (V R)old = 0.
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Proof: The Iwahori subgroup has already been treated in the previous section. We shall deal
with R = P1, the other cases being similar. We may realize π as a subrepresentation of an
induced representation χ1 × χ2 o σ. Let us define α, β, γ ∈ C∗ by

α = χ1($), β = χ2($), γ = σ($). (22)

Using the basis (12), we identify the space of I–invariant vectors in χ1×χ2 oσ with C8. The K–
spherical vector is given by v0 = t(1, 1, 1, 1, 1, 1, 1, 1). Using Lemma 2.1.1, it is easy to compute
the action of the Iwahori–Hecke algebra on v0. The result is that (V P1)old is spanned by the
first four columns of the following matrix.

1
q2(β(q−1)+α(1+β)(q−1)+q)

αβ
γq3/2 αβγq3/2 0 0 0 −q

1
q2(β(q−1)+α(1+β)(q−1)+q)

αβ
γq3/2 αβγq3/2 0 0 0 1

1
q(α(1+β)(q−1)+βq)

α
βγq1/2 αγq1/2(β(q−1)+q) 0 0 −q 0

1
q(α(1+β)(q−1)+βq)

α
βγq1/2 αγq1/2(β(q−1)+q) 0 0 1 0

1 α(q−1+qβ−1) αγq−1/2 γq1/2(α(1+β)(q−1)+βq) 0 1 0 0

1 α(q−1+qβ−1) αγq−1/2 γq1/2(α(1+β)(q−1)+βq) 0 −q 0 0

1 αβ αβγq−3/2 γq1/2((αβ+α+β)(q−1)+q) 1 0 0 0

1 αβ αβγq−3/2 γq1/2((αβ+α+β)(q−1)+q) −q 0 0 0


The last four columns span the intersection of the kernels on V I of the operators defining
(V P1)new. All of this is easily computed using Lemma 2.1.1 and a computer algebra program. We
see that the intersection of (V P1)new and (V P1)old is always trivial. In fact, we observe that these
two spaces are orthogonal with respect to the scalar product introduced in Remark 2.1.3. The
determinant of the above matrix is given by α−1β−1γ2q−1(1+q)4(α−q)2(β−q)2(αβ−q)(α−βq).
This determinant vanishes only at points of reducibility, proving our assertion in case that
χ1 × χ2 o σ is irreducible. Each of the remaining cases is also easily checked.

2.3.2 Remarks. i) Observing that ηKη−1 = P01 and ηP2η
−1 = P0, we have similar state-

ments for the groups P01 and P0 which we shall not state explicitly.

ii) Fixing a parahoric subgroup R, the theorem says that a given representation has either
newforms or oldforms with respect to R, or none of them, but never both.

iii) A given representation may have newforms for two different groups. For example, repre-
sentations of type IIa have newforms for both P1 and P02, and representations of type IIIa
have newforms for both P1 and P2.

iv) Our definition of old– and newforms for P02 coincides with the one given in [Ib2], §1, since
the “trace operators” considered there coincide with our operators d0 and d2.

v) As mentioned in the proof of Theorem 2.3.1, (V P1)old and (V P1)new are orthogonal with
respect to the scalar product introduced in Remark 2.1.3. This is also true for the groups
I, P2 and P02, as explicit calculations show.
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2.3.3 Remark. We consider the analogous situation for the group GL(2, F ). Here we have
the standard maximal compact subgroup K = P1 := GL(2, o) and its conjugate P0 := ηP1η

−1,

where η =
(

1
$

)
. The Iwahori subgroup is I = P0 ∩ P1. Given a representation (π, V ), the

subspace V P0 + V P1 of V I constitutes the space of oldforms with respect to I. In a unitary
representation its orthogonal complement can be described as the common kernel of d0 = e+ e0
and d1 = e + e1. In a classical language, a modular form f ∈ Sk(Γ0(N)) is a newform if and
only if for each p|N both f and ηpf are annihilated by the trace operator at p. Here ηp is the
classical Atkin–Lehner involution at p.

2.3.4 Remark. Instead of the operator id : V P01 → V P1 which we considered when defining
oldforms for P1, we can as well take η : V K → V P1 . Similarly, instead of e2e1e2 : V P01 → V P1

we may take e2e1e2η : V K → V P1 . Since Is2s1s2I/I ' P1s2s1s2P1/P1, it is easy to see that
this latter operator is given by

π(e2e1e2η)v0 =
∑

µ,κ,x∈o/p

π




1 µ κ
1 x µ

1
1




$
$

1
1


 v0

=
∑

g∈P1

(
$1

1

)
P1/P1

π(g)v0 (v0 ∈ V P1). (23)

We see from (23) that e2e1e2η corresponds to a Hecke operator which is sometimes used in the
classical theory of Siegel modular forms. For our global applications we shall therefore list in the
following table the eigenvalues of e2e1e2η on V P1 for those representations that contain newforms.
We shall also list the eigenvalues of the operator d1d02 on (V P1)new, and the eigenvalues of d02d1

on (V P02)new. When represented as 8× 8–matrices, the two operators d1d02 and d02d1 turn out
to have a surprisingly simple description (which we shall not state explicitly).

e2e1e2η on V P1 (1 + q)2d1d02 on V P1 (1 + q)2d02d1 on V P02

IIa q (χσ)($) q2

q+1(q−1/2 − α)(q−1/2 − α−1) q2

q+1(q−1/2 − α)(q−1/2 − α−1)

IIIa q (χσ)($), q σ($) 0, 0 —

IVb q2σ($), σ($) 0, 0 —

IVc q σ($) −(q − 1)2 −(q − 1)2

Vb −q σ($) 2q 2q

Vc q σ($) 2q 2q

VIa q σ($) 0 —

VIb q σ($) 0 —

VIc — — 0

(24)

The number α in the first row of the table abbreviates χ($). Since α2 is not allowed to take the
values q±1 or q±3, we can see from the last column that one can distinguish newforms for P02
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by their eigenvalues under d02d1 and under the Atkin–Lehner involution. Moreover, knowing
nothing more than these two numbers, one can write down the correct L–factor. Similarly, for
a newform with respect to P1, knowledge of the eigenvalues under e2e1e2η and d1d02 allows to
determine the L–packet and the L–factor (but we cannot distinguish types VIa and VIb). These
facts will be exploited in our global applications, see Theorem 3.3.9.

We note that, given a representation in the above list with trivial central character, one can tell
if the representation is of type IIIa or not by knowing the eigenvalues under e2e1e2η. This is
because all the other representations have eigenvalues ±1, ±q or ±q2, while these values do not
occur for IIIa (we have χσ2 = 1 and χ /∈ {1, ν±2}). This observation will be used in the proof
of Theorem 3.3.7.

3 Global newforms

We shall now apply the previously obtained local results to classical Siegel modular forms of
degree 2. Assuming the existence of a suitable L–function theory, we will first prove a strong
multiplicity one result for certain cusp forms with Iwahori–spherical local components. After
recalling several basic facts on the relation between classical modular forms and automorphic
representations of GSp(4), we will define classical newforms for various congruence subgroups
of square-free level. Our local and global representation–theoretic results will yield a number of
theorems on the newforms thus defined.

3.1 Strong multiplicity one results

In this section we shall prove results of the following kind. Let π1 = ⊗π1,v and π2 = ⊗π2,v be two
cuspidal automorphic representations of GSp(4,A) of a certain kind. Assume that π1,v ' π2,v

for almost all v. Then π1 ' π2. It is presently not known in general if π1 ' π2 implies π1 = π2

as spaces of automorphic forms, but if this weak multiplicity one is true, then our results are
special cases of what is called strong multiplicity one.

3.1.1 Lemma. Let S be a finite set. For each i ∈ S let qi be a positive power of some prime
number pi. We assume that pi 6= qi for i 6= j. Let Ri ∈ C(X) be rational functions such that∏

i∈S

Ri(qs
i ) = 1 for all s ∈ C. (25)

Then all the Ri are constant.

Proof: Left to the reader.

3.1.2 Lemma. Let F be a non-archimedean local field, and let π1 and π2 be irreducible, unitary
representations of GSp(4, F ) with non-zero Iwahori–fixed vectors. Assume that there exists
c ∈ C∗ and an integer m such that

L(s, π1)
L(s, π2)

= cqmsL(1− s, π̂1)
L(1− s, π̂2)

, (26)
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where L(s, πi) are the local L–factors as listed in Table 2. Assume also that π1 and π2 have the
same central character. Then π1 and π2 are constituents of the same induced representation
(from an unramified character of the Borel subgroup).

Proof: This can be checked case by case, going through all the possibilities for π1 and π2 that
are listed in Table 2. Note that we can count out representations of type IVb and IVc, since
by [ST], Theorem 4.4, they are not unitary. As an example we will treat the case that both
representations are of type I, where we have to show that π1 ' π2.

By our hypothesis that both representations have non-trivial Iwahori–fixed vectors, all the char-
acters used for the induction are unramified. Hence there are αi, βi, γi ∈ C∗ such that

L(s, πi) =
(
(1− γiq

−s)(1− αiγiq
−s)(1− βiγiq

−s)(1− αiβiγiq
−s)

)−1
.

It follows from (26) that there is an equality of rational functions

(1− γ2X)(1− α2γ2X)(1− β2γ2X)(1− α2β2γ2X)
(1− γ1X)(1− α1γ1X)(1− β1γ1X)(1− α1β1γ1X)

=

cX−m (1− γ−1
2 q−1X−1)(1− α−1

2 γ−1
2 q−1X−1)(1− β−1

2 γ−1
2 q−1X−1)(1− α−1

2 β−1
2 γ−1

2 q−1X−1)
(1− γ−1

1 q−1X−1)(1− α−1
1 γ−1

1 q−1X−1)(1− β−1
1 γ−1

1 q−1X−1)(1− α−1
1 β−1

1 γ−1
1 q−1X−1)

.

Eliminating denominators and comparing zeros on both sides, we find that

{γ1, α1γ1, β1γ1, α1β1γ1, γ2q, α2γ2q, β2γ2q, α2β2γ2q}
= {γ2, α2γ2, β2γ2, α2β2γ2, γ1q, α1γ1q, β1γ1q, α1β1γ1q},

where these are multisets, meaning elements are allowed to appear more than once. First
consider the tempered case, meaning all the constants have absolute value 1 (see Table 1). Then
necessarily

{γ1, α1γ1, β1γ1, α1β1γ1} = {γ2, α2γ2, β2γ2, α2β2γ2}.

Again considering several cases, one can easily check that this condition, together with the
equality α1β1γ

2
1 = α2β2γ

2
2 , which is equivalent to the equality of the central characters, imply

π1 ' π2. In the non-tempered case one argues similarly, but uses estimates on the absolute
values of the inducing characters taken from [ST], Theorem 4.4 (this is where the unitarity
condition is used).

3.1.3 Remark. The statement of the lemma would be false without the hypothesis on the
central character, as the following examples show. Let ξ0 be a non-trivial quadratic character
of F ∗.

• The representations ξ0×χoσ and ξ0× ξ0χoσ, if irreducible, have the same L–functions,
but are not isomorphic.

• π1 is a constituent of ξ0×νoν−1/2σ (type III) and π2 is a constituent of νξ0× ξ0 oν−1/2σ
(type V).
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In the following we shall utilize the spin L–function for cuspidal automorphic representations of
GSp(4) as a global tool. Any L–function theory that has the following properties would suffice.

3.1.4 L–Function Theory for GSp(4).

i) To every cuspidal automorphic representation π of PGSp(4,A) is associated a global L–
function L(s, π) and a global ε–factor ε(s, π), both defined as Euler products, such that
L(s, π) has meromorphic continuation to all of C and such that a functional equation

L(s, π) = ε(s, π)L(1− s, π)

of the standard kind holds.

ii) For Iwahori–spherical representations, the local factors Lv(s, πv) coincide with the spin
local factors as given in Table 2, and the factors εv(s, πv, ψv) coincide with the ε–factors
as given in Table 3.

Of course such an L–function theory is predicted by general conjectures over any number field.
For our classical applications we shall only need it over Q. Furthermore, we can restrict to the
archimedean component being a lowest weight representation with scalar minimal K–type (a
discrete series representation if the weight is ≥ 3). All we need to know about ε–factors is in
fact that they are of the form cpms with a constant c ∈ C∗ and an integer m. Unfortunately,
none of the current results on the spin L–function (see [No], [PS2] or [An1]) fully serves our
needs; hence, in what follows, we have to make assumptions.

3.1.5 Theorem. Let π1 = ⊗π1,v and π2 = ⊗π2,v be two cuspidal automorphic representations
of GSp(4,A), where A is the ring of adeles of some number field F . Let S be a finite set of finite
places of F . Assume the following holds:

i) Different elements of S divide different places of Q.

ii) π1,v ' π2,v for each v /∈ S.

iii) For each v ∈ S, both π1,v and π2,v possess non-trivial Iwahori–invariant vectors.

iv) The central characters of π1 and π2 coincide.

Assume also that an L–function theory as in 3.1.4 exists.1 Then, for each v ∈ S, the represen-
tations π1,v and π2,v are constituents of the same induced representation.

Proof: Let L(s, πi) =
∏

v Lv(s, πi,v) be the global L–function of πi. By our L–function theory,
we have meromorphic continuation to all of C and a functional equation

L(s, πi) = ε(s, πi)L(1− s, π̂i).

1For this theorem and its corollaries we do not need the assertion about ε–factors in 3.1.4 ii).
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Here π̂i is the contragredient of πi, and ε(s, πi) =
∏

v εv(s, πi,v, ψv) is the global ε–factor. Di-
viding the two functional equations and observing hypothesis ii), we obtain a relation∏

v∈S

L(s, π1,v)L(1− s, π̂2,v) ε(s, π2,v, ψv)
L(s, π2,v)L(1− s, π̂1,v) ε(s, π1,v, ψv)

= 1.

Note that each quotient on the left side is a rational function in qs
v, where qv is the number of

elements of the residue field of Fv. Hypothesis i) and Lemma 3.1.1 therefore imply that each
factor in the product is constant. This shows that for each v ∈ S there is a relation

L(s, π1,v)
L(s, π2,v)

= cvq
mvsL(1− s, π̂1,v)

L(1− s, π̂2,v)
(27)

with a constant cv ∈ C∗ and an integer mv. Since πi is cuspidal, each of the local representations
is unitary. Furthermore, the central characters of π1,v and π2,v coincide by hypothesis. The result
therefore follows from Lemma 3.1.2.

3.1.6 Corollary. Let π1 = ⊗π1,p and π2 = ⊗π2,p be two cuspidal automorphic representations
of PGSp(4,A), where A is the ring of adeles of Q. Let S be a finite set of prime numbers such
that:

i) π1,p ' π2,p for each p /∈ S.

ii) For each p ∈ S, both π1,p and π2,p are generic representations with non-trivial Iwahori–
invariant vectors.

Assume also that an L–function theory as in 3.1.4 exists. Then π1 ' π2.

Proof: Hypothesis i) of Theorem 3.1.5 is fulfilled because we are over Q. Both representations
are assumed to have trivial central character, so hypothesis iv) of Theorem 3.1.5 is also fulfilled.
Hence we can apply this Theorem and obtain that for each p ∈ S the representations π1,p and
π2,p are constituents of the same induced representation. But each induced representation has
only one generic constituent, so necessarily π1,p ' π2,p.

3.1.7 Corollary. Let π1 = ⊗π1,p and π2 = ⊗π2,p be two cuspidal automorphic representations
of PGSp(4,A), where A is the ring of adeles of Q. Let S be a finite set of prime numbers such
that:

i) π1,p ' π2,p for each p /∈ S.

ii) For each p ∈ S, the representation π1,p is K–spherical if and only if π2,p is K–spherical.

iii) For each p ∈ S such that π1 and π2 are not K–spherical, the representation πi,p (i = 1, 2)
contains a non-zero vector vi,p invariant under the local paramodular group P02 at p.

iv) For each p ∈ S such that π1 and π2 are not K–spherical, the vectors v1,p and v2,p are
eigenvectors for the Atkin–Lehner involution ηp with the same eigenvalue.

Assume also that an L–function theory as in 3.1.4 exists. Then π1 ' π2.
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Proof: The hypotheses of Theorem 3.1.5 are fulfilled, so π1,p and π2,p are constituents of the
same induced representation. But a look at Table 3 shows that two representations with P02–
invariant vectors in the same group can be distinguished by their Atkin–Lehner eigenvalues.

3.2 Classical modular forms

This section is to collect several definitions and conventions on classical Siegel modular forms.
We shall only treat holomorphic scalar-valued modular forms, but since all our manipulations
will be done at finite places, everything we are saying in the following generalizes immediately
to vector-valued modular forms. Also, for the sake of simplicity, we refrain from considering
modular forms with character (these could be considered except when we are talking about
Atkin–Lehner involutions).

When speaking about classical modular forms, it is more convenient to realize symplectic groups

using the symplectic form
(

1
−1

)
, which we shall do from now on. For N a positive integer,

global analogues of the local parahoric subgroups are defined as follows (notations as in [HI]).

B(N) := Sp(4,Z) ∩


Z NZ Z Z
Z Z Z Z
NZ NZ Z Z
NZ NZ NZ Z

 ,

U1(N) := Sp(4,Z) ∩


Z Z Z Z
Z Z Z Z
NZ NZ Z Z
NZ NZ Z Z

 ,

U2(N) := Sp(4,Z) ∩


Z NZ Z Z
Z Z Z Z
Z NZ Z Z
NZ NZ NZ Z

 ,

U0(N) := Sp(4,Q) ∩


Z NZ Z Z
Z Z Z N−1Z
NZ NZ Z Z
NZ NZ NZ Z

 ,

U02(N) := Sp(4,Q) ∩


Z NZ Z Z
Z Z Z N−1Z
Z NZ Z Z
NZ NZ NZ Z

 .

The group U1(N) is usually denoted Γ0(N). The group U02(N) is the paramodular group of
level N and corresponds to the local maximal compact subgroup P02. Note that

ηN U2(N) η−1
N = U0(N), where ηN =


1

1
N

N

 , (28)
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while B(N), U1(N) and U02(N) are normalized by ηN . If Γ′ is one of the above groups, we define
Sk(Γ′) to be the space of Siegel modular forms of degree 2 and weight k with respect to the
group Γ′. This space is a hermitian vector space with respect to the Petersson scalar product.
In this paper we shall not consider non-cuspidal modular forms.

Generalities on lifting modular forms

Let G = GSp(4). For each prime number p let Kp be an open compact subgroup of G(Zp) such
that the multiplier map Kp → Z∗

p is surjective. Then it follows from strong approximation for
Sp(4) that

G(AQ) = G(Q)G(R)+Kf , Kf =
∏

p<∞
Kp, (29)

where G(R)+ is the group of elements of G(R) with positive multiplier. Now let f ∈ Sk(Γ′) be
a modular form for a subgroup Γ′. We assume that

Γ′ = G(Q) ∩G(R)+Kf , Kf =
∏

p<∞
Kp,

with local subgroups Kp for which the above hypothesis on the multiplier map holds. We define
a function Φf : G(AQ) → C as follows. By (29), it is possible to write a given g ∈ G(A) as
g = ρg∞h with ρ ∈ G(Q), g∞ ∈ G(R)+, h ∈ Kf . Then we put

Φf (g) = λ(g∞)kj(g∞, I)−kf(g∞〈I〉). (30)

Here λ denotes the multiplier map and I =
(
i
i

)
. The symbol j(g∞, I) stands for the usual

modular factor, and Z 7→ g∞〈Z〉 is the action of G(R)+ on the Siegel upper half plane H2. Using
the transformation property of the modular form f , one checks easily that Φf is well-defined.
The factor λ(g∞)k ensures that

Φf (gz) = Φf (g) for all g ∈ G(A), z ∈ Z(A) ' A∗. (31)

Here Z denotes the center of G. Since f is a cuspform, the function Φf is an element of
L2(G(Q)\G(A)/Z(A)). Let π be the automorphic representation of G(A) generated by Φf inside
this L2–space. It decomposes into a finite direct sum of irreducible representations, π =

⊕
i πi.

Let us write each πi as a tensor product of local representations,

πi =
⊗
p≤∞

πi,p, πi,p an irreducible representation of G(Qp).

Since f is a modular form of weight k, all the archimedean components πi,∞ are isomorphic
to a representation π+

k of G(R) that has a lowest weight vector of weight (k, k) (it belongs to
the discrete series if k ≥ 3, see [AS] for more details). Let us now assume that f is a common
eigenfunction for almost all the local (commutative) Hecke algebras Hp. Then it follows easily
that for all such p and all i, j we have πi,p ' πj,p. In the GL(2)–case we could now conclude
by strong multiplicity one that π must be irreducible. Unfortunately, strong multiplicity one or
even multiplicity one is currently not available for GSp(4).
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But assume now that N is a square-free number and that the subgroup Γ′ contains B(N). Then
each πi,p for p|N has non-zero Iwahori–fixed vectors, and we can use the results of section 3.1
to show in several cases that all the πi are globally isomorphic (see the next section). In these
cases we can therefore associate a unique equivalence class πf of automorphic representations
with the modular form f .

Atkin–Lehner involutions

Let N be an integer and Γ′ one of the groups B, U1 or U02. We shall define the Atkin–Lehner
involutions on the space Sk(Γ′(N)). For a prime p dividing N let pj be the exact power of p
dividing N . Choose a matrix γp ∈ Sp(4,Z) such that

γp ≡


1

1
−1

−1

 mod pj and γp ≡


1

1
1

1

 mod Np−j ,

and define the Atkin–Lehner element

up := γp


pj

pj

1
1

 .

A different choice of γp results in multiplying up from the left with an element of the principal
congruence subgroup Γ(N). Therefore the action of up on modular forms for Γ(N) is unam-
biguously defined. One can check that up normalizes Γ′(N). Consequently the map F 7→ F

∣∣up

defines an endomorphism of Sk(Γ′(N)), which is an involution since u2
p ∈ pjΓ(N). This is the

Atkin–Lehner involution at p. We also denote it by f 7→ ηpf . A straightforward calculation
shows that these ηp on classical modular forms are compatible with the local Atkin–Lehner
involutions of the same name defined in section 1.3. More precisely, we have

Φηpf (g) = Φf (gηp) (32)

for the associated adelic functions, where the ηp on the right is the local element as defined in
(8) at the place p.

Some trace operators

We have defined the local projection operators di at the end of section 2.1. We will now introduce
analogous operators of the same name on global modular forms. Let N be a square-free positive
integer and p a prime dividing N . Let f ∈ Sk(B(N)). Then

(d1(p)f)(Z) :=
1

p+ 1

∑
h∈B(N)\(B(Np−1)∩U1(p))

(f |kh)(Z) (33)

and

(d2(p)f)(Z) :=
1

p+ 1

∑
h∈B(N)\(B(Np−1)∩U2(p))

(f |kh)(Z). (34)
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Here |k is the usual classical operator. We further have d0(p)f := η−1
p d2(p) ηpf , where ηp is the

Atkin–Lehner involution. Note that since the definition of di(p) also depends on the level N , it
should more precisely be denoted by di(N, p). Instead, to ease notation, we will sometimes also
drop the p and simply write di, hoping that N and p are clear from the context. It is easily
checked that these operators are compatible with the associated adelic functions in the sense
that

Φdi(p)f = di(p)Φf for i = 0, 1, 2. (35)

On the right side of each equation we have the local operators at the place p defined in section
2.1, acting on the adelic function in the obvious way. Let

f(Z) =
∑
T

c(T )e2πi tr(TZ) (36)

be the usual Fourier expansion of f , where T runs over positive definite, half-integral matrices,
and let

f(Z) =
∞∑

m=1

fm(τ, z)e2πimτ ′ , Z =
(
τ z
z τ ′

)
, (37)

be the Fourier–Jacobi expansion of f . Here fm is a Jacobi form of index m and level N (meaning
for the subgroup Γ0(N) of SL(2,Z)). Then easy calculations show

(d1(p)f)(Z) =
∑
T

c̃(T )e2πi tr(TZ) with c̃(T ) =
∑

γ∈Γ0(N)\Γ0(Np−1)

c(γT tγ) (38)

and

(d2(p)f)(Z) =
∞∑

m=1

f̃m(τ, z)e2πimτ ′ with f̃m =
∑

γ∈Γ0(N)\Γ0(Np−1)

fm|kγ. (39)

In both equations Γ0(N) and Γ0(Np−1) mean subgroups of SL(2,Z) (not of Sp(4,Z)). In equa-
tion (39), the symbol f |kγ denotes the usual action of an element of SL(2,Z) on a Jacobi form,
as in [EZ].

In a similar way we can also define operators dij(p) (or dij(N, p), or simply dij) on Sk(B(N))
that are compatible with the local operators dij defined in (18) and used in section 2.3. We
shall refrain from giving explicit formulas here, but these operators will have some significance
for the newform theory with respect to U1(N) and U02(N) in the next section.

3.3 Classical newforms

In this section we will use our previous representation–theoretic results to develop a theory of
old– and newforms for Siegel cusp forms of degree 2 with square-free level. We will obtain dif-
ferent theories for the “minimal” subgroup B(N), the Hecke subgroup U1(N) and the parahoric
subgroup U02(N).
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Newforms for B(N)

Let N be a positive integer, decomposed as N = N1N2 with coprime N1, N2. Then B(N) ⊂
B(N1) ∩ U1(N2), so Sk

(
B(N1) ∩ U1(N2)

)
is a subspace of Sk(B(N)). Similarly we have the

subspaces Sk

(
B(N1)∩U2(N2)

)
and Sk

(
B(N1)∩U0(N2)

)
. The definition of newforms for B(N)

we shall now give is designed to be compatible with the local definition given in section 2.2. It
is also the same definition as given in the papers [Ib1] and [HI].

3.3.1 Definition. Let N be a square-free positive integer. In Sk(B(N)) we define the subspace
of oldforms Sk(B(N))old to be the sum of the spaces

Sk

(
B(N1) ∩ U0(N2)

)
+ Sk

(
B(N1) ∩ U1(N2)

)
+ Sk

(
B(N1) ∩ U2(N2)

)
,

where N1, N2 run through all positive integers such that N1N2 = N , (N1, N2) = 1 and N2 > 1.
The subspace of newforms Sk(B(N))new is defined as the orthogonal complement of the space
Sk(B(N))old inside Sk(B(N)) with respect to the Petersson scalar product.

Thus, a modular form for B(N) is considered to be old if it is invariant under Γ′(p) for some
p|N and some Γ′ defined at p by a parahoric subgroup different from the minimal one.

3.3.2 Theorem. Let N be a square-free positive integer, and let f ∈ Sk(B(N))new. We assume
that f is an eigenform for the local Hecke algebras Hp for almost all primes p. Assuming that
an L–function theory as in 3.1.4 exists,2 the following holds.

i) The corresponding adelic function Φf as defined in (30) generates a multiple of an auto-
morphic representation πf of PGSp(4,AQ).

ii) f is an eigenfunction for the local Hecke algebras Hp for all primes p - N .

iii) Let Wf be the subspace of Sk(B(N))new spanned by all eigenforms that have the same
Satake parameters as f for almost all p. Then

dimC(Wf ) = mult(πf ), (40)

where the right side denotes the multiplicity of the automorphic representation πf defined
in i) within the space of all cusp forms. In particular, if multiplicity one holds, then a
newform is determined, up to multiples, by almost all of its Satake parameters.

iv) f is an eigenform for the Atkin–Lehner involution ηp for each p|N .

v) For each p|N , the local component of πf at p is given by

πf,p =
{

StGSp(4,Qp) if ηpf = −f,
ξ0 StGSp(4,Qp) if ηpf = f.

Here ξ0 is the unique non-trivial unramified quadratic character of Q∗
p.

2We need to assume 3.1.4 ii) only for the Steinberg representation. We also need to assume that our L–function
theory produces the Langlands local factors at the archimedean place, since otherwise the factor given in (42)
would not be the correct one.
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vi) For primes p - N we define local spin L–factors as usual. With εp being the Atkin–Lehner
eigenvalue at p|N , we further define

Lp(s, f) =
(
1 + εpp

−3/2−s
)−1

for p|N, (41)

L∞(s, f) = 4(2π)−2s+1−kΓ
(
s+ k − 3

2

)
Γ
(
s+

1
2

)
. (42)

Then the spin L–function L(s, f) =
∏

p≤∞ Lp(s, f) has meromorphic continuation to all
of C and satisfies the functional equation

L(s, f) = ε(s, f)L(1− s, f) with ε(s, f) := (−1)k
( ∏

p|N

εp

)
N3(1/2−s). (43)

If N > 1, then L(s, f) is holomorphic.

Proof: i) As explained above, Φf generates a representation π which we decompose into ir-
reducibles πi. If we decompose each πi into a tensor product ⊗πi,p of local representations,
then all the πi,∞ will be isomorphic. Moreover, by hypothesis, there is a finite set S of primes
(containing the primes dividing N) such that for each p /∈ S all the πi,p are isomorphic. It
follows from the definition of newforms and Proposition 2.2.1 that πi,p is an unramified twist of
the Steinberg representation, for each p|N and each i. In particular, the local components of πi

at every finite place are generic. We can therefore apply Corollary 3.1.6 to conclude that all the
πi are isomorphic.

ii) follows immediately from i).

iii) The dimension dim(Wf ) is obviously the number of linearly independent g ∈ Sk(B(N))new

that can be extracted from the direct sum of all cuspidal automorphic representations that are
isomorphic to πf . Equation (40) therefore is equivalent to the fact that in each local representa-
tion πi,p there is exactly one linearly independent local newform. But this is obvious, since the
space of Iwahori–invariant vectors of the Steinberg representation is one-dimensional; see Table
3. (We are also using the fact that in the lowest weight representations π+

k at the archimedean
place the space of lowest weight vectors is one-dimensional.)

iv) and v) We already saw that πf,p is an unramified twist of the Steinberg representation. Since
the central character is trivial, there are only the two possibilities listed in v). In either case
we have a one-dimensional space of Iwahori–invariant vectors, proving iv). Which of the two
representations actually appears is decided by the Atkin–Lehner eigenvalue, see Table 3.

vi) A look at Table 2 shows that for p|N the L–factor is given as in (41). The ε–factor of
σStGSp(4) for unramified σ (and choice of a suitable unramified additive character ψ) is given
by −σ($)q3(1/2−s), as can be determined from [Ta]. Thus ε(s, πf,p, ψ) = εpp

3(1/2−s) for p|N .
The archimedean factor in (42) is, up to a constant and up to a shift in the argument, just
the usual Andrianov Γ–factor (which in degree 2 coincides with the archimedean Langlands
L–factor, see [Sch2]). Since the archimedean ε–factor is (−1)k, the global ε–factor is given by
(−1)k(

∏
p|N εp)N3(1/2−s). Now all the claimed analytic properties of L(s, f) follow from our

L–function theory and from [PS2], Theorem 5.3 (if N = 1 then f may be a Saito–Kurokawa
lifting in which case L(s, f) would have poles).
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Remark: It was mentioned in [HI], p. 38, that (for any degree) the local components at p|N
of the automorphic representations associated to newforms in Sk(B(N)) are special representa-
tions.

In view of (38) and (39), the next result shows that newforms for B(N) can be characterized in
terms of their Fourier and Fourier–Jacobi expansions.

3.3.3 Corollary. An element f ∈ Sk(B(N)) is a newform if and only if

d1(p)(f) = d2(p)(f) = d2(p)(ηpf) = 0 for all p|N,

where d1(p) and d2(p) are the operators defined in (33) resp. (34).

Proof: This follows from Theorem 3.3.2 iv), Proposition 2.2.1 and equation (35).

3.3.4 Corollary. If a cusp form f ∈ Sk(Sp(4,Z)) is an eigenfunction for almost all Hecke
algebras Hp, then it is an eigenfunction for all those Hecke algebras.3

Proof: Theorem 3.3.2 applies with N = 1.

Newforms for U1(N)

Let N be a square-free positive integer. To describe newforms for the Hecke subgroup U1(N)
(usually called Γ0(N)) we shall begin by describing, for p|N , four endomorphisms T0(p), T1(p),
T2(p), T3(p) of Sk(U1(N)) which are analogous to some of the local operators considered in
section 2.3. The operator T0(p) is simply the identity. We define T1(p) := ηp, the Atkin–Lehner
involution. Note that if f ∈ Sk(U1(N)) happens to be a modular form for U1(Np−1), then

(T1(p)f)(Z) = pkf(pZ) (Z ∈ H2).

We define T2(p) by

(T2(p)f)(Z) =
∑

x,µ,κ∈Z/pZ

f ∣∣∣
k


1

1
p

p




1 x µ
1 µ κ

1
1


 (Z)

=
∑

g∈P1\P1

(
1

p1

)
P1

(
f
∣∣
k
g
)
(Z) (44)

(cf. Remark 2.3.4). In terms of Fourier expansions, if f(Z) =
∑

n,r,mA(n, r,m)e2πi(nτ+rz+mτ ′),
then

(T2(p)f)(Z) =
∑
n,r,m

A(np, rp,mp)e2πi(nτ+rz+mτ ′), Z =
(
τ z
z τ ′

)
. (45)

3In this completely unramified case we can work with the Andrianov L–function and need not make any
additional assumptions on the existence of a suitable L–function theory.
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Finally, we define T3(p) := ηp ◦ T2(p). It is easy to check that with these definitions

ΦT0(p)f = eΦf , ΦT1(p)f = ηΦf ΦT2(p)f = e2e1e2ηΦf , ΦT3(p)f = e0e1e0Φf (46)

holds for the associated adelic functions. On the right side of each equation we have elements
of the local Iwahori–Hecke algebra acting on the adelic functions in the obvious way.

3.3.5 Definition. Let N be a square-free positive integer. In Sk(U1(N)) we define the subspace
of oldforms Sk(U1(N))old to be the sum of the spaces

Ti(p)Sk

(
U1(Np−1)

)
, i = 0, 1, 2, 3, p|N.

We define the subspace of newforms Sk(U1(N))new to be the orthogonal complement of the
space Sk(U1(N))old inside Sk(U1(N)) with respect to the Petersson scalar product.

We remark that, for this congruence subgroup, the same definition of the space of oldforms as
the image of four linear operators has been given in [Ra].

3.3.6 Remark. It follows from Theorem 2.3.1 that the space Sk(U1(N))new can be character-
ized as the common kernel of the operators d12, d12e0e1e0, d12η and d12ηe2e1e2 for all p|N inside
Sk(U1(N)). This is analogous to Corollary 3.3.3.

Some attempts to define L–functions for modular forms f ∈ Sk(U1(N)) are based on eigen-
functions for T2(p) at the places p|N (see [An3]). Along these lines we can prove the following
result.

3.3.7 Theorem. Let N be a square-free positive integer and let f ∈ Sk(U1(N))new. We assume
that f is an eigenform for the local Hecke algebras Hp for almost all primes p. We further assume
that

T2(p)f = λpf with λp 6= ±p for all p|N. (47)

Then:

i) The corresponding adelic function Φf as defined in (30) generates a multiple of an auto-
morphic representation πf of PGSp(4,AQ).

ii) f is an eigenfunction for the local Hecke algebras Hp for all primes p - N .

iii) For primes p - N we define local spin L–factors as usual. We further define

Lp(s, f) =
(
(1− λpp

−3/2−s)(1− λ−1
p p1/2−s)

)−1
for p|N, (48)

and the archimedean factor as in (42).4 Then the spin L–function L(s, f) =
∏

p≤∞ Lp(s, f)
has meromorphic continuation to all of C and satisfies the functional equation

L(s, f) = ε(s, f)L(1− s, f) with ε(s, f) := (−1)kN1−2s. (49)

If N > 1, then L(s, f) is holomorphic.

4We need to assume that our L–function theory really assigns this (Langlands) local L–factor to the discrete
series representation at the archimedean place.
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Proof: We argue essentially as in Theorem 3.3.2. Since f is a newform, every πi,p for p|N must
contain local newvectors with respect to P1 in the sense of Theorem 2.3.1. The operator T2

corresponds to the element e2e1e2η of the local Iwahori–Hecke algebra at p, see (46). In view of
table (24) and the remarks following it, the hypothesis (47) implies that πi,p is of type IIIa. In
particular it is generic. We can therefore invoke Corollary 3.1.6 to prove i) (and ii)).

We now know for p|N that πf,p = χo σStGSp(2) with unramified characters χ and σ of Q∗
p such

that χσ2 = 1. By table (24) we have λp = σ(p) or λp = σ(p)−1. Hence a look at Table 2 shows
that the L–factor is given as in (48). The ε–factor at p|N is given by

ε(s, χo σStGSp(2), ψ) = ε(s, σStGL(2), ψ)ε(s, χσStGL(2), ψ)

= (−σ(p)p1/2−s)(−(χσ)(p)p1/2−s) = p1−2s

(choosing some unramified additive character ψ). Here we have used the fact (see, e.g., [Sch1])
that ε(s, σStGL(2), ψ) = −σ($)p1/2−s for an unramified local character σ. Including the archi-
medean place, the global ε–factor is therefore given by (−1)kN1−2s. Now the analytic properties
of L(s, f) follow from our L–function theory and from [PS2], Theorem 5.3. The condition N > 1
ensures that f is not a Saito–Kurokawa lifting.

If one of the T2(p) eigenvalues is ±p, then the situation becomes more complicated because we
cannot distinguish representations of type IIa, Vb,c and VIa,b (representations of type IVb,c
are irrelevant since they are not unitary by [ST], Theorem 4.4; the trivial representation does
also not appear as a local component of a global cuspidal automorphic representation, which
follows from the existence of global generalized Whittaker models, see [PS2]). In this case we
need more information to determine the type of local representation. Such information can be
obtained by requiring that our modular form is also an eigenfunction for the operator

T4(p) := (1 + p)2d1(p)d02(p) (50)

for each p|N . Investigating table (24) we find that knowing the eigenvalues under T2(p) and
T4(p) we can determine the local representation, except that we cannot distinguish types VIa
and VIb. But VIa and VIb constitute an L–packet, so for defining the correct L–factor it is not
necessary to distinguish these two representations.

Unfortunately, we cannot see an easy description for the Hecke operator T4(p) in (50) in terms
of Fourier coefficients, in contrast to the simple formula (45) for T2(p). However, as already
mentioned towards the end of section 2.3, the corresponding local operator is represented by a
surprisingly simple 8× 8–matrix.

3.3.8 Proposition. Let N be square-free. The space Sk(U1(N))new has a basis consisting of
common eigenfunctions for the operators T2(p) and T4(p), all p|N , and for the unramified Hecke
algebras at all good places p - N .

Proof: The assertion follows from the fact that for each local representation (π, V ) containing
newforms with respect to P1 the space V P1 has a common eigenbasis for e2e1e2η and d1d02. This
in turn is evident from a look at table (24).
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3.3.9 Theorem. Let N be a square-free positive integer and let f ∈ Sk(U1(N))new. We assume
that f is an eigenform for the local Hecke algebras Hp for almost all primes p. We further assume
that f is an eigenfunction for T2(p) and T4(p) for all p|N ,

T2(p)f = λpf, T4(p)f = µpf for p|N. (51)

Assuming that an L–function theory as in 3.1.4 exists, the following holds.

i) f is an eigenfunction for the local Hecke algebras Hp for all primes p - N .

ii) Only the combinations of λp and µp as given in the following table can occur. Here ε is
±1.

λ µ rep. Lp(s, f)−1 εp(s, f)

−εp /∈ {0, 2p} IIa (1 + ε(p+ 1)(p− µ)p−3/2−s + p−2s)(1 + εp−1/2−s) εp1/2−s

6= ±p 0 IIIa (1− λp−3/2−s)(1− λ−1p1/2−s) p1−2s

−εp 2p Vb, c (1− εp1/2−s)(1− p−1/2−s)(1 + p−1/2−s) εp1/2−s

−εp 0 VIa,b (1 + εp−1/2−s)2 p1−2s

(52)

(We skipped some indices p.)

iii) We define the archimedean L–factor as in (42) and the archimedean ε–factor by (−1)k. We
further define the unramified spin Euler factors for p - N as usual, and the ε–factors to be
1. For places p|N we define L– and ε–factors according to table (52). Then the resulting
L–function has meromorphic continuation to the whole complex plane and satisfies the
functional equation

L(s, f) = ε(s, f)L(1− s, f), (53)

where L(s, f) =
∏

p≤∞ Lp(s, f) and ε(s, f) = (−1)k
∏

p|N εp(s, f).

iv) L(s, f) has at most two simple poles at s = 3/2 and s = −1/2. If λp 6= ±p or µp /∈ {0, 2p}
for some p|N , then L(s, f) is holomorphic everywhere.

Proof: i) We argue as before, considering the global representation πf = ⊕πi. Since f is a
newform, every πi,p for p|N must contain local newvectors with respect to P1 in the sense of
Theorem 2.3.1. In the present case we cannot conclude that all the irreducible components
πi must be isomorphic, because, as mentioned above, the eigenvalues in (51) cannot tell apart
local representations VIa and VIb. This is however the only ambiguity, so that we can at least
associate a global L–packet with f . In particular, we obtain i) by a familiar reasoning.

ii) The possible combinations for λ and µ follow immediately from the data given in table (24).

iii) The L–factors can be easily determined from Table 2 and the values given in table (24). The
ε–factors are also easily computed from the local parameters given in Table 2. The functional
equation then follows from our L–function theory.
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iv) By [PS2], the L–function L(s, f) has at most two simple poles at s = 3/2 and s = −1/2. If
λp 6= ±p or µp /∈ {0, 2p} for some p|N , then, according to table (52), we have a local component
of type IIa or IIIa, hence a generic representation. In particular, our representations are not
Saito–Kurokawa liftings, which implies L(s, f) is holomorphic (see also part 4) of [PS2], Theorem
5.3).

Newforms for U02(N)

We have defined trace operators d0, d1, d2 in section 3.2, and we shall use these to define newforms
for the paramodular group U02(N) of level N . We remark that in case N = p is a prime the same
definition has already been given in [Ib2]. The trace operators used there essentially coincide
with our d operators.

3.3.10 Definition. Let N be a square-free positive integer. In Sk(U02(N)) we define the sub-
space of oldforms Sk(U02(N))old to be the sum of the spaces

d0(p)Sk

(
U02(Np−1)

)
+ d2(p)ηpSk

(
U02(Np−1)

)
, p|N.

The subspace of newforms Sk(U02(N))new is defined as the orthogonal complement of the space
Sk(U02(N))old inside Sk(U02(N)) with respect to the Petersson scalar product.

3.3.11 Remark. Just as in the previous cases we can characterize newforms as the kernel of
certain operators. In fact, by Theorem 2.3.1 an element f ∈ Sk(U02(N)) is a newform if and
only if it is annihilated by the operators d12η and d12ηd2η for all p|N .

In the following theorem we will make use of the Hecke operators

T5(p) := (1 + p)2d02(p)d1(p) (54)

on Sk(U02(N))new for p|N (the theorem will show that global newforms are composed of local
newforms at every place, so it is obvious that T5(p) acts on Sk(U02(N))new). This operator is
analogous to T4(p) introduced in (54) and serves a similar purpose. Again, we did not find a
simple description in terms of Fourier coefficients, but the local representation of T5(p) as an
8× 8–matrix has a simple shape.

3.3.12 Theorem. Let N be a square-free positive integer, and f ∈ Sk(U02(N))new. We assume
that f is an eigenform for the local Hecke algebras Hp for almost all primes p and for the Atkin–
Lehner involutions εp for all p|N . Assuming that an L–function theory as in 3.1.4 exists, the
following holds.

i) The corresponding adelic function Φf as defined in (30) generates a multiple of an auto-
morphic representation πf of PGSp(4,AQ).

ii) f is an eigenfunction for the local Hecke algebras Hp for all primes p - N .
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iii) Let Wf be the subspace of Sk(B(N))new spanned by all eigenforms that have the same
Satake parameters as f for almost all p, and the same Atkin–Lehner eigenvalue for all p|N .
Then

dimC(Wf ) = mult(πf ), (55)

where the right side denotes the multiplicity of the automorphic representation πf defined
in i) within the space of all cuspforms.

iv) f is an eigenfunction for the Hecke operator T5(p), for each p|N . Let µp be the eigenvalue.

v) For each p|N , the local component of πf at p is one of the unitary representations of
PGSp(4,Qp) listed in the following table. Which type of representation it is can be decided
by the value of µp.

µp rep. Lp(s, f)−1 εp(s, f)

/∈ {0, 2p} IIa (1 + εp(p+ 1)(p− µp)p−3/2−s + p−2s)(1 + εpp
−1/2−s)

2p Vb, c (1− εpp
1/2−s)(1− p−1/2−s)(1 + p−1/2−s) εpp

1/2−s

0 VIc (1 + εpp
1/2−s)(1 + εpp

−1/2−s)

(56)

In this table εp is the eigenvalue of the Atkin–Lehner involution at p.

vi) If we define spin L–factors for p|N as in table (56), then the global L–function L(s, f) =∏
p≤∞ Lp(s, f) has meromorphic continuation to all of C and satisfies the functional equa-

tion

L(s, f) = ε(s, f)L(1− s, f), with ε(s, f) = (−1)k
( ∏

p|N

εp
)
N1/2−s. (57)

Here L∞(s, f) is defined as in (42), and the unramified spin Euler factors for p - N are the
usual ones.

vii) L(s, f) has at most two simple poles at s = 3/2 and s = −1/2. If µp /∈ {0, 2p} for some
p|N , then L(s, f) is holomorphic everywhere.

Proof: The argument for i), ii) and iii) is similar to the one in the proof of Theorem 3.3.2.
Instead of Corollary 3.1.6 we are using Corollary 3.1.7. The fact that f is a newform assures
that hypothesis ii) of Corollary 3.1.7 is satisfied.

iv) and v) A look at Table 3 shows that only the representations listed in (56) are unitary and
have newforms with respect to P02. In each case the dimension of the space of P02–invariant
vectors is one-dimensional, proving iv). The data given in the last column of table (24) shows
the relation between the eigenvalue µp and the type of representation.

vi) and vii) The L–factors for p|N can be read off from Table 2, and the ε–factors are easily seen
to be εpp1/2−s in each case. Now we can refer to our L–function theory and [PS2], Theorem 5.3,
again. If µp /∈ {0, 2p}, then πf,p is of type IIa, hence generic, and the holomorphy follows since
πf is not a Saito–Kurokawa representation.
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3.3.13 Remark. For simplicity assume N = p is a prime and consider the following linear
maps:

Sk(U1(p))new
d02 // Sk(U02(p))new

d1

oo (58)

We see from Table 3 that the occurrence of representations of type IIIa accounts for the kernel
of d02(p), and the occurrence of representations of type VIc accounts for the kernel of d1(p).
The composite maps d1 ◦ d02 and d02 ◦ d1 are, up to normalization, the Hecke operators T4 and
T5 we used in the newform theory for U1 resp. U02.
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