

Mathematisches Kolloquium

Am Freitag, dem 02. Juni 2017 spricht um 14 Uhr c. t. im Hörsaal IV der Fachrichtung Mathematik (Gebäude E24)

Dr. Wouter Castryck Laboratoire Paul Painlevé of the Université de Lille-1 and Department of Electrical Engineering of KU Leuven

über das Thema:

On the secondary error term in counting quartic extensions of $F_q[t]$.

Abstract: There is a folklore conjecture stating that for a fixed integer d > 1 the amount of number fields K such that [K : Q] = d and |Disc(K)| < X equals cX + o(X) for some constant c > 0. This is known up to $d \le 5$, and in the cubic case it was moreover shown that there is a secondary term of the form $c'X^{5/6}$ for some other constant c' > 0. This was formerly known as the Roberts conjecture, now proven by Bhargava–Shankar–Tsimerman and Taniguchi–Thorne. In the quartic case it is believed that there is a similar error term $c'X^{5/6}$ but this is open.

In his Ph.D. thesis Zhao demonstrated an analogue of the Roberts conjecture for cubic extensions of $F_q[t]$. His proof gives a remarkable explanation for the exponent 5/6, which shows up as a corollary to a well-known bound on the Maroni invariants of a trigonal curve, in turn a consequence of the Riemann-Roch theorem. In this talk we will review Zhao's count, and give a similar derivation of the secondary term in the counting function for quartic extensions of $F_q[t]$, which now follows from bounds on Schreyer's tetragonal invariants b_1 , b_2 . Currently our count is just a heuristic, ignoring a potentially tedious sieving step. This is joint work in progress with Yongqiang Zhao.

Der Gast wird von Prof. Dr. Frank-Olaf Schreyer betreut.

Alle Interessenten sind zum Vortrag herzlich eingeladen.

Kaffee und Tee ab 13.45 Uhr im Konferenzraum der Mathematik (Erdgeschoss, Raum 103)

Die Dozenten der Mathematik