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Abstract

We present a novel method for deriving tight Monte Carlo confidence intervals for solutions

of stochastic dynamic programming equations. Taking some approximate solution to the

equation as an input, we construct pathwise recursions with a known bias. Suitably coupling

the recursions for lower and upper bounds ensures that the method is applicable even when

the dynamic program does not satisfy a comparison principle. We apply our method to three

nonlinear option pricing problems, pricing under bilateral counterparty risk, under uncertain

volatility, and under negotiated collateralization.
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1 Introduction

We study the problem of computing Monte Carlo confidence intervals for solutions of discrete-

time, finite horizon stochastic dynamic programming equations. There is a random terminal value,

and a nonlinear recursion which allows to compute the value at a given time from expectations

about the value one step ahead. Equations of this type are highly prominent in the analysis of

multistage sequential decision problems under uncertainty (Bertsekas, 2005; Powell, 2011). Yet

they also arise in a variety of further applications such as financial option pricing (e.g. Guyon and

Henry-Labordère, 2013), the evaluation of recursive utility functionals (e.g. Kraft and Seifried,

2014) or the numerical solution of partial differential equations (e.g. Fahim et al., 2011).

The key challenge when computing solutions to stochastic dynamic programs numerically

stems from a high order nesting of conditional expectations operators in the backward recursion.

The solution at each time step depends on an expectation of what happens one step ahead, which

in turn depends on expectations of what happens at later dates. If the system is driven by a
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Markov process with a high-dimensional state space – as is the case in typical applications – a

naive numerical approach quickly runs into the curse of dimensionality. In practice, conditional

expectations thus need to be replaced by an approximate conditional expectations operator which

can be nested several times at moderate computational costs, e.g., by a least-squares Monte Carlo

approximation. For an introduction and overview of this “approximate dynamic programming”

approach, see, e.g., Powell (2011). The error induced by these approximations is typically hard to

quantify and control. This motivates us to develop a posteriori criteria which use an approximate

or heuristic solution to the dynamic program as an input in order to compute tight upper and

lower bounds on the true solution. In this context, “tight” means that the bounds match when

the input approximation coincides with the true solution.

Specifically, we study stochastic dynamic programming equations of the form

Yj = Gj(Ej [βj+1Yj+1], Fj(Ej [βj+1Yj+1])) (1)

with random terminal condition YJ = ξ. Here, Ej [·] denotes the conditional expectation given

the information at time step j. Fj and Gj are real-valued, adapted, random functions. Fj is

convex while Gj is concave and increasing in its second argument. In particular, a possible

dependence on state and decision variables is modeled implicitly through the functions Fj and

Gj . The stochastic weight vectors βj form an adapted process, i.e., unlike Fj and Gj , βj+1 is

known at time j + 1 but not yet at time j. Such weight processes frequently arise in dynamic

programs for financial option valuation problems where, roughly speaking, they are associated

with the first two derivatives, Delta and Gamma, of the value process Y . Similarly, Fahim et al.

(2011) derive a probabilistic scheme for fully nonlinear second-order parabolic partial differential

equations which involves stochastic weights in the approximation of the space derivatives. This

scheme is of the form (1), when the nonlinearity has a concave-convex structure. This is the case

for Hamilton-Jacobi-Bellman equations arising from continuous-time stochastic control problems

and for some Hamilton-Jacobi-Isaacs equations arising from stochastic differential games.

There are two main motivations for assuming the concave-convex structure of the right hand

side of (1). First, since convexity and concavity may stem, respectively, from maximization or

minimization, the equation is general enough to cover not only dynamic programs associated with

classical optimization problems but also dynamic programs arising from certain stochastic two-

player games or robust optimization problems under model uncertainty. Second, many functions

which are themselves neither concave nor convex may be written in this concave-convex form.

This can be seen, for instance, in the application to bilateral counterparty credit risk in Section

7.1 below.

Traditionally, a posteriori criteria for this type of recursion were not derived directly from

equation (1) but rather from a primal-dual pair of optimization problems associated with it. For

instance, with the choices Gj(z, y) = y, Fj(z) = max{Sj , z}, βj = 1 and ξ = SJ , (1) becomes the

dynamic programming equation associated with the optimal stopping problem for a process (Sj)j .
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From an approximate solution of (1) one can conclude an approximation of the optimal stopping

strategy. Testing this strategy by simulation yields lower bounds on the value of the optimal

stopping problem. The derivation of dual upper bounds starts by considering strategies which

allow to look into the future, i.e., by considering strategies which allow to optimize pathwise rather

than in conditional expectation. The best strategy of this type is easy to simulate and implies

an upper bound on the value of the usual optimal stopping problem. This bound can be made

tight by penalizing the use of future information in an appropriate way. Approximately optimal

information penalties can be derived from approximate solutions to (1). Combining the resulting

low-biased and high-biased Monte Carlo estimators for Y0 yields Monte Carlo confidence intervals

for the solution of the dynamic program. This information relaxation approach was developed in

the context of optimal stopping independently by Rogers (2002) and Haugh and Kogan (2004).

The approach was extended to general discrete-time stochastic optimization problems by Brown

et al. (2010) and Rogers (2007).

Recently, Bender et al. (2015) have proposed a posteriori criteria which are derived directly

from a dynamic programming recursion like (1). The obvious advantage is that, in principle, this

approach requires neither knowledge nor existence of associated primal and dual optimization

problems. This paper generalizes the approach of Bender et al. (2015) in various directions. For

example, we merely require that the functions Fj and Gj are of polynomial growth while the

corresponding condition in the latter paper is Lipschitz continuity. Moreover, we assume that

the weights βj are sufficiently integrable rather than bounded, and introduce the concave-convex

functional form of the right hand side of (1) which is much more flexible than the particular

convex functional form considered there.

Conceptually, our main departure from the approach of Bender et al. (2015) is that we do not

require that the recursion (1) satisfies a comparison principle. Suppose that two adapted processes

Y low and Y up fulfill the analogs of (1) with “=” replaced, respectively, by “≤” and “≥”. We call

such processes subsolutions and supersolutions to (1). The comparison principle postulates that

subsolutions are always smaller than supersolutions. Relying on such a comparison principle, the

approach of Bender et al. (2015) mimics the classical situation in the sense that their lower and

upper bounds can be interpreted as stemming, respectively, from a primal and a dual optimization

problem constructed from (1).

The bounds of the present paper apply regardless of whether a comparison principle holds or

not. This increased applicability is achieved at negligible additional numerical costs. The key idea

is to construct a pathwise recursion associated with particular pairs of super- and subsolutions.

These pairs remain ordered even when such an ordering is not a generic property of super- and

subsolutions, i.e., when comparison is violated in general. Roughly speaking, whenever a violation

of comparison threatens to reverse the order of the upper and lower bound, the upper and lower

bound are simply exchanged on the respective path. Consequently, lower and upper bounds must

always be computed simultaneously. In particular, they can no longer be viewed as the respective
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solutions of distinct primal and dual optimization problems.

For some applications like optimal stopping, the comparison principle is not an issue. For

others like the nonlinear pricing applications studied in Bender et al. (2015), the principle can

be set in force by a relatively mild truncation of the stochastic weights β. Dispensing with the

comparison principle allows us to avoid any truncation and the corresponding truncation error.

This matters because there is also a class of applications where the required truncation levels

are so low that truncation would fundamentally alter the problem. This concerns, in particular,

backward recursions associated with fully nonlinear second-order partial differential equations,

when the space derivatives are approximated in a probabilistic way by so-called Malliavin Monte-

Carlo weights, see Fahim et al. (2011). Here, it may easily happen that, due to the application

of the gamma weight for the approximation of the second space derivative, the discrete time

version fails a comparison principle, although the comparison principle is satisfied (in the sense

of viscosity solutions) by the continuous time partial differential equation. We explain this phe-

nomenon in more detail for the problem of pricing under volatility uncertainty which serves as a

running example throughout the paper. Solving equation (1) for the uncertain volatility model is

well-known as a challenging numerical problem (Guyon and Henry-Labordère, 2011; Alanko and

Avellaneda, 2013), making an a posteriori evaluation of solutions particularly desirable. Sum-

marizing, by dispensing with the comparison principle, the setting of the present paper covers

certain probabilistic discretizations for Hamilton-Jacobi-Bellman equations arising in stochastic

control, where the controls may influence the drift and the diffusion part, while the setting in

Bender et al. (2015) is tailored to construct confidence bounds for the corresponding discrete time

equations in the special case of stochastic drift control.

We finally extend the results to systems of dynamic programming equations with convex

nonlinearities. As a special case we recover the martingale dual for multiple stopping due to

Schoenmakers (2012), but, more importantly, our results also allow to compute tight bounds

for probabilistic discretization schemes of systems of parabolic equations. These discretization

schemes can be seen to violate a componentwise comparison principle, unless there is no cou-

pling through the space derivatives and the coupling of one component of the solution into the

other component equations is nondecreasing. Thus, by avoiding the comparison principle in our

approach, we can remove these restrictive assumptions on the coupling of one equation into the

others. As an example, we can compute tight bounds for the pricing problem of collateralized

contracts under funding costs in the theoretical framework of Nie and Rutkowski (2016).

The paper is organized as follows: Section 2 provides further motivation for the stochastic

dynamic programming equation (1) by discussing how it arises in a series of examples. Section

3 states our setting and key assumptions in detail and explores a partial connection between

equation (1) and a class of two-player games which makes some of the constructions of the later

sections easier to interpret. Section 4 presents our main results. We first discuss the restrictiveness

of assuming the comparison principle in the applications we are interested in. Afterwards, we
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proceed to Theorem 4.5, the key result of the paper, providing a new pair of upper and lower

bounds which is applicable in the absence of a comparison principle. In Section 5, we relate our

results to the information relaxation duals of Brown et al. (2010). In particular, we show that our

bounds in the presence of the comparison principle can be reinterpreted in terms of information

relaxation bounds for stochastic two-player zero-sum games, complementing recent work by Haugh

and Wang (2015). In Section 6, we discuss how to extend Theorem 4.5 to situations where the

dynamic programming equation is itself multidimensional. Finally, in Section 7, we apply our

results in the context of three nonlinear valuation problems, option pricing in a four-dimensional

interest rate model with bilateral counterparty risk, in the uncertain volatility model, and in a five-

dimensional Black-Scholes model with negotiated collateralization. While such nonlinearities in

pricing have received increased attention since the financial crisis, tight Monte Carlo confidence

bounds for these three problems were previously unavailable. All proofs are postponed to the

Appendix.

2 Examples

In this section, we briefly discuss several examples of backward dynamic programming equations

arising in option pricing problems, which are covered by the framework of our paper. These

include nonlinearities due to early exercise features, counterparty risk, and model uncertainty.

Example 2.1 (Bermudan options). Our first example is the optimal stopping problem, or, in

financial terms, the pricing problem of a Bermudan option. Given a stochastic process Sj , j =

0, . . . , J , which is adapted to the information given in terms of a filtration on an underlying

filtered probability space, one wishes to maximize the expected reward from stopping S, i.e.,

Y0 := sup
τ
E[Sτ ], (2)

where τ runs through the set of {0, . . . , J}-valued stopping times. If the expectation is taken with

respect to a pricing measure, under which all tradable and storable securities in an underlying

financial market are martingales, then Y0 is a fair price of a Bermudan option with discounted

payoff process given by S. It is well-known and easy to check that Y0 is the initial value of the

dynamic program

Yj = max{Ej [Yj+1], Sj}, YJ = SJ , (3)

which is indeed of the form (1). In the traditional primal-dual approach, the primal maximization

problem (2) is complemented by a dual minimization problem. This is the information relaxation

dual which was initiated for this problem independently by works of Rogers (2002) and Haugh
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and Kogan (2004). It states that

Y0 = inf
M
E

[
sup

j=0,...,J
(Sj −Mj)

]
, (4)

where M runs over the set of martingales which start in zero at time zero. In order to illustrate

our pathwise dynamic programming approach, we shall present an alternative proof of this dual

representation for optimal stopping in Example 4.2 below, which, in contrast to the arguments

in Rogers (2002) and Haugh and Kogan (2004), does not make use of specific properties of the

optimal stopping problem (2), but rather relies on the convexity of the max-operator in the

associated dynamic programming equation (3).

Example 2.2 (Credit value adjustment). In order to explain the derivation of a discrete-time

dynamic programming equation of the form (1) for pricing under counterparty risk, we restrict

ourselves to a simplified setting, but refer, e.g., to the monographs by Brigo et al. (2013) or

Crépey et al. (2014) for more realistic situations: A party A and a counterparty B trade several

derivatives, all of which mature at the same time T . The random variable ξ denotes the (pos-

sibly negative) cumulative payoff of the basket of derivatives which A receives at time T . We

assume that ξ is measurable with respect to the market’s reference information which is given by

a filtration (Ft)0≤t≤T , and that only the counterparty B can default. Default occurs at an expo-

nential waiting time τ with parameter γ which is independent of the reference filtration. The full

filtration (Gt)0≤t≤T is the smallest one which additionally to the reference information contains

observation of the default event, i.e. it satisfies {τ ≤ t} ∈ Gt for every t ∈ [0, T ]. A recovery

scheme X = (Xt)0≤t≤T describes the (possibly negative) amount of money which A receives, if

B defaults at time t. The process X is assumed to be adapted to the reference filtration. We

denote by D(t, s;κ) = e−κ(s−t), t ≤ s, the discount factor for a rate κ and stipulate that the

constant r ≥ 0 is a good proxy to a risk-free rate. Then, standard calculations in this reduced

form approach (e.g. Duffie et al., 1996) show that the fair price for these derivatives under default

risk at time t is given by

Vt = 1{τ>t}E
[
1{τ>T}D(t, T, r)ξ + 1{τ≤T}D(t, τ, r)Xτ

∣∣Gt]
= 1{τ>t}E

[
D(t, T, r + γ)

(
ξ +

∫ T

t
D(s, T,−(r + γ))γXsds

)∣∣∣∣Ft] =: 1{τ>t}Yt, (5)

where expectation is again taken with respect to a pricing measure. We assume that, upon

default, the contract (consisting of the basket of derivatives) is replaced by the same one with a

new counterparty which has not yet defaulted but is otherwise identical to the old counterparty

B. This suggests the choice Xt = −(Yt)− + r(Yt)+ = Yt − (1 − r)(Yt)+ for some recovery rate

r ∈ [0, 1]. Here (·)± denote the positive part and the negative part, respectively. Substituting

this definition of X into (5) and integrating by parts, leads to the following nonlinear backward
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stochastic differential equation:

Yt = E

[
ξ −

∫ T

t
rYs + γ(1− r)(Ys)+ds

∣∣∣∣Ft] . (6)

Note that, by Proposition 3.4 in El Karoui et al. (1997), Y0 = infρE
[
e−

∫ T
0 ρsdsξ

]
, where ρ runs

over the set of adapted processes with values in [r, r+γ(1−r)]. Thus, the party A can minimize the

price by choosing the interest rate which is applied for the discounting within a range determined

by the riskless rate r, the credit spread γ of the counterparty, and the recovery rate r.

Discretizing (6) in time, we end up with the backward dynamic programming equation

Yj = (1− r∆)E[Yj+1|Ftj ]− γ(1− r)
(
E[Yj+1|Ftj ]

)
+

∆, YJ = ξ,

where tj = jh, j = 0, . . . , J , and ∆ = T/J . This equation is of the form (1) with βj ≡ 1,

Gj(z, y) = (1 − r∆)z − γ(1 − r)∆ (z)+, and Fj(z) ≡ 1. We note that, starting with the work

by Zhang (2004), time discretization schemes for backward stochastic differential equations have

been intensively studied, see, e.g., the literature overview in Bender and Steiner (2012).

If one additionally takes the default risk and the funding cost of the party A into account, the

corresponding dynamic programming equation has both concave and convex nonlinearities, and

Y0 corresponds to the equilibrium value of a two-player game, see the discussion at the end of

Section 3. This is one reason to consider the more flexible concave-convex form (1). A numerical

example in the theoretical framework of Crépey et al. (2013) with random interest and default

rates is presented in Section 7 below.

Example 2.3 (Uncertain volatility). Dynamic programming equations of the form (1) also appear

in the discretization of Hamilton-Jacobi-Bellman equations for stochastic control problems, see,

e.g., Fahim et al. (2011). We illustrate such an approach by the pricing problem of a European

option on a single asset under uncertain volatility, but the underlying discretization methodology

of Fahim et al. (2011) can, of course, be applied to a wide range of (multidimensional) stochastic

control problems in continuous time.

We suppose that the price of the asset is given under risk-neutral dynamics and in discounted

units by

Xσ
t = x0 exp

{∫ t

0
σudWu −

1

2

∫ t

0
σ2
udu

}
,

where W denotes a Brownian motion, and the volatility σ is a stochastic process which is adapted

to the Brownian filtration (Ft)0≤t≤T . The pricing problem of a European option with payoff

function g under uncertain volatility then becomes the optimization problem

Y0 = sup
σ
E[g(Xσ

T )], (7)

where σ runs over the nonanticipating processes with values in [σlow, σup] for some given constants
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σlow < σup. This is the worst case price over all stochastic volatility processes ranging within

the interval [σlow, σup], and thus reflects the volatility uncertainty. The study of this so-called

uncertain volatility model was initiated by Avellaneda et al. (1995) and Lyons (1995).

The corresponding Hamilton-Jacobi-Bellman equation can easily be transformed in such a

way that Y0 = v(0, 0) where v solves the fully nonlinear Cauchy problem

vt(t, x) = −1

2
vxx(t, x)− max

σ∈{σlow,σup}

1

2

(
σ2

ρ̂2
− 1

)
(vxx(t, x)− ρ̂vx(t, x)) , (t, x) ∈ [0, T )× R

v(T, x) = g(x0e
ρ̂x− 1

2
ρ̂2T ), x ∈ R, (8)

for any (constant) reference volatility ρ̂ > 0 of one’s choice. Under suitable assumptions on

g, there exists a unique classical solution to (8) (satisfying appropriate growth conditions), see

Pham (2009). Let 0 = t0 < t1 < . . . < tJ = T again be an equidistant partition of the interval

[0, T ], where J ∈ N, and set ∆ = T/J . We approximate v by an operator splitting scheme,

which on each small time interval first solves the linear subproblem, i.e., a Cauchy problem for

the heat equation, and then corrects for the nonlinearity by plugging in the solution of the linear

subproblem. Precisely, for fixed J , let

yJ(x) = g(x0e
ρ̂x− 1

2
ρ̂2T ), x ∈ R

ȳjt (t, x) = −1

2
ȳjxx(t, x), ȳj(tj+1, x) = yj+1(x), t ∈ [tj , tj+1), x ∈ R, j = J − 1, . . . , 0

yj(x) = ȳj(tj , x) + ∆ max
σ∈{σlow,σup}

1

2

(
σ2

ρ̂2
− 1

)(
ȳjxx(tj , x)− ρ̂ȳjx(tj , x)

)
, x ∈ R.

Evaluating yj(x) along the Brownian paths leads to Yj := yj(Wtj ). Applying the Feynman-

Kac representation for the heat equation, see e.g. Karatzas and Shreve (1991), repeatedly, one

observes that ȳj(tj ,Wtj ) = Ej [Yj+1], where Ej denotes the expectation conditional on Ftj . It is

well-known from Fournié et al. (1999) that the space derivatives of ȳj(tj , ·) can be expressed via

the so-called Malliavin Monte-Carlo weights as

ȳjx(tj ,Wtj ) = Ej

[
∆Wj+1

∆
Yj+1

]
, ȳjxx(tj ,Wtj ) = Ej

[(
∆W 2

j+1

∆2
− 1

∆

)
Yj+1

]
,

where ∆Wj = Wtj −Wtj−1 . (In our particular situation, one can verify this simply by re-writing

the conditional expectations as integrals on R with respect to the Gaussian density and integrating

by parts.) Hence, one arrives at the following discrete-time dynamic programming equation:

YJ = g(X ρ̂
T ),

Yj = Ej [Yj+1] + ∆ max
σ∈{σlow,σup}

(
1

2

(
σ2

ρ̂2
− 1

)
Ej

[(
∆W 2

j+1

∆2
− ρ̂∆Wj+1

∆
− 1

∆

)
Yj+1

])
, (9)
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where X ρ̂
T is the price of the asset at time T under the constant reference volatility ρ̂. This type

of time-discretization scheme was analyzed for a general class of fully nonlinear parabolic PDEs

by Fahim et al. (2011). In the particular case of the uncertain volatility model, the scheme was

suggested by Guyon and Henry-Labordère (2011) by a slightly different derivation.

Let Gj(z, y) = y, sι = 1
2(σ

2
ι
ρ̂2 − 1) for ι ∈ {up, low}, and Fj(z) = z(1) + ∆ maxs∈{slow,sup} sz

(2),

where z(i) denotes the i-th component of the two-dimensional vector z, and define the R2-valued

process β by

βj =

(
1,

∆W 2
j

∆2
− ρ̂∆Wj

∆
− 1

∆

)>
, j = 1, . . . , J,

where (·)> denotes matrix transposition. With these choices, the dynamic programming equation

for Y in (9) is of the form (1). We emphasize that, by Example 4.4, the weight

1 + ∆
1

2

(
σ2

ρ̂2
− 1

)(
∆W 2

j+1

∆2
− ρ̂∆Wj+1

∆
− 1

∆

)
(10)

becomes negative with positive probability for any choice of the reference volatility ρ̂, when σlow >

σup/
√

3. Then, by Theorem 4.3 below, the discrete time dynamic programming equation (9)

fails a comparison principle for super- and subsolutions, although the limiting partial differential

equation satisfies the comparison principle in the theory of viscosity solutions. As a second

consequence of negative weights in (10), Y may fail to be the value process of a discrete time

control problem. This is because the Hamilton-Jacobi-Bellman equation is discretized and not

the continuous time control problem. Hence, in such situations, the general theory of information

relaxation duals due to Brown et al. (2010) cannot be applied to construct upper bounds on Y

(though, of course, it can be applied to direct discretizations of the control problem), but the

pathwise dynamic programming approach, which we present in Section 4, still applies.

This discussion of the uncertain volatility model can be seen as prototypical for fully nonlinear

parabolic PDEs of the form

−vt(t, x)−H(t, x, v, vx, vxx) = 0, (t, x) ∈ [0, T )× Rd, v(T, ·) = h, (11)

where H : [0, T ]×Rd×R×Rd×Rd×d → R. After applying the discretization scheme of Fahim et al.

(2011), we end up with a dynamic programming equation of the form (1), if H is e.g. convex in v

and in the space derivatives of v, which is the case for Hamilton-Jacobi-Bellman equations. Here

the β-weight takes values in R1+d+d2
and consists of the 1, the d delta weights for the first space

derivatives, and the d2 gamma weights for the second space derivatives. We emphasize that the

comparison principle for the discretized equation does typically only hold, when the nonlinearity

in the second derivative is mild, and it is particularly restrictive in high-dimensional problems.

If, e.g., H depends only on the Laplacian of v and is increasing (to make the PDE parabolic) and

convex, then a similar argument as in Example 4.4 below shows that either H is linear or the
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resulting discrete-time equation fails the comparison principle for every choice of the reference

volatility, when the space dimension d is sufficiently large. We note that the consistency proof

of the discretization scheme of Fahim et al. (2011), which basically only builds on Itô’s formula,

works under very mild assumptions. While assuming the discrete time comparison principle

(resp. the equivalent monotonicity condition in the convex case, cp. Theorem 4.3) facilitates the

proof of the numerical stability in Fahim et al. (2011), the numerical experiments in Fahim et al.

(2011) and ours in Section 7 below indicate that the scheme is stable, if the reference volatility is

sufficiently strong.

3 Setting

In this section, we introduce the general setting of the paper, into which the examples of the

previous section are accommodated. We then explain, how the dynamic programming equation

(1) relates to a class of stochastic two-player games, which have a sound interpretation from the

point of view of option pricing. While establishing these connections has some intrinsic interest,

their main motivation is to make the constructions and results of Section 4 more tangible.

Throughout the paper we study the following type of concave-convex dynamic programming

equation on a complete filtered probability space (Ω,F, (Fj)j=0,...J , P ) in discrete time:

YJ = ξ,

Yj = Gj(Ej [βj+1Yj+1], Fj(Ej [βj+1Yj+1])), j = J − 1, . . . , 0 (12)

where Ej [·] denotes the conditional expectation with respect to Fj . We assume

(C): For every j = 0, . . . , J − 1, Gj : Ω × RD × R → R and Fj : Ω × RD → R are measurable

and, for every (z, y) ∈ RD × R, the processes (j, ω) 7→ Gj(ω, z, y) and (j, ω) 7→ Fj(ω, z) are

adapted. Moreover, for every j = 0, . . . , J − 1 and ω ∈ Ω, the map (z, y) 7→ Gj(ω, z, y) is

concave in (z, y) and non-decreasing in y, and the map z 7→ Fj(ω, z) is convex in z.

(R): • G and F are of polynomial growth in (z, y) in the following sense: There exist a

constant q ≥ 0 and a nonnegative adapted process (αj) such that for all (z, y) ∈ RD+1

and j = 0, . . . , J − 1

|Gj(z, y)|+ |Fj(z)| ≤ αj(1 + |z|q + |y|q), P -a.s.,

and αj ∈ Lp(Ω, P ) for every p ≥ 1.

• β = (βj)j=1,...,J is an adapted process such that βj ∈ Lp(Ω, P ) for every p ≥ 1 and

j = 1, . . . , J .

• The terminal condition ξ is an FJ -measurable random variable such that ξ ∈ Lp(Ω, P )

for every p ≥ 1.
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In the following, we abbreviate by

• L∞−(RN ) the set of RN -valued random variables that are in Lp(Ω, P ) for all p ≥ 1.

• L∞−j (RN ) the set of Fj-measurable random variables that are in L∞−(RN ).

• L∞−ad (RN ) the set of adapted processes Z such that Zj ∈ L∞−j (RN ) for every j = 0, . . . , J .

Thanks to the integrability assumptions on the terminal condition ξ and the weight process

β and thanks to the polynomial growth condition on F and G, it is straightforward to check

recursively that the (P -a.s. unique) solution Y to (12) belongs to L∞−ad (R) under assumptions

(C) and (R). In order to simplify the exposition, we shall also use the following convention: Unless

otherwise noted, all equations and inequalities are supposed to hold P -almost surely.

For our main results in Section 4, we rewrite equation (12) relying on convex duality tech-

niques. In the remainder of this section, we thus recall some concepts from convex analysis and

show that – in some cases – these techniques allow us to interpret the dynamic programming

equation (12) in terms of a class of two-player games. We recall that the convex conjugate of Fj

is given by

F#
j (u) := sup

z∈RD
(u>z − Fj(z)), u ∈ RD.

Note that F#
j can take the value +∞ and that the maximization takes place pathwise, i.e., ω by

ω. Analogously, for Gj the concave conjugate at
(
v(1), v(0)

)
∈ RD+1 can be defined in terms of

the convex conjugate of −Gj as

G#
j

(
v(1), v(0)

)
:= −(−Gj)#

(
−v(1),−v(0)

)
= inf

(z,y)∈RD+1

((
v(1)
)>

z + v(0)y −Gj(z, y)

)
,

which can take the value −∞. By the Fenchel-Moreau theorem, e.g. in the form of Theorem 12.2

in Rockafellar (1970), one has, for every j = 0, . . . , J − 1, z ∈ RD, y ∈ R, and every ω ∈ Ω

Gj(ω, z, y) = inf
(v(1),v(0))∈RD+1

((
v(1)
)>

z + v(0)y −G#
j (ω, v(1), v(0))

)
, (13)

Fj(ω, z) = sup
u∈RD

(
u>z − F#

j (ω, u)
)
. (14)

Here, the minimization and maximization can, of course, be restricted to the effective domains

D
G#
j (ω,·) = {(v(1), v(0)) ∈ RD+1, G#

j (ω, v(1), v(0)) > −∞}, D
F#
j (ω,·) = {u ∈ RD, F#

j (ω, u) < +∞}

of G#
j and F#

j . Noting that v(0) ≥ 0 for (v(1), v(0)) ∈ D
G#
j (ω,·) by the monotonicity assumption

on G in the y-variable, the dynamic programming equation (12) can be rewritten in the form

Yj = inf
(v(1),v(0))∈D

G
#
j

sup
u∈D

F
#
j

((
v(1) + v(0)u

)>
Ej [βj+1Yj+1]− v(0)F#

j (u)−G#
j (v(1), v(0))

)
,
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which formally looks like the dynamic programming equation for a two-player game with a random

(Fj+1-measurable!) and controlled ‘discount factor’
(
v(1) + v(0)u

)>
βj+1 between time j and j+1.

To make this intuition precise, we next introduce sets of adapted ‘controls’ (or strategies) in

terms of F and G by

AF
j =

{
(ri)i=j,...,J−1

∣∣∣ ri ∈ L∞−i (RD), F#
i (ri) ∈ L∞−(R) for i = j, . . . , J − 1

}
,

AG
j =

{(
ρ

(1)
i , ρ

(0)
i

)
i=j,...,J−1

∣∣∣ (ρ(1)
i , ρ

(0)
i

)
∈ L∞−i (RD+1),

G#
i

(
ρ

(1)
i , ρ

(0)
i

)
∈ L∞−(R) for i = j, . . . , J − 1

}
. (15)

In Appendix A, we show that these sets of controls AG
j and AF

j are nonempty under the standing

assumptions (C) and (R). For j = 0, . . . , J , we consider the following multiplicative weights

(corresponding to the ‘discounting’ between time 0 and j)

wj(ω, v
(1), v(0), u) =

j−1∏
i=0

(v
(1)
i + v

(0)
i ui)

>βi+1(ω) (16)

for ω ∈ Ω, v(1) = (v
(1)
0 , ..., v

(1)
J−1) ∈ (RD)J , v(0) = (v

(0)
0 , ..., v

(0)
J−1) ∈ RJ and u = (u0, ..., uJ−1) ∈

(RD)J . Assuming (for simplicity) that F0 is trivial, and (crucially) that the positivity condition

(v(1) + v(0)u)>βj+1(ω) ≥ 0 (17)

on the ‘discount factors’ holds for every ω ∈ Ω, (v(1), v(0)) ∈ D
G#
j (ω,·) and u ∈ D

F#
j (ω,·), Y0

is indeed the equilibrium value of a (in general, non-Markovian) stochastic two-player zero-sum

game, namely,

Y0 = inf
(ρ(1),ρ(0))∈AG0

sup
r∈AF0

E

wJ(ρ(1), ρ(0), r)ξ −
J−1∑
j=0

wj(ρ
(1), ρ(0), r)

(
ρ

(0)
j F#

j (rj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)

= sup
r∈AF0

inf
(ρ(1),ρ(0))∈AG0

E

wJ(ρ(1), ρ(0), r)ξ −
J−1∑
j=0

wj(ρ
(1), ρ(0), r)

(
ρ

(0)
j F#

j (rj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)

as is shown in Appendix C.2. In financial terms, we may think of wj(ρ
(1), ρ(0), r) as a discrete-

time price deflator (or as an approximation of a continuous-time price deflator given in terms of

a stochastic exponential which can incorporate both discounting in the real-world sense and a

change of measure). Then, the first term in

E

wJ(ρ(1), ρ(0), r)ξ −
J−1∑
j=0

wj(ρ
(1), ρ(0), r)

(
ρ

(0)
j F#

j (rj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)

12



corresponds to the fair price of an option with payoff ξ in the price system determined by the

deflator wJ(ρ(1), ρ(0), r), which is to be chosen by the two players. The choice may come with an

additional running reward or cost which is formulated via the convex conjugates of F and G in the

second term of the above expression. With this interpretation, Y0 is the equilibrium price for an

option with payoff ξ, on which the two players agree. Of course, the above stochastic two-player

game degenerates to a stochastic maximization (resp. minimization) problem, if G (resp. F ) is

linear, and so one of the control sets becomes a singleton.

As multiplication with a negative weight changes minimization into maximization and vice

versa, one cannot expect, in general, that the equilibrium value of the above two-player zero-sum

game can be described by the dynamic programming equation (12) in absence of the positivity

condition (17). Hence the validity of this game-theoretic interpretation of the dynamic program-

ming equation (12) crucially depends on this positivity assumption. For most of the paper, we

shall not assume the positivity condition (17), and hence go beyond the above game-theoretic

setting. Nonetheless, by a slight abuse of terminology, we will also refer to members of the sets

AG
j and AF

j as controls, when the positivity condition is violated.

4 Main results

In this section, we state and discuss the main contribution of the paper, the pathwise dynamic

programming approach of Theorem 4.5, which avoids the use of nested conditional expectations,

in order to construct tight upper and lower bounds on the solution Yj to the dynamic program

(12). Extending the ideas in Bender et al. (2015), this construction will be based on the concept

of supersolutions and subsolutions to the dynamic program (12).

Definition 4.1. A process Y up (resp. Y low) ∈ L∞−ad (R) is called supersolution (resp. subsolution)

to the dynamic program (12) if Y up
J ≥ YJ (resp. Y low

J ≤ YJ) and for every j = 0, . . . , J − 1 it

holds

Y up
j ≥ Gj([Ej [βj+1Y

up
j+1], Fj(Ej [βj+1Y

up
j+1])),

(and with ’ ≥’ replaced by ’ ≤’ for a subsolution).

Before we explain a general construction method for super- and subsolutions, we first illustrate

how the dual representation for optimal stopping in Example 2.1 can be derived this way.

Example 4.2. Fix a martingale M . The dynamic version of (4) suggests to consider

Θup
j := max

i=j,...,J
Si − (Mi −Mj), Y up

j = Ej [Θ
up
j ].

The anticipative discrete-time process Θup clearly satisfies the recursive equation (pathwise dy-

namic program)

Θup
j = max{Sj ,Θup

j+1 − (Mj+1 −Mj)}, Θup
J = SJ .

13



Hence, by convexity of the max-operator and Jensen’s inequality, we obtain, thanks to the mar-

tingale property of M and the tower property of conditional expectation,

Y up
j ≥ max{Sj , Ej [Θup

j+1 − (Mj+1 −Mj)]} = max{Sj , Ej [Y up
j+1]}, Y up

J = SJ .

Thus, Y up is a supersolution to the dynamic program (3). By the monotonicity of the max-

operator, we observe by backward induction that Y up
j ≥ Yj , because (assuming that the claim is

already proved at time j + 1)

Y up
j ≥ max{Sj , Ej [Y up

j+1]} ≥ max{Sj , Ej [Yj+1]} = Yj .

In particular, writing Y up(M) instead of Y up in order to emphasize the dependence on the fixed

martingale M , we get

Y0 ≤ inf
M
Y up

0 (M) = inf
M
E

[
max
i=0,...,J

Si − (Mi −M0)

]
. (18)

Defining M∗ to be the Doob martingale of Y , i.e. M∗i+1 −M∗i = Yi+1 − Ei[Yi+1], and Θup,∗ =

Θup(M∗), it is straightforward to check by backward induction, that, for every j = J, . . . , 0,

Θup,∗
j = Yj , as (assuming again that the claim is already proved for time j + 1)

Θup,∗
j = max{Sj ,Θup,∗

j+1 − (Yj+1 − Ej [Yj+1])} = max{Sj , Ej [Yj+1]} = Yj .

This turns the inequality in (18) into an equality.

This alternative proof of the dual representation for optimal stopping is by no means shorter

or simpler than the original one by Rogers (2002) and Haugh and Kogan (2004) which relies on

the optional sampling theorem and the supermartingale property of Y . It comes, however, with

the advantage that it generalizes immediately to dynamic programming equations which share

the same convexity and monotonicity properties. Indeed, if Gj(z, y) = y in our general setting

and we, thus, consider the convex dynamic program

Yj = Fj(Ej [βj+1Yj+1]), j = J − 1, . . . , 0, YJ = ξ, (19)

we can write the corresponding pathwise dynamic program

Θup
j = Fj(βj+1Θup

j+1 − (Mj+1 −Mj)), Θup
J = ξ (20)

for M ∈ MD, i.e., for D-dimensional martingales which are members of L∞−ad (RD). Then, the

same argument as above, based on convexity and Jensen’s inequality implies that Y up
j = Ej [Θ

up
j ]

is a supersolution to the dynamic program (19). A similar construction of a subsolution can be

built on classical Fenchel duality. Indeed, consider, for r ∈ AF
0 , the linear pathwise dynamic
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program

Θlow
j = r>j βj+1Θup

j+1 − F
#
j (rj), Θlow

J = ξ. (21)

Then, by (14), it is easy to check that Y low
j = Ej [Θ

low
j ] defines a subsolution.

These observations already led to the construction of tight upper and lower bounds for discrete-

time backward stochastic differential equations (BSDEs) with convex generators in Bender et al.

(2015). In the latter paper, the authors exploit that in their setting the special form of F ,

stemming from a Lipschitz BSDE, implies – after a truncation of Brownian increments – a similar

monotonicity property than in the Bermudan option case.

In the general setting of the present paper, we would have to assume the following comparison

principle to ensure that the supersolution Y up
j and the subsolution Y low

j indeed constitute an

upper bound and a lower bound for Yj .

(Comp): For every supersolution Y up and every subsolution Y low to the dynamic program (12)

it holds that

Y up
j ≥ Y low

j , P -a.s., for every j = 0, . . . , J.

The following characterization shows that the comparison principle can be rather restrictive

and is our motivation to remove it below through a more careful construction of suitable pathwise

dynamic programs.

Theorem 4.3. Suppose (R) and that the dynamic program is convex, i.e., (C) is in force with

Gj(z, y) = y for j = 0, . . . , J − 1. Then, the following assertions are equivalent:

(a) The comparison principle (Comp) holds.

(b) For every r ∈ AF
0 the following positivity condition is fulfilled: For every j = 0, . . . , J − 1

r>j βj+1 ≥ 0, P -a.s.

(c) For every j = 0, . . . , J−1 and any two random variables Y (1), Y (2) ∈ L∞−(R) with Y (1) ≥ Y (2)

P -a.s., the following monotonicity condition is satisfied:

Fj(Ej [βj+1Y
(1)]) ≥ Fj(Ej [βj+1Y

(2)]), P -a.s.

Theorem 4.3 provides three equivalent formulations for the comparison principle. Formulation

(b) illustrates the restrictiveness of the principle most clearly. For instance, when β contains

unbounded entries with random sign, comparison can only hold in degenerate cases. In some

applications, problems of this type can be resolved by truncation of the weights at the cost of

a small additional error. Yet in applications such as pricing under volatility uncertainty, the

comparison principle may fail (even under truncation), as shown in the following example.

Example 4.4. Recall the setting and the dynamic programming equation (9) from Example 2.3.

In this setting, thanks to condition (c) in Theorem 4.3, comparison boils down to the requirement
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that the prefactor

1 + sj

(
∆W 2

j+1

∆
− ρ̂∆Wj+1 − 1

)
of Yj+1 in equation (9) for Yj is P -almost surely nonnegative for both of the feasible values of sj ,

sj ∈

{
1

2

(
σ2
low

ρ̂2
− 1

)
,
1

2

(
σ2
up

ρ̂2
− 1

)}
.

For sj > 1, this requirement is violated for realizations of ∆Wj+1 sufficiently close to zero, while

for sj < 0 violations occur for sufficiently negative realizations of the Brownian increment – and

this violation also takes place if one truncates the Brownian increments at ±const.
√

∆ with an

arbitrarily large constant. Consequently, we arrive at the necessary conditions ρ̂ ≤ σlow and

ρ̂ ≥ σup/
√

3 for comparison to hold. For σlow = 0.1 and σup = 0.2, the numerical test case

in Guyon and Henry-Labordère (2011) and Alanko and Avellaneda (2013), these two conditions

cannot hold simultaneously, ruling out the possibility of a comparison principle.

Our aim is, thus, to modify the above construction of supersolutions and subsolutions in

such a way that comparison still holds for these particular pairs of supersolutions and subsolu-

tions, although the general comparison principle (Comp) may be violated. At the same time, we

generalize from the convex structure to the concave-convex structure.

To this end, we consider the following ‘coupled’ pathwise recursion. Given (ρ(1), ρ(0)) ∈ AG
j ,

r ∈ AF
j and M ∈MD, define the (in general) nonadapted processes θupi = θupi (ρ(1), ρ(0), r,M) and

θlowi = θlowi (ρ(1), ρ(0), r,M), i = j, . . . , J , via the ‘pathwise dynamic program’

θupJ = θlowJ = ξ,

θupi =

((
ρ

(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i max

ι∈{up,low}
Fi(βi+1θ

ι
i+1 −∆Mi+1)−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
θlowi = min

ι∈{up,low}
Gi

(
βi+1θ

ι
i+1 −∆Mi+1,

(
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1

−r>i ∆Mi+1 − F#
i (ri)

)
, (22)

where ∆Mi = Mi − Mi−1. We emphasize that these two recursion formulas are coupled, as

θlowi+1 enters the defining equation for θupi and θupi+1 enters the defining equation for θlowi . Roughly

speaking, the rationale of this coupled recursion is to replace θupj+1 by θlowj+1 in the upper bound

recursion at time j, whenever the violation of the comparison principle threatens to reverse

the order between upper bound recursion and lower bound recursion. Due to this coupling the

elementary argument based on convexity and Fenchel duality outlined at the beginning of this

section does not apply anymore, but a careful analysis is required to disentangle the influences of
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the upper and lower bound recursion (see the proofs in the appendix).

Our main result on the construction of tight upper and lower bounds for the concave-convex

dynamic program (12) in absence of the comparison principle now reads as follows:

Theorem 4.5. Suppose (C) and (R). Then, for every j = 0, . . . , J ,

Yj = essinf
(ρ(1),ρ(0))∈AGj , r∈AFj ,M∈MD

Ej [θ
up
j (ρ(1), ρ(0), r,M)]

= esssup
(ρ(1),ρ(0))∈AGj , r∈AFj , M∈MD

Ej [θ
low
j (ρ(1), ρ(0), r,M)], P -a.s.

For any (ρ(1), ρ(0)) ∈ AG
j , r ∈ AF

j , and M ∈MD, we have the P -almost sure relation

θlowi (ρ(1), ρ(0), r,M) ≤ θupi (ρ(1), ρ(0), r,M) (23)

for every i = j, . . . , J . Moreover,

Yj = θupj (ρ(1,∗), ρ(0,∗), r∗,M∗) = θlowj (ρ(1,∗), ρ(0,∗), r∗,M∗) (24)

P -almost surely, for every (ρ(1,∗), ρ(0,∗)) ∈ AG
j and r∗ ∈ AF

j satisfying the duality relations

(
ρ

(1,∗)
i

)>
Ei [βi+1Yi+1] + ρ

(0,∗)
i Fi (Ei[βi+1Yi+1])−G#

i

(
ρ

(1,∗)
i , ρ

(0,∗)
i

)
= Gi (Ei [βi+1Yi+1] , Fi(Ei[βi+1Yi+1])) (25)

and

(r∗i )
>Ei [βi+1Yi+1]− F#

i (r∗i ) = Fi (Ei [βi+1Yi+1]) (26)

P -almost surely for every i = j, . . . , J − 1, and with M∗ being the Doob martingale of βY , i.e.,

M∗k =
k−1∑
i=0

βi+1Yi+1 − Ei[βi+1Yi+1], P -a.s., for every k = 0, . . . J.

We note that, by Lemma A.1, optimizers (ρ(1,∗), ρ(0,∗)) ∈ AG
j and r∗ ∈ AF

j which solve the

duality relations (25) and (26) do exist. These duality relations also provide some guidance on

how to choose nearly optimal controls in numerical implementations of the method: When an

approximate solution Ỹ of the dynamic program is available, controls can be chosen such that

they (approximately) fulfill the analogs of (25) and (26) with Ỹ in place of the unknown true

solution. Likewise, M can be chosen as (an approximate) Doob martingale of βỸ . Moreover, the

almost sure optimality property in (24) suggests that (as is the case for the dual upper bounds

for optimal stopping) a Monte Carlo implementation benefits from a low variance, when the
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approximate solution Ỹ to the dynamic program (12) is sufficiently close to the true solution Y .

As shown in the next proposition, the processes Ej [θ
up
j ] and Ej [θ

low
j ] in Theorem 4.5 indeed

define super- and subsolutions to the dynamic program (12) which are ordered even though the

comparison principle need not hold:

Proposition 4.6. Under the assumptions of Theorem 4.5, the processes Y up and Y low given by

Y up
j = Ej [θ

up
j (ρ(1), ρ(0), r,M)] and Y low

j = Ej [θ
low
j (ρ(1), ρ(0), r,M)], j = 0, . . . , J are, respectively,

super- and subsolutions to (12) for every (ρ(1), ρ(0)) ∈ AG
0 , r ∈ AF0 , and M ∈MD.

We close this section by stating a simplified and decoupled pathwise dynamic programming

approach, which can be applied if the comparison principle is known to be in force.

Theorem 4.7. Suppose (C), (R), and (Comp) and fix j = 0, . . . , J . For every (ρ(1), ρ(0)) ∈ AG
j

and M ∈MD define Θup
j = Θup

j (ρ(1), ρ(0),M) by the pathwise dynamic program

Θup
i =

(
ρ

(1)
i

)> (
βi+1Θup

i+1 − (Mi+1 −Mi)
)

+ ρ
(0)
i Fi(βi+1Θup

i+1 − (Mi+1 −Mi))−G#
i (ρ

(1)
i , ρ

(0)
i ),

for i = J − 1, . . . , j, initiated at Θup
J = ξ. Moreover, for r ∈ AF

j and M ∈ MD define Θlow
j =

Θlow
j (r,M) for i = J − 1, . . . , j by the pathwise dynamic program

Θlow
i = Gi

(
βi+1Θlow

i+1 − (Mi+1 −Mi), r
>
i

(
βi+1Θlow

i+1 − (Mi+1 −Mi)
)
− F#

i (ri)
)

initiated at Θlow
J = ξ. Then,

Yj = essinf
(ρ(1),ρ(0))∈AGj , M∈MD

Ej [Θ
up
j (ρ(1), ρ(0),M)] = esssup

r∈AFj , M∈MD

Ej [Θ
low
j (r,M)], P -a.s.,

Moreover,

Yj = Θup
j (ρ(1,∗), ρ(0,∗),M∗) = Θlow

j (r∗,M∗) (27)

P -almost surely, for every (ρ(1,∗), ρ(0,∗)) ∈ AG
j and r∗ ∈ AF

j satisfying the duality relations (25)–

(26) and with M∗ being the Doob martingale of βY .

Remark 4.8. Assume that the dynamic programming equation (12) is convex, i.e. Gj(z, y) = y for

every j = 0, . . . , J − 1. Then, it is straightforward to check that Ej [Θ
low
j (ρ(1), ρ(0),M)] does not

depend on the choice of the martingale M in Theorem 4.7, i.e. M merely acts as a control variate

for the lower bound. In the language of information relaxation duals, this can be rephrased as

using dual feasible penalties (which satisfy a suitable martingale property) as control variates in

the primal problem and has been suggested in different contexts, see e.g. Remark 3.6 in Bender

et al. (2015) and Section 2.3.1 in Brown and Haugh (2016). In contrast, the proof of Theorem

4.5 crucially depends on the pathwise comparison property (23), which requires that the same

martingale is applied in the recursion for θup and θlow.
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5 Relation to information relaxation duals

In this section, we relate a special case of our pathwise dynamic programming approach to the

information relaxation dual for the class of stochastic two-player games discussed in Section

3. Throughout the section, we assume that the positivity condition (17) holds and that no

information is available at time zero, i.e., F0 is trivial. Then, by virtue of Proposition B.1,

the comparison principle (Comp) is in force and we can apply the simplified pathwise dynamic

programming approach of Theorem 4.7.

Under assumption (17), Y0 is the equilibrium value of a stochastic two-player zero-sum game,

namely,

Y0 = inf
(ρ(1),ρ(0))∈AG0

sup
r∈AF0

E

wJ(ρ(1), ρ(0), r)ξ −
J−1∑
j=0

wj(ρ
(1), ρ(0), r)

(
ρ

(0)
j F#

j (rj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)

= sup
r∈AF0

inf
(ρ(1),ρ(0))∈AG0

E

wJ(ρ(1), ρ(0), r)ξ −
J−1∑
j=0

wj(ρ
(1), ρ(0), r)

(
ρ

(0)
j F#

j (rj) +G#
j (ρ

(1)
j , ρ

(0)
j )
) ,

as seen in Section 3 where the multiplicative weights wj are defined in (16). Now, assume that

player 1 fixes her control (ρ(1), ρ(0)) ∈ AG
0 . Then,

Y0 ≤ sup
r∈AF0

E

wJ(ρ(1), ρ(0), r)ξ −
J−1∑
j=0

wj(ρ
(1), ρ(0), r)

(
ρ

(0)
j F#

j (rj) +G#
j (ρ

(1)
j , ρ

(0)
j )
) .

One can next apply the information relaxation dual of Brown et al. (2010) (with strong duality),

which states that the maximization problem on the right-hand side equals

inf
p
E

 sup
u∈(RD)J

wJ(ρ(1), ρ(0), u)ξ −
J−1∑
j=0

wj(ρ
(1), ρ(0), u)

(
ρ

(0)
j F#

j (uj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)
− p(u)

 ,
where the infimum runs over the set of all dual-feasible penalties, i.e., all mappings p : Ω×(RD)J →
R ∪ {+∞} which satisfy E[p(r)] ≤ 0 for every r ∈ AF

0 , i.e., for every adapted and admissible

control r of player 2. Notice that, for every martingale M ∈MD, the map

pM : u 7→
J−1∑
j=0

wj(ρ
(1), ρ(0), u)(ρ

(1)
j + ρ

(0)
j uj)

>∆Mj+1

is a dual-feasible penalty, since, for adapted controls r ∈ AF
0 ,

E[pM (r)] =

J−1∑
j=0

E
[
wj(ρ

(1), ρ(0), r)(ρ
(1)
j + ρ

(0)
j rj)

>Ej [∆Mj+1]
]

= 0
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by the martingale property of M and the tower property of the conditional expectation. We shall

refer to penalties of that particular form as martingale penalties. It turns out (see Appendix C.1

for the detailed argument) that, given the fixed controls (ρ(1), ρ(0)) ∈ AG
0 of player 1, one has, for

every martingale M ∈MD,

Θup
0 (ρ(1), ρ(0),M) (28)

= sup
u∈(RD)J

wJ(ρ(1), ρ(0), u)ξ −
J−1∑
j=0

wj(ρ
(1), ρ(0), u)

(
ρ

(0)
j F#

j (uj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)
− pM (u)

 .

Hence, Theorem 4.7 implies

Y0 = inf
(ρ(1),ρ(0))∈AGj , M∈MD

E

[
sup

u∈(RD)J

(
wJ(ρ(1), ρ(0), u)ξ

−
J−1∑
j=0

wj(ρ
(1), ρ(0), u)

(
ρ

(0)
j F#

j (uj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)
− pM (u)

)]

i.e., one still obtains strong duality, when the minimization is restricted from the set of all dual-

feasible penalties to the subset of martingale penalties {pM ; M ∈ MD}. Summarizing, when

assuming the positivity condition (17), we can interpret the upper bound E[Θup
0 (ρ(1), ρ(0),M)] in

such a way that, first, player 1 fixes her strategy (ρ(1), ρ(0)) and the penalty by the choice of the

martingale M , while, then, the player 2 is allowed to maximize the penalized problem pathwise.

For the analogous representation of the lower bound E[Θlow
0 (r,M)], we refer to Appendix C.1.

In this way, we end up with the information relaxation dual of Brown et al. (2010) for each

player given that the other player has fixed a control, but with the additional twist that, for

our particular class of (possibly non-Markovian) two-player games, strong duality still holds for

the subclass of martingale penalties. The general procedure explained above is analogous to the

recent information relaxation approach by Haugh and Wang (2015) for two-player games in a

classical Markovian framework which dates back to Shapley (1953).

We stress that, in the general theory of information relaxation duals, solving the pathwise

optimization problem often turns out to be the computational bottleneck, compare, e.g., the

discussion in Section 4.2 of Brown and Smith (2011) and in Section 2.3 of Haugh and Lim (2012).

In contrast, in the framework of the current paper, the implementation is as straightforward as

in the optimal stopping case: One first chooses a (D-dimensional) martingale M and then solves

the pathwise maximization problem on the right-hand side of (28) for the martingale penalty pM

simply by evaluating the explicit pathwise recursion for Θup
0 (ρ(1), ρ(0),M) in Theorem 4.7.

As an important example, the setting of this section covers pricing of convertible bonds. In its

simplest form it is a stopping game of two adapted processes Lj ≤ Uj governed by the equation

Yj = min{Uj ,max{Lj , Ej [Yj+1]}}, YJ = LJ .
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For this problem, representations in the sense of pathwise optimal control were previously studied

by Kühn et al. (2007) in continuous time and by Beveridge and Joshi (2011) in discrete time.

6 Systems of dynamic programming equations

In this section, we generalize Theorem 4.5 to the case of systems of dynamic programming equa-

tions. Our main motivation is to construct confidence bounds for the components of suitable

discretization schemes for systems of semilinear parabolic partial differential equations, although

our approach also covers the classical multiple stopping case. In order to simplify the notation,

we focus on the convex case, but note that the concave-convex case can be handled analogously.

More precisely, we consider systems of the form

Y
(ν)
J = ξ(ν)

Y
(ν)
j = F

(ν)
j

(
Ej

[
βj+1Y

(1)
j+1

]
, ..., Ej

[
βj+1Y

(N)
j+1

])
, ν = 1, ..., N, j = J − 1, ..., 0, (29)

where β and each terminal condition ξ(ν) satisfy (R) and each F
(ν)
j : Ω × RND → R satisfies

the conditions on Fj imposed in (C), (R) (with D replaced by ND). In particular, each F
(ν)
j

is convex in its ND space variables. For a vector x ∈ RND, we denote by x[n] the vector in RD

consisting of the ((n− 1)D + 1)-th up to the (nD)-th entry of x, i.e. x = (x[1], . . . , x[N ]).

Now, we fix j = 0, . . . , J −1, a martingale M ∈MND and controls r(ν) ∈ AF (ν)

j , ν = 1, . . . , N .

Note that each r
(ν)
i takes values in RND and we denote by r

(ν),[n]
i the N blocks of RD-valued

random variables. The pathwise recursions for the system (29) now read as follows:

θ
(up,ν)
J = θ

(low,ν)
J = ξ(ν)

θ
(up,ν)
i = max

ι∈{up,low}N
F

(ν)
i

(
βi+1θ

(ι1,1)
i+1 −∆M

[1]
i+1, ..., βi+1θ

(ιN ,N)
i+1 −∆M

[N ]
i+1

)
θ

(low,ν)
i =

N∑
n=1

((
r

(ν),[n]
i

)>
βi+1

)
+

θ
(low,n)
i+1 −

N∑
n=1

((
r

(ν),[n]
i

)>
βi+1

)
−
θ

(up,n)
i+1

−
N∑
n=1

(
r

(ν),[n]
i

)>
∆M

[n]
i+1 − F

(ν,#)
i

(
r

(ν)
i

)
, (30)

i = j, . . . , J − 1, ν = 1, . . . , N . As before, we sometimes write e.g. θ
(up,ν)
i (r(1), ..., r(N),M) to

stress the dependence on the martingale and the controls. In the setting described above, the

following variant of Theorem 4.5 for systems of dynamic programming equations holds true.

Theorem 6.1. For every j = 0, . . . , J and ν = 1, ..., N ,

Y
(ν)
j = essinf

r(1)∈AF (1)

j ,...,r(N)∈AF (N)

j ,

M∈MND

Ej [θ
(up,ν)
j (r(1), ..., r(N),M)]
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= esssup

r(1)∈AF (1)

j ,...,r(N)∈AF (N)

j ,

M∈MND

Ej [θ
(low,ν)
j (r(1), ..., r(N),M)], P -a.s.

Moreover, we have the P -almost sure relation

θ
(low,ν)
i (r(1), ..., r(N),M) ≤ θ(up,ν)

i (r(1), ..., r(N),M) (31)

for every i = j, . . . , J , Finally,

Y
(ν)
j = θ

(up,ν)
j (r(1,∗), ..., r(N,∗),M∗) = θlowj (r(1,∗), ..., r(N,∗),M∗) (32)

P -almost surely, whenever each r(ν,∗) satisfies the duality relation

N∑
n=1

(
r

(ν,∗),[n]
i

)>
Ei

[
βi+1Y

(n)
i+1

]
− F (ν,#)

i

(
r

(ν,∗)
i

)
= F

(ν)
i

(
Ei

[
βi+1Y

(1)
i+1

]
, ..., Ei

[
βi+1Y

(N)
i+1

])
(33)

P -almost surely for every i = j, . . . , J − 1 and each M∗,[ν] is the Doob martingale of βY (ν).

Remark 6.2. The proof of Theorem 6.1 follows componentwise the same line of arguments as the

one of Theorem 4.5 applying the following reformulation of the upper bound recursion

θ
(up,ν)
i = sup

u∈RND

(
N∑
n=1

((
u[n]
)>

βi+1

)
+

θ
(up,n)
i+1 −

N∑
n=1

((
u[n]
)>

βi+1

)
−
θ

(low,n)
i+1

−
N∑
n=1

(
u[n]
)>

∆M
[n]
i+1 − F

(ν,#)
i (u)

)

(which is the componentwise version of Proposition B.3 in the convex case). As the sup can be

restricted to the effective domain of F
(ν,#)
i this alternative representation can be beneficial in the

numerical implementation in situations, when N is very large (and, hence, maximizing over the

set {up, low}N is prohibitive), but the effective domain has a low-dimensional parametrization.

We illustrate the scope of Theorem 6.1 by two examples.

Example 6.3. The standard multiple stopping problem (or, pricing problem of a swing option) of

a stochastic process S ∈ L∞−ad (R) is governed by the system of dynamic programming equations

Y
(ν)
j = max{Ej [Y (ν)

j+1], Sj + Ej [Y
(ν−1)
j+1 ]}, Y

(ν)
J = νSJ ,

ν = 1, . . . , N with the convention Y (0) ≡ 0. Y
(ν)

0 describes the value of the problem of maximizing

the expected reward from stopping the process S at ν times, where all stops must be at different

times (except that all remaining rights are automatically executed at time J). One can e.g. think

of J as an artificial time point and define SJ = 0 in order to model the convention that remaining
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rights at the end of the time horizon are worthless. In this example, D = 1 and β ≡ 1. Due to the

monotonicity of the max-operator and the pathwise comparison (31), the upper bound recursion

decouples from the lower bound recursion and we get for any RN -valued martingale M ,

θ
(up,ν)
j = max

{
θ

(up,ν)
j+1 −∆M

[ν]
j+1, Sj + θ

(up,ν−1)
j+1 −∆M

[ν−1]
j+1

}
, θ

(up,ν)
J = νSJ , θ(up,0) ≡ 0,

(ν = 1, . . . , N). Solving this system of pathwise recursive equations explicitly yields

θ
(up,ν)
j = max

j≤i1≤···≤iν ,
ik=ik+1⇒ ik=J

ν∑
k=1

(
Sik −M

[ν−k+1]
ik

−M [ν−k+1]
ik−1

)
, i0 := j.

Hence, Theorem 6.1 recovers the pure martingale dual for multiple stopping of Schoenmakers

(2012) as special case, which can also be derived from the general theory of information relaxation

duals, see Chandramouli and Haugh (2012).

Example 6.4. We now consider systems of semilinear parabolic PDEs of the form

v
(ν)
t (t, x) +

1

2

d∑
k,l=1

(σσ>)k,l(t, x)v(ν)
xk,xl

(t, x) +

d∑
k=1

bk(t, x)v(ν)
xk

(t, x)

= −H(ν)(t, x, v(1)(t, x), σ(t, x)∇xv(1)(t, x), . . . , v(N)(t, x), σ(t, x)∇xv(N)(t, x)),

(t, x) ∈ [0, T )×Rd, ν = 1, . . . , N with terminal conditions v(ν)(T, x) = h(ν)(x). A two-dimensional

system of this type arises, e.g., for pricing under negotiated collateralization as shown in Nie and

Rutkowski (2016) and will be discussed in more detail in Section 7.

Under suitable conditions on the coefficients σ : [0, T ]×Rd → Rd×d, b : [0, T ]×Rd → Rd, H(ν) :

[0, T ]×Rd×RN(1+d) → R, and h(ν) : Rd → R, this system has a unique classical solution satisfying

certain growth conditions, see e.g. Chapter 9 of Friedman (1964). Exploiting the link between

semilinear parabolic PDEs and backward stochastic differential equations (see e.g. Pardoux, 1998),

the parabolic system above can be discretized as follows: Given a partition π = (t0, . . . , tJ) of

[0, T ] and a d-dimensional Brownian motion W with increments ∆Wi+1 := Wti+1 −Wti over time

lags of size ∆i+1 = ti+1 − ti, consider the Euler type scheme (j = 0, . . . , J − 1, ν = 1, . . . , N)

Xj+1 = Xj + b(tj , Xj)∆j+1 + σ(tj , Xj)∆Wj+1, X0 = x,

Y
(ν)
j = Ej [Y

(ν)
j+1] +H(ν)(tj , Xj , Ej [βj+1Y

(1)
j+1], . . . , Ej [βj+1Y

(N)
j+1 ])∆j+1, Y

(ν)
J = h(XJ),

βj+1 =

(
1,

∆W
(1)
j+1

∆j+1
, . . . ,

∆W
(d)
j+1

∆j+1

)>
,

where Ej denotes the conditional expectation with respect to the information generated by the

Brownian motion up to time tj . Under standard Lipschitz conditions, the approximation error

supν=1,...,N |v(ν)(0, x)− Y (ν)
0 | is known to converge at order 1/2 in the mesh size of the partition,
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see e.g. the arguments in Zhang (2004). If H is convex in the last N(d + 1) variables and the

coefficients satisfy suitable growth conditions, then this discretization scheme is of the form (29).

In order to obtain a componentwise comparison principle for this discretization scheme at

fine partitions, it is necessary that, for every ν, H(ν) does not depend on the gradient of v(n) for

n 6= ν (even if the Brownian increments are truncated in a standard way) and that it depends

on v(n), n 6= ν, in a monotonically increasing way. This can be shown analogously to the proof

of Theorem 4.3. Here, we mean by a componentwise comparison principle that the inequalities

in the definition of super- and subsolutions and in the definition of the comparison principle

are supposed to hold for each of the N components. Removing these restrictive assumptions

on the coupling in a system of equations is another important reason not to assume a discrete

time comparison principle, and instead to work with the coupled pathwise dynamic programming

equations for upper bounds and lower bounds in Theorem 6.1.

7 Applications

In this section, we apply the pathwise dynamic programming methodology to calculate upper and

lower bounds for three nonlinear pricing problems, pricing of a long-term interest rate product

under bilateral counterparty risk, option pricing under volatility uncertainty, and under negotiated

collateralization. Traditionally, the valuation of American options was by far the most prominent

nonlinear pricing problem both in practice and in academia. In the wake of the financial crisis,

various other sources of nonlinearity such as model uncertainty, default risk, liquidity problems

or transaction costs have received considerable attention, see the recent monographs Brigo et al.

(2013), Crépey (2013), and Guyon and Henry-Labordère (2013).

7.1 Bilateral counterparty risk

Suppose that two counterparties have agreed to exchange a stream of payments Ctj over the

sequence of time points t0, . . . , tJ . For many common interest rate products such as swaps, the sign

of C is random – so that the agreed payments may flow in either direction. Therefore, a consistent

pricing approach must take into account bilateral default risk, thus introducing nonlinearities

into the recursive pricing equations which are in general neither convex nor concave. In this

respect, the present setting is conceptually similar but more complex than the model of unilateral

counterparty risk in Example 2.2. We refer to Crépey et al. (2013) for technical background and

an in-depth discussion of the intricacies of pricing under bilateral counterparty risk and funding.

We notice that by discretizing their equations (2.14) and (3.8), we arrive at the following nonlinear

backward dynamic program for the value of the product Yj at time tj (given that there was no

default prior to tj) associated with the payment stream C, namely, YJ = CtJ and

Yj = (1−∆(rtj + γtj (1− r)(1− 2ptj ) + λ))Ej [Yj+1]
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+∆(γtj (1− r)(1− 3ptj ) + λ− λ)Ej [Yj+1]+ + Ctj .

Here Ej denotes the expectation conditional on the market’s reference filtration up to time tj (i.e.,

the full market information is obtained by enlarging this filtration with the information whether

default has yet occurred or not). In focusing on equation (3.8) in Crépey et al. (2013), we consider

a pre-default CSA recovery scheme without collateralization, see their paper for background. In

the pricing equation, rt denotes (a proxy to) the risk-less short rate at time t. The rate at which a

default of either side occurs at time t is denoted by γt. Moreover, pt is the associated conditional

probability that it is the counterparty who defaults, if default occurs at time t. We rule out

simultaneous default so that own default happens with conditional probability 1−pt, and assume

that the three parameters ρ, ρ and r associated with partial recovery from Crépey et al. (2013)

are identical and denoted by r. Finally, λ and λ are two constants associated with the costs of

external lending and borrowing, and ∆ = tj+1−tj is the stepsize of the equidistant time partition.

Defining gj = 1−∆(rtj + γtj (1− r)(1− 2ptj ) + λ) and hj = ∆(γtj (1− r)(1− 3ptj ) + λ− λ),

we can express the recursion for Y in terms of a concave function Gj and a convex function Fj

by setting Fj(z) = z+ and

Gj(z, y) = gj z + (hj)+ y − (hj)− z+ + Ctj ,

so that Yj = Gj(Ej [Yj+1], Fj(Ej [Yj+1])). Hence, D = 1 and β ≡ 1 in this example. Denote by (Ỹj)

a numerical approximation of the process (Yj), by (Q̃j) a numerical approximation of (Ej [Yj+1])

and by (M̃j) a martingale which we think of as an approximation to the Doob martingale of Y .

In terms of these inputs, the pathwise recursions (22) for upper and lower bound are given by

θupj =
(
ρ̃

(1)
j

)
+

(
θupj+1 −∆M̃j+1

)
−
(
ρ̃

(1)
j

)
−

(
θlowj+1 −∆M̃j+1

)
+ ρ̃

(0)
j

(
θupj+1 −∆M̃j+1

)
+

+ Ctj

θlowj = min
ι∈{up,low}

gj

(
θιj+1 −∆M̃j+1

)
− (hj)−

(
θιj+1 −∆M̃j+1

)
+

+ (hj)+ s̃j

(
θlowj+1 −∆M̃j+1

)
+ Ctj

where

(ρ̃
(1)
j , ρ̃

(0)
j , s̃j) =

(gj , (hj)+, 0) , Q̃j < 0,

(gj − (hj)−, (hj)+, 1) , Q̃j ≥ 0.

For the payment stream Ctj , we consider a swap with notional N , fixed rate R and an

equidistant sequence of tenor dates T = {T0, . . . , TK} ⊆ {t0, . . . tJ}. Denote by δ the length of the

time interval between Ti and Ti+1 and by P (Ti−1, Ti) the Ti−1-price of a zero-bond with maturity

Ti. Then, the payment process Ctj is given by

CTi = N ·
(

1

P (Ti−1, Ti)
− (1 +Rδ)

)
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for Ti ∈ T \ {T0} and Ctj = 0 otherwise, see Brigo and Mercurio (2006), Chapter 1.

For r and γ, we implement the model of Brigo and Pallavicini (2007), assuming that the

risk-neutral dynamics of r is given by a two-factor Gaussian short rate model, a reparametriza-

tion of the two-factor Hull-White model, while γ is a CIR process. For the conditional default

probabilities pt we assume pt = 0∧ p̃t∨1 where p̃ is an Ornstein-Uhlenbeck process. In continuous

time, this corresponds to the system of stochastic differential equations

dxt = −κxxtdt+ σxdW
x
t , dyt = −κyytdt+ σydW

y
t

dγt = κγ(µγ − γt)dt+ σγ
√
γtdW

γ
t , dp̃t = κp(µp − p̃t)dt+ σpdW

p
t

with rt = r0 + xt + yt, x0 = y0 = 0. Here, W x, W y and W γ are Brownian motions with instan-

taneous correlations ρxy, ρxγ and ρyγ . In addition, we assume that W p
t = ργpW

γ
t +

√
1− ρ2

γpWt

where the Brownian motion W is independent of (W x,W y,W γ). We choose the filtration gener-

ated by the four Brownian motions as the reference filtration.

For the dynamics of x, y and p̃, exact time discretizations are available in closed form. We

discretize γ by (γ̃tj )+, where γ̃ denotes the fully truncated scheme of Lord et al. (2010). The

bond prices P (t, s) are given as an explicit function of xt and yt in this model. This implies that

the swap’s “clean price”, i.e., the price in the absence of counterparty risk is given in closed form

as well, see Sections 1.5 and 4.2 of Brigo and Mercurio (2006).

We consider 60 half-yearly payments over a horizon of T = 30 years, i.e., δ = 0.5. J is always

chosen as an integer multiple of 60 so that δ is an integer multiple of ∆ = T/J . For the model

parameters, we choose

(r0, κx, σx, κy, σy) = (0.03, 0.0558, 0.0093, 0.5493, 0.0138),

(γ0, µγ , κγ , σγ , p0, µp, κp, σp) = (0.0165, 0.026, 0.4, 0.14, 0.5, 0.5, 0.8, 0.2),

(ρxy, ρxγ , ρyγ , r, λ, λ,N) = (−0.7, 0.05, −0.7, 0.4, 0.015, 0.045, 1).

We thus largely follow Brigo and Pallavicini (2007) for the parametrization of r and γ but leave

out their calibration to initial market data and choose slightly different correlations to avoid the

extreme cases of a perfect correlation or independence of r and γ. The remaining parameters J ,

R and ργp are varied in the numerical experiments below.

In order to pre-compute the input approximation (Ỹ , Q̃) we apply here (and in the other

numerical examples below) a variant of the regression-later algorithm of Glasserman and Yu

(2004), which was developed there for the optimal stopping case. This algorithm performs, in

each step backwards in time, a simulation-based empirical least-squares regression on a set of basis

functions. Our variant is described in detail in Section 5.1 of Bender et al. (2016). It requires that,

for each basis function at time (i+ 1), say ηi+1, the one-step conditional expectation Ei[βi+1ηi+1]

can be computed in closed form, as well as the one-step conditional expectation EJ−1[βJ ỸJ ] of

the terminal condition ỸJ . As a main benefit of regression-later approaches, the Doob martingale
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J Clean Price ργp = 0.8 ργp = 0 ργp = −0.8 Run Time (ργp = 0)

120
(Nr=105)

0 21.34
(0.02)

21.39
(0.02)

24.88
(0.02)

24.94
(0.02)

28.33
(0.02)

28.41
(0.02)

33 sec.

120
(Nr=106)

0 21.32
(0.02)

21.37
(0.02)

24.90
(0.02)

24.96
(0.02)

28.29
(0.02)

28.38
(0.02)

244 sec.

360
(Nr=105)

0 21.27
(0.02)

21.33
(0.02)

24.85
(0.02)

24.90
(0.02)

28.26
(0.02)

28.35
(0.02)

90 sec.

360
(Nr=106)

0 21.27
(0.02)

21.32
(0.02)

24.84
(0.02)

24.91
(0.02)

28.26
(0.02)

28.35
(0.02)

709 sec.

720
(Nr=105)

0 21.26
(0.02)

21.31
(0.02)

24.84
(0.02)

24.90
(0.02)

28.26
(0.02)

28.35
(0.02)

182 sec.

720
(Nr=106)

0 21.26
(0.02)

21.31
(0.02)

24.86
(0.02)

24.92
(0.02)

28.25
(0.02)

28.34
(0.02)

1429 sec.

1440
(Nr=105)

0 21.24
(0.02)

21.29
(0.02)

24.84
(0.02)

24.90
(0.02)

28.23
(0.02)

28.32
(0.02)

366 sec.

1440
(Nr=106)

0 21.27
(0.02)

21.32
(0.02)

24.83
(0.02)

24.89
(0.02)

28.25
(0.02)

28.34
(0.02)

2693 sec.

Table 1: Lower and upper bound estimators for varying values of ργp, J and Nr with R = 275.12
basis points (b.p.), Ne = 5 · 105. Prices and standard deviations (in brackets) are given in b.p.

M̃ of βỸ , which we apply in the pathwise recursions, is available in closed form and need not be

approximated by a nested simulation as in Andersen and Broadie (2004) type algorithms.

We initialize the regression at ỸJ = CtJ and choose, at each time 1 ≤ j ≤ J − 1, the four

basis functions 1, γ̃tj , γ̃tj · p̃tj and the closed-form expression for the clean price at time tj of

the swap’s remaining payment stream. The regression is run with Nr independent trajectories of

the underlying discrete-time Markov process (xtj , ytj , γ̃tj , p̃tj , xT (j), yT (j)), the so-called regression

paths, where T (j) denotes the largest tenor date which is strictly smaller than tj . Storing the

coefficients from the regression, we next simulate Ne = 5 ·105 new independent trajectories of the

underlying Markov process, which we call evaluation paths (and which are independent of the

regression paths). We can then go through the recursion for θup and θlow along each evaluation

path. Denote by Ŷ up
0 and Ŷ low

0 the resulting empirical means as Monte Carlo estimators of

E[θup0 ] and E[θlow0 ] and their associated empirical standard deviations by σ̂up and σ̂low. Then, an

asymptotic 95%-confidence interval for Y0 is given by

[Ŷ low
0 − 1.96σ̂low, Ŷ up

0 + 1.96σ̂up].

Table 1 displays upper and lower bound estimators with their standard deviations for different

step sizes of the time discretization, for two choices of the number of regression paths, Nr ∈
{105, 106}, and for different correlations between γ and p. Here, R is chosen as the fair swap

rate in the absence of default risk, i.e., it is chosen such that the swap’s clean price at j = 0

is zero. The four choices of J correspond to a quarterly, monthly, bi-weekly, and weekly time

discretization, respectively. In all cases, the width of the resulting confidence interval is about

0.6% of the value. We note that the regression estimates Ỹ0 (which we do not report here) are
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ργp Adjusted Fair Swap Rate Clean Price Bounds

0.8 290.82 −31.53 −0.02
(0.02)

0.05
(0.02)

0 293.65 −37.22 −0.05
(0.02)

0.03
(0.02)

−0.8 296.39 −42.71 −0.06
(0.02)

0.04
(0.02)

Table 2: Adjusted fair swap rates and lower and upper bound estimators for varying values of
ργp with Nr = 105, Ne = 5 · 105 and J = 360. Rates, prices and standard deviations (in brackets)
are given in b.p.

more stable for 106 paths in the case of weekly and bi-weekly time discretizations. Nonetheless,

the resulting upper and lower confidence bounds do not vary significantly for the two choices of

regression paths. Moreover, the differences in the bounds for the monthly, the bi-weekly, and the

weekly time discretization can all be explained by the standard deviations, while the quarterly

time discretization yields significantly larger price bounds. These results indicate that a monthly

time discretization (i.e., 360 discretization steps) and 105 regression are sufficient to accurately

price this long-dated swap under bilateral default risk. The total run time is 90 seconds for

this parameter choice (Matlab implementation of the method on a 24 core 2.5 GHz Intel Xeon

processor). Run times are reported in the last column of Table 1 for the case of zero correlation

between γ and p. We note that the choice of this correlation parameter has little to no influence

on the run time and that the regression requires, in all cases, about 1/4 of the total run time for

Nr = 105 regression paths and 90% of the total run time for Nr = 106 regression paths. The effect

of varying the correlation parameter of γ and p also has the expected direction. Roughly, if ργp is

positive then larger values of the overall default rate go together with larger conditional default

risk of the counterparty and smaller conditional default risk of the party, making the product less

valuable to the party. While this effect is not as pronounced as the overall deviation from the

clean price, the bounds are easily tight enough to differentiate between the three cases.

We next compare our numerical results with the ‘generic method’ of Section 5 in Bender

et al. (2015). While the latter paper focuses on convex nonlinearities, it also suggests a generic

local approximation of Lipschitz nonlinearities by convex nonlinearities, which can be applied

for the problem of bilateral default risk (after suitable truncations). Based on the same input

approximations as above (computed by the regression-later approach with Nr = 105 regression

paths), this algorithm produced a 95%-confidence interval of [−0.0675, 0.6825] for the case J = 360

and ργp = 0 with about the same total run time of 90 seconds as in our new algorithm. The

length of this confidence interval is several magnitudes wider than the one computed from Table

1, and it cannot even significantly distinguish between the clean price and the price under default

risk. These results demonstrate the importance of exploiting the concave-convex structure for

pricing under bilateral default risk.

Finally, Table 2 displays the adjusted fair swap rates accounting for counterparty risk and
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funding for the three values of ργp, i.e., the values of R which set the adjusted price to zero

in the three different correlation scenarios. To identify these rates, we fix a set of evaluation

and regression paths and define µ(R) as the midpoint of the confidence interval we obtain when

running the algorithm with these paths and rate R for the fixed leg of the swap. We apply a

standard bisection method to find the zero of µ(R). The confidence intervals for the prices in

Table 2 are then obtained by validating these swap rates with a new set of evaluation paths. We

observe that switching from a clean valuation to the adjusted valuation with ρ = 0.8 increases

the fair swap rate by 16 basis points (from 275 to 291). Changing ρ from 0.8 to −0.8 leads to a

further increase by 5 basis points.

7.2 Uncertain Volatility Model

In this section, we apply our numerical approach to the uncertain volatility model of Example 2.3.

Let 0 = t0 < t1 < ... < tJ = T be an equidistant partition of the interval [0, T ], where T ∈ R+.

Recall that for an adapted process (σt)t, the price of the risky asset Xσ at time t is given by

Xσ
t = x0 exp

{∫ t

0
σudWu −

1

2

∫ t

0
σ2
udu

}
,

where W is a Brownian motion. Further, let g be the payoff a European option written on the

risky asset. Then, by Example 2.3, the discretized value process of this European option under

uncertain volatility is given by YJ = g(X ρ̂
T ),

Γj = Ej

[
Bρ̂
j+1Yj+1

]
and Yj = Ej [Yj+1] + ∆ max

s∈{slow,sup}
sΓj , (34)

where

Bρ̂
j+1 =

∆W 2
j+1

∆2
− ρ̂∆Wj+1

∆
− 1

∆
, and sι =

1

2

(
σ2
ι

ρ̂2
− 1

)
for ι ∈ {low, up}. Moreover, X ρ̂

T is the price of the asset at time T under the constant reference

volatility ρ̂ > 0. Notice that the reference volatility ρ̂ is a choice parameter in the discretization.

The basic idea is to view the uncertain volatility model as a suitable correction of a Black-Scholes

model with volatility ρ̂.

As in Section 7.1, we denote in the following by (Ỹj) a numerical approximation of the process

(Yj), by (Q̃j) a numerical approximation of (Ej [Yj+1]) and by (Γ̃j) a numerical approximation of

(Γj). Furthermore, (M̃j) = (M̃
(1)
j , M̃

(2)
j )> denotes an approximation of the Doob martingale M

of βjYj , which is given by

Mj+1 −Mj =

(
Yj+1 − Ej [Yj+1]

Bρ̂
j+1Yj+1 − Ej

[
Bρ̂
j+1Yj+1

]) .
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The recursion (22) for θupj and θlowj , based on these input approximations, can be written as

θupj = max
ι∈{up,low}

max
s∈{slow,sup}

{
θιj+1 −∆M̃

(1)
j+1 + sBρ̂

j+1θ
ι
j+1∆− s∆M̃ (2)

j+1 ∆
}

θlowj =
(
r̃

(1)
j + r̃

(2)
j Bρ̂

j+1∆
)

+
θlowj+1 −

(
r̃

(1)
j + r̃

(2)
j Bρ̂

j+1∆
)
−
θupj+1 − r̃

(1)
j ∆M̃

(1)
j+1 − r̃

(2)
j ∆M̃

(2)
j+1 ∆,

where r̃j = (r̃
(1)
j , r̃

(2)
j ) is given by

r̃j =

(1, slow) , Γ̃j < 0

(1, sup) , Γ̃j ≥ 0.

For the payoff, we consider a European call-spread option with strikes K1 and K2, i.e.,

g(x) = (x−K1)+ − (x−K2)+,

which is also studied in Guyon and Henry-Labordère (2011), Alanko and Avellaneda (2013), and

Kharroubi et al. (2014). Following their setting, we choose the maturity T = 1, the volatility

bounds σlow = 0.1 and σup = 0.2 as well as K1 = 90 and K2 = 110 and x0 = 100. The reference

volatility ρ̂ is varied in our numerical experiments. This example is by now a standard test case

for Monte Carlo implementations of Hamilton-Jacobi-Bellman equations. The option price in the

continuous time limit can be calculated in closed form and equals 11.2046, see Vanden (2006).

The input approximation (Ỹ , Q̃, Γ̃) is again computed by the regression-later approach. We

first simulate Nr = 105 regression paths of the process (X ρ̂
j ) under the constant volatility ρ̂. For

the regression, we do not start all paths at x0 but rather start Nr/200 trajectories at each of the

points 31, . . . , 230. Since X is a geometric Brownian motion under ρ̂, it can be simulated exactly.

Starting the regression paths at multiple points allows to reduce the instability of regression coeffi-

cients arising at early time points. See Rasmussen (2005) for a discussion of this stability problem

and of the method of multiple starting points. For the empirical regression we choose 162 basis

functions. The first three (at time j + 1) are 1, X ρ̂
j+1 and E[g(X ρ̂

J)|X ρ̂
j+1]. Note that the third

one is simply the Black-Scholes price (under ρ̂) of the spread option g. For the remaining 159

basis functions, we also choose Black-Scholes prices of spread options with respective strikes K(k)

and K(k+1) for k = 1, . . . , 159, where the numbers K(1), . . . ,K(160) increase from 20.5 to 230.5.

The one-step conditional expectations of these basis functions after multiplication with the second

derivative weight Bρ̂ are just (differences of) Black-Scholes Gammas at time j. As already noticed

in Bender and Steiner (2012), the regression-later approach benefits from huge variance reduc-

tion effects in the presence of Malliavin Monte Carlo weights for the space derivatives. Indeed,

regression-now estimates for conditional expectations involving the weight Bρ̂ suffer from the

large variance of this weight, while in the regression-later approach the corresponding conditional

expectations are computed in closed form. As in Section 7.1, we then simulate (X ρ̂
j , Ỹj , Q̃j , Γ̃j)
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along Ne = 105 evaluation paths started in x0. As pointed out above, the Doob martingale M̃ of

βj Ỹj is available in closed form in the regression-later approach. Finally, the recursions for θup

and θlow are calculated backwards in time on each evaluation path.

Table 3 shows the approximated prices Ỹ0 as well as upper and lower bounds for ρ̂ = 0.2/
√

3 ≈
0.115 depending on the time discretization. This is the smallest choice of ρ̂, for which the mono-

tonicity condition in Theorem 4.3 can only be violated when the absolute values of the Brownian

increments are large, cp. Example 4.4. As before, Ŷ up
0 and Ŷ low

0 denote Monte Carlo estimates of

E[θup0 ] respectively E[θlow0 ]. The numerical results suggest convergence from below towards the

continuous-time limit for finer time discretizations. This is intuitive in this example, since finer

time discretizations allow for richer choices of the process (σt) in the maximization problem (7).

The run time for the results in Table 3 is linear in J and takes about 85 seconds for J = 24. It

is about equally split between the regression and the computation of the bounds. We notice that

the bounds are fairly tight (with, e.g., a relative width of 1.3% for the 95% confidence interval

with J = 21 time discretization points), although the upper bound begins to deteriorate as Ỹ0

approaches its limiting value. The impact of increasing ρ̂ to 0.15 (as proposed in Guyon and

Henry-Labordère, 2011; Alanko and Avellaneda, 2013) is shown in Table 4. The relative width

of the 95%-confidence interval is now about 0.6% for up to J = 35 time steps, but also the

convergence to the continuous-time limit appears to be slower with this choice of ρ̂.

J 3 6 9 12 15 18 21 24

Ỹ0 10.8553 11.0500 11.1054 11.1340 11.1484 11.1585 11.1666 11.1710

Ŷ up
0 10.8591

(0.0001)
11.0536
(0.0002)

11.1116
(0.0005)

11.1438
(0.0007)

11.1728
(0.0056)

11.2097
(0.0088)

11.2764
(0.0173)

11.5593
(0.0984)

Ŷ low
0 10.8550

(0.0001)
11.0502
(0.0002)

11.1060
(0.0005)

11.1344
(0.0002)

11.1486
(0.0002)

11.1585
(0.0006)

11.1666
(0.0003)

11.1683
(0.0032)

Table 3: Approximated price as well as lower and upper bounds for ρ̂ = 0.2/
√

3 for different time
discretizations. Standard deviations are given in brackets

J 5 10 15 20 25 30 35 40

Ỹ0 10.8153 10.9982 11.0684 11.1027 11.1241 11.1386 11.1479 11.1554

Ŷ up
0 10.8167

(0.0001)
11.0028
(0.0001)

11.0728
(0.0001)

11.1092
(0.0002)

11.1379
(0.0008)

11.1687
(0.0030)

11.2058
(0.0047)

12.0483
(0.6464)

Ŷ low
0 10.8153

(0.0001)
10.9983
(0.0001)

11.0683
(0.0001)

11.1023
(0.0001)

11.1237
(0.0001)

11.1376
(0.0002)

11.1462
(0.0002)

11.0101
(0.1391)

Table 4: Approximated price as well as lower and upper bounds for ρ̂ = 0.15 for different time
discretizations. Standard deviations are given in brackets

Comparing Table 4 with the results in Alanko and Avellaneda (2013), we observe that their

point estimates for Y0 at time discretization levels J = 10 and J = 20 do not lie in our confi-

dence intervals which are given by [10.9981, 11.0030] and [11.1021, 11.1096], indicating that their

(regression-now) least-squares Monte Carlo estimator may still suffer from large variances (al-
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though they apply control variates). The dependence of the time discretization error on the

choice of the reference volatility ρ̂ is further illustrated in Table 5, which displays the mean and

the standard deviation of 30 runs of the regression-later algorithm for different choices of ρ̂ and up

to 640 time steps. By and large, convergence is faster for smaller choices of ρ̂, but the algorithm

becomes unstable when the reference volatility is too small.

J 10 20 40 80 160 320 640

ρ̂ = 0.06 79.7561
(5.1739)

1.6421 · 105

(8.4594·105)
1.7010 · 1016

(6.3043·1016)
3.2151 · 1024

(1.7603·1025)
1.8613 · 1024

(7.0234·1024)
4.5672 · 1039

(2.5016·1040)
7.0277 · 1039

(3.7590·1040)

ρ̂ = 0.08 11.6463
(0.2634)

12.3183
(1.5447)

130.2723
(372.2625)

11.8494
(1.1846)

11.6951
(1.5772)

5.4389 · 103

(1.8766·104)
1.0153 · 108

(3.5571·108)

ρ̂ = 0.1 11.1552
(0.0031)

11.1823
(0.0040)

11.1942
(0.0005)

11.1999
(0.0002)

11.2026
(0.0001)

11.2047
(0.0001)

11.2057
(0.0001)

ρ̂ = 0.15 10.9985
(0.0006)

11.1027
(0.0006)

11.1556
(0.0004)

11.1821
(0.0003)

11.1952
(0.0003)

11.2017
(0.0003)

11.2047
(0.0002)

ρ̂ = 0.2 10.7999
(0.0007)

10.9746
(0.0005)

11.0819
(0.0005)

11.1455
(0.0006)

11.1802
(0.0005)

11.1980
(0.0006)

11.2073
(0.0006)

ρ̂ = 0.5 9.7088
(0.0004)

9.9652
(0.0005)

10.2306
(0.0009)

10.4945
(0.0015)

10.7453
(0.0047)

10.9635
(0.0076)

11.1248
(0.0103)

Table 5: Mean of L = 30 simulations of Ỹ0 for different ρ̂ and discretizations. Standard deviations
are given in brackets.

7.3 Negotiated collateral

We now consider the problem of pricing under negotiated collateralization in the presence of fund-

ing costs as discussed in Nie and Rutkowski (2016). Collateralized contracts differ from ’standard’

contracts in the way that the involved parties not only agree on a payment stream until maturity

but also on the collateral posted by both parties. By providing collateral, both parties can reduce

the possible loss resulting from a default of the respective counterparty prior to maturity. In

the following, we apply our approach to the valuation of a contract under negotiated collateral,

i.e. the imposed collateral depends on the valuations of the contract made by the two parties.

More precisely, the party (‘hedger’) wishes to perfectly hedge the stream of payments consisting

of the option payoff and the posted collateral under funding costs, while the counterparty hedges

the negative payment stream under funding costs. As hedging under funding costs is known to

be nonlinear, both hedges do not cancel each other. Hence, one ends up with a coupled system

of two equations where the coupling is due to the fact that the counterparty’s hedging strategy

influences the hedger’s payment stream due to the negotiated collateral and vice versa.

We next translate the original backward SDE formulation of the problem in Nie and Rutkowski

(2016) into the parabolic PDE setting of Example 6.4. To this end let h : Rd → R be a function

of polynomial growth which represents the payoff of a European-style option written on d risky

assets with maturity T . The dynamics of the risky assets X = (X(1), ..., X(d)) under the pricing

measure are given by independent identically distributed Black-Scholes models

X
(k)
t = x0 exp

{(
RL − 1

2
σ2

)
t+ σW

(k)
t

}
, k = 1, . . . , d,

32



where RL ≥ 0 is the lending rate of the bond, σ > 0 is the assets volatility, and W =

(W (1), ...,W (d)) is a d-dimensional Brownian motion. We, moreover, denote by RB the bor-

rowing rate of the bond and by RC the collateralization rate. Hence, RB ≥ RL. As in Example

3.2 in Nie and Rutkowski (2016) we consider the case that the collateral is a convex combination

q̄(v(1),−v(2)) = αv(1) + (1 − α)(−v(2)) of the hedger’s price v(1) (i.e., the party’s hedging cost)

and the counterparty’s price −v(2) (i.e, the negative of the counterparty’s hedging cost) for some

α ∈ [0, 1]. Following Proposition 3.3 in Nie and Rutkowski (2016) with zero initial endowment

the system of PDEs then reads as follows:

v
(ν)
t (t, x) +

1

2

d∑
k,l=1

v(ν)
xk,xl

(t, x) = −H(ν)(v(1)(t, x),∇xv(1)(t, x), v(2)(t, x),∇xv(2)(t, x)),

(t, x) ∈ [0, T )× Rd, with terminal conditions

v(ν)(T, x) = (−1)ν−1h

((
x0 exp

{(
RL − 1

2
σ2

)
t+ σx(k)

})
k=1,...,d

)
, x = (x(1), . . . , x(d)) ∈ Rd

and nonlinearities given by

H(ν)(v(1)(t, x),∇xv(1)(t, x), v(2)(t, x),∇xv(2)(t, x))

= −RLaν(v(1)(t, x) + v(2)(t, x)) + (−1)νRC(αv(1)(t, x)− (1− α)v(2)(t, x))

+(RB −RL)

(
aν(v(1)(t, x) + v(2)(t, x))− 1

σ
(∇xv(ν)(t, x))>1

)
−
, ν = 1, 2.

Here, (a1, a2) = (1 − α, α) and 1 is the vector in Rd consisting of ones. With this notation,

v(1)(t,Wt) and −v(2)(t,Wt) denote the hedger’s price and counterparty’s price of the collateralized

contract at time t. Applying the probabilistic discretization scheme presented in Example 6.4 with

an equidistant time grid {t0, ..., tJ}, we end up with the following dynamic program:

X
(k)
j+1 = X

(k)
j exp

{(
RL − 1

2
σ2

)
∆ + σ∆W

(k)
j+1

}
, X

(k)
0 = x0, k = 1, ..., d

Y
(1)
J = −Y (2)

J = h(XJ)

Z
[ν]
j = Ej

[
∆−1

(
∆W

(1)
j+1, ...,∆W

(d)
j+1

)>
Y

(ν)
j+1

]
, ν = 1, 2

Y
(1)
j = Ej [Y

(1)
j+1]−RL(1− α)(Ej [Y

(1)
j+1] + Ej [Y

(2)
j+1])∆−RC(αEj [Y

(1)
j+1]− (1− α)Ej [Y

(2)
j+1])∆

+(RB −RL)

(
(1− α)(Ej [Y

(1)
j+1] + Ej [Y

(2)
j+1])− 1

σ

(
Z

[1]
j

)>
1

)
−

∆

Y
(2)
j = Ej [Y

(2)
j+1]−RLα(Ej [Y

(1)
j+1] + Ej [Y

(2)
j+1])∆ +RC(αEj [Y

(1)
j+1]− (1− α)Ej [Y

(2)
j+1])∆

+(RB −RL)

(
α(Ej [Y

(1)
j+1] + Ej [Y

(2)
j+1])− 1

σ

(
Z

[2]
j

)>
1

)
−

∆, (35)
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which obviously fits into the framework of Section 6. Note that, in a slight abuse of notation,

we here changed from time ti to the time index i in the notation of the stock price models X(k).

In view of the discussion in Example 6.4, we observe that this system fails the componentwise

comparison principle, if RB > RC , which is the practically relevant case.

We next run the system of pathwise dynamic programs (30) with N = 2, D = (1 + d)

and F
(1)
j , F

(2)
j : R2(1+d) → R given by F

(ν)
j (z1, z2) = z

(0)
ν + H(ν)(z1, z2)∆, zι = (z

(0)
ι , ..., z

(d)
ι ) ∈

Rd+1. To this end, we need to construct input martingales and input controls. Again, we shall

first pre-compute numerical approximations Ỹ , Q̃ and Z̃ of the processes Y , (Ej [Yj+1]) and Z

by the regression-later approach (with basis functions to be specified later on). Given these

approximations we define the controls r(ν) by

r
(ν)
j =

u
(ν)(RL), aν(Q̃

(1)
j + Q̃

(2)
j )− 1

σ

(
Z̃

[ν]
j

)>
1 ≥ 0

u(ν)(RB), aν(Q̃
(1)
j + Q̃

(2)
j )− 1

σ

(
Z̃

[ν]
j

)>
1 < 0

with

u(1)(r) =


1− r(1− α)∆−RCα∆

(r−RL)∆
σ · 1

(RC − r)(1− α)∆

0 · 1

 and u(2)(r) =


(RC − r)α∆

0 · 1
1− rα∆−RC(1− α)∆

(r−RL)∆
σ · 1

 .

We emphasize that these controls satisfy the duality relation (33), if the approximations are

replaced by the solution Y , (Ej [Yj+1]) and Z. As input martingales we use the Doob martingale

of (βỸ (1), βỸ (2)), where the conditional expectations in the increments of the Doob martingale

are again available in closed form in our approach.

As a numerical example, we consider the valuation of a European call-spread option on the

maximum of d assets with maturity T and payoff

h(x) =

(
max

k=1,...,d
x(k) −K1

)
+

− 2

(
max

k=1,...,d
x(k) −K2

)
+

.

Except for adding the collateralization scheme (and, hence, the coupling between the hedger’s

and counterparty’s valuation), this is the same numerical example as in Bender et al. (2015) and

we follow their parameter choices

(x0, d, T,K1,K2, σ, R
L, RB, RC , α) = (100, 5, 0.25, 95, 115, 0.2, 0.01, 0.06, 0.02, 0.5)

adding only the values of α and RC . The choice α = 0.5 implies that the posted collateral is

given by the average of the two parties’ value processes Y (1) and −Y (2).

The regression-later algorithm for the computation of the input approximations is run with
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J 5 10 15 20 25

Ŷ
(up,1)

0 13.8404
(0.0018)

13.8601
(0.0020)

13.8731
(0.0020)

13.8748
(0.0020)

13.8747
(0.0022)

Ŷ
(low,1)

0 13.8390
(0.0018)

13.8554
(0.0020)

13.8657
(0.0019)

13.8651
(0.0019)

13.8618
(0.0020)

−Ŷ (low,2)
0 13.2788

(0.0015)
13.2601
(0.0016)

13.2549
(0.0016)

13.2475
(0.0016)

13.2439
(0.0017)

−Ŷ (lup,2)
0 13.2779

(0.0014)
13.2569
(0.0016)

13.2499
(0.0016)

13.2411
(0.0016)

13.2351
(0.0017)

Table 6: Upper and lower bounds with Nr = 103 and Ne = 104 for different time discretizations.
Standard deviations are given in brackets.

Nr = 1, 000 regression paths. At time i + 1 (where 0 ≤ i ≤ J − 1) we apply 7 basis functions,

namely 1, X
(1)
i+1, . . . X

(5)
i+1, and as the seventh basis function an approximation to Ei+1[h(XJ)].

Precisely, this basis function is defined in terms of an optimal Λ-point quantization
∑Λ

κ=1 pκ δzη

of a standard normal distribution N by

ηi+1 =
5∑
l=1

Λ∑
κ=1

pκ

√
T − ti
T − ti+1

h
(
X

(l)
i e(R

L− 1
2
σ2)(T−ti)+σzκ

√
T−ti

)
e
z2κ
2
−

(
√
T−tizκ−∆W

(l)
i+1

)2

2(T−ti+1)

×
∏

l′∈{1,...,5}\{l}

N

(
1√

T − ti+1

(√
T − tizκ +

ln(X
(l)
i )− ln(X

(l′)
i )

σ
−∆W

(l′)
i+1

))
.

As a trade-off between accuracy and computational time, we choose Λ = 25, but note that this

basis function converges to Ei+1[h(XJ)], as Λ tends to infinity. The one-step conditional expecta-

tions can be expressed as Ei[ηi+1] = q̄(i,Xi) and Ei[(∆Wi+1/∆)ηi+1] = z̄(i,Xi) for deterministic

functions q̄ and z̄ which can easily be calculated in closed form. We also apply these functions in

order to initialize the regression algorithm at ỸJ = q̄(tJ−1, XJ−1) + z̄(tJ−1, XJ−1))>∆WJ , where

the first term approximates the clean price (with zero interest rate) of the payoff at time tJ−1,

while the second one approximates the corresponding Delta hedge on the interval [tJ−1, tJ ].

In order to compute the upper and lower bounds stated in Table 6, we simulate Ne = 104

evaluation paths of (Xj) and compute the approximations (Ỹ , Q̃, Z̃) along these paths. We denote

by Ŷ
(up,ν)

0 and Ŷ
(low,ν)

0 the Monte Carlo estimators for E[θ
(up,ν)
0 ] and E[θ

(low,ν)
0 ]. The run time for

this algorithm is again linear in the number J of time steps and is about 10 seconds for J = 25.

Table 6 indicates that the quality of the upper and lower bounds is similar for Y (1) and Y (2).

This is as expected since the recursions for Y (2) and Y (1) are rather symmetric. With regard

to the asymptotic 95%-confidence intervals for Y
(1)

0 and Y
(2)

0 , we observe two things: First, the

relative length of these intervals is about 0.15% for all considered time discretizations, and 25

time steps are quite sufficient in this numerical example. Second, we see that the two parties’

valuations differ by about 60 cent, corresponding to about 5 percent of the overall value. So our

price bounds are clearly tight enough to distinguish between the two parties’ pricing rules.

35



8 Conclusion

This paper proposes a new method for constructing high-biased and low-biased Monte Carlo esti-

mators for solutions of stochastic dynamic programming equations. When applied to the optimal

stopping problem, the method simplifies to the classical primal-dual approach of Rogers (2002)

and Haugh and Kogan (2004) (except that the martingale penalty appears as a control variate in

the lower bound). Our approach is complementary to earlier generalizations of this methodology

by Rogers (2007) and Brown et al. (2010) whose approaches start out from a primal optimization

problem rather than from a dynamic programming equation. The resulting representation of

high-biased and low-biased estimators in terms of a pathwise recursion makes the method very

tractable from a computational point of view. Suitably coupling upper and lower bounds in the

recursion enables us to handle situations which are outside the scope of classical primal-dual

approaches, because the dynamic programming equation fails to satisfy a comparison principle.
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A Preparations

In this section, we verify in our setting, i.e., under the standing assumptions (C) and (R), a

number of technical properties of the control processes which are needed in the later proofs. Note

first that, by continuity of Fi, F
#
i (ri) = supz∈QD(r>i z−Fi(z)) is Fi-measurable for every r ∈ AF

j

and i = j, . . . , J − 1 — and so is G#
i (ρ

(1)
i , ρ

(0)
i ) for (ρ(1), ρ(0)) ∈ AG

j . Moreover, the integrability

condition on the controls requires that F#
i (ri) < ∞ and G#

i (ρ
(1)
i , ρ

(0)
i ) > −∞ P -almost surely,

i.e., controls take values in the effective domain of the convex conjugate of F and in the effective

domain of the concave conjugate of G, respectively. In particular, by the monotonicity assumption

on G in the y-variable, we observe that ρ
(0)
i ≥ 0 P -almost surely.

Finally, we show existence of adapted controls, so that the sets AG
j and AG

j are always

nonempty.

Lemma A.1. Fix j ∈ {0, . . . , J − 1} and let fj : Ω × RN → R be a mapping such that, for

every ω ∈ Ω, the map x 7→ fj(ω, x) is convex, and for every x ∈ RN , the map ω 7→ fj(ω, x)

is Fj-measurable. Moreover, suppose that fj satisfies the following polynomial growth condition:

There are a constant q ≥ 0 and a nonnegative random variable αj ∈ L∞−j (R) such that

|fj(x)| ≤ αj(1 + |x|q), P -a.s.,

for every x ∈ RN . Then, for every Z ∈ L∞−j (RN ) there exists a random variable ρj ∈ L∞−j (RN )
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such that f#
j

(
ρj
)
∈ L∞−j (R) and

fj(Z) = ρ>j Z − f
#
j (ρj), P -a.s. (36)

Proof. Let Z ∈ L∞−j (RN ). Notice first that, since fj is convex and closed, we have f##
j = fj by

Theorem 12.2 in Rockafellar (1970) and thus

fj(Z) ≥ ρ>Z − f#
j (ρ) (37)

holds ω-wise for any random variable ρ. We next show that there exists an Fj-measurable random

variable ρj for which (37) holds with P -almost sure equality. To this end, we apply Theorem 7.4

in Cheridito et al. (2015) which yields the existence of an Fj-measurable subgradient to fj , i.e.,

existence of an Fj-measurable random variable ρj such that for all Fj-measurable RN -valued

random variables Z

fj
(
Z + Z

)
− fj

(
Z
)
≥ ρ>j Z, P -a.s. (38)

From (38) (with the choice Z = z − Z̄ for z ∈ QN ), we conclude that

ρ>j Z − fj
(
Z
)
≥ sup

z∈QN
ρ>j (z)− fj (z) = f#

j (ρj), P -a.s., (39)

by continuity of fj , which is the converse of (37), proving P -almost sure equality for ρ = ρj and

thus (36). We next show that ρj satisfies the required integrability conditions, i.e., ρj ∈ L∞−(RN )

and f#
j (ρj) ∈ L∞−(R). To this end, we first prove that ρ>j Z ∈ L∞−(R) for any Z ∈ L∞−j (RN ).

Due to (38) and the Minkowski inequality and since a ≤ b implies a+ ≤ |b|, it follows for

Z ∈ L∞−j (RN ) that, for every p ≥ 1,

(
E

[∣∣∣∣(ρ>j Z)+

∣∣∣∣p]) 1
p

≤
(
E
[∣∣fj (Z + Z

)∣∣p]) 1
p +

(
E
[∣∣fj (Z)∣∣p]) 1

p <∞,

since fj is of polynomial growth with ‘random constant’ αj ∈ L∞−j (R) and Z,Z are members of

L∞−j (RN ) by assumption. Applying the same argument to Z̃ = −Z yields

E

[∣∣∣∣(ρ>j Z)−
∣∣∣∣p] = E

[∣∣∣∣(ρ>j Z̃)+

∣∣∣∣p] <∞,
since (38) holds for all Fj-measurable random variables Z and Z̃ inherits the integrability of Z.

We thus conclude that

E
[∣∣∣ρ>j Z∣∣∣p] <∞ and E

[∣∣ρj∣∣p] <∞,
where the second claim follows from the first by taking Z = sgn(ρj) with the sign function
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applied componentwise. In order to show that f#
j (ρj) ∈ L∞−(R), we start with (36) and apply

the Minkowski inequality to conclude that

(
E
[∣∣∣f#

j

(
ρj
)∣∣∣p]) 1

p ≤
(
E
[∣∣∣ρ>j Z∣∣∣p]) 1

p
+
(
E
[∣∣fj (Z)∣∣p]) 1

p <∞.

B Proofs of Section 4

B.1 Proof of Theorem 4.3

We first show that the implications (b) ⇒ (c) ⇒ (a) hold in an analogous formulation without

the additional assumption that Gi(z, y) = y.

Proposition B.1. Suppose (R) and (C), and consider the following assertions:

(a) The comparison principle (Comp) holds.

(b’) For every (ρ(1), ρ(0)) ∈ AG
0 and r ∈ AF

0 the following positivity condition is fulfilled: For

every i = 0, . . . , J − 1

(ρ
(1)
i + ρ

(0)
i ri)

>βi+1 ≥ 0, P -a.s.

(c’) For every j = 0, . . . , J − 1 and any two random variables Y (1), Y (2) ∈ L∞−(R) with Y (1) ≥
Y (2) P -a.s., the following monotonicity condition is satisfied:

Gj(Ej [βj+1Y
(1)], Fj(Ej [βj+1Y

(1)])) ≥ Gj(Ej [βj+1Y
(2)], Fj(Ej [βj+1Y

(2)])), P -a.s.

Then, (b′)⇒ (c′)⇒ (a).

Proof. (b′) ⇒ (c′): Fix j ∈ {0, . . . , J − 1} and let Y (1) and Y (2) be random variables which are

in L∞−(R) and satisfy Y (1) ≥ Y (2). By Lemma A.1, there are r ∈ AF
0 and (ρ(1), ρ(0)) ∈ AG

0

such that

Fj

(
Ej

[
βj+1Y

(2)
])

= r>j Ej

[
βj+1Y

(2)
]
− F#

j (rj)

Gj

(
Ej

[
βj+1Y

(1)
]
, Fj(Ej [βj+1Y

(1)])
)

=
(
ρ

(1)
j

)>
Ej

[
βj+1Y

(1)
]

+ ρ
(0)
j Fj

(
Ej [βj+1Y

(1)]
)

−G#
j

(
ρ

(1)
j , ρ

(0)
j

)
,

P -almost surely. Hence, by (13), (b′) and (14) we obtain

Gj

(
Ej

[
βj+1Y

(2)
]
, Fj

(
Ej

[
βj+1Y

(2)
]))

≤
(
ρ

(1)
j

)>
Ej

[
βj+1Y

(2)
]

+ ρ
(0)
j Fj

(
Ej [βj+1Y

(2)]
)
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
= Ej

[(
ρ

(1)
j + ρ

(0)
j rj

)>
βj+1Y

(2) − ρ(0)
j F#

j (rj)−G#
j

(
ρ

(1)
j , ρ

(0)
j

)]
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≤ Ej

[(
ρ

(1)
j + ρ

(0)
j rj

)>
βj+1Y

(1) − ρ(0)
j F#

j (rj)−G#
j

(
ρ

(1)
j , ρ

(0)
j

)]
≤

(
ρ

(1)
j

)>
Ej

[
βj+1Y

(1)
]

+ ρ
(0)
j Fj

(
Ej [βj+1Y

(1)]
)
−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
= Gj

(
Ej

[
βj+1Y

(1)
]
, Fj

(
Ej

[
βj+1Y

(1)
]))

.

(c′)⇒ (a): We prove this implication by backward induction. Let Y up and Y low respectively be

super- and subsolutions of (12). Then the assertion is trivially true for j = J . Now assume,

that the assertion is true for j + 1 ∈ {1, . . . , J}. It follows by (c′) and the definition of a

sub- and supersolution that

Y up
j ≥ Gj(Ej [βj+1Y

up
j+1], Fj(Ej [βj+1Y

up
j+1])) ≥ Gj(Ej [βj+1Y

low
j+1 ], Fj(Ej [βj+1Y

low
j+1 ])) ≥ Y low

j .

Proof of Theorem 4.3. Notice first, that under the additional assumption Gi(z, y) = y, assertions

(b′), (c′) in Proposition B.1 coincide with assertions (b), (c) in Theorem 4.3, because the vector

(0, ..., 0, 1)> ∈ RD+1 is the only control in AG
0 by linearity of G. It, hence, remains to show:

(a) ⇒ (b): We prove the contraposition. Hence, we assume that there exists a r ∈ AF
0 and a

j0 ∈ {0, . . . , J − 1} such that P ({r>j0βj0+1 < 0}) > 0. Then we define the process Y by

Y i =


Yi, i > j0 + 1

Yj0+1 − n1{r>j0βj0+1<0}, i = j0 + 1

r>i Ei[βi+1Y i+1]− F#
i (ri), i ≤ j0,

for n ∈ N which we fix later on. In view of (14), it follows easily that Y is a subsolution to (12).

Now we observe that

Y j0 − Yj0 = Ej0

[
(rj0 − r∗j0)>βj0+1Yj0+1

]
+ nEj0

[
(r>j0βj0+1)−

]
− F#

j0
(rj0) + F#

j0
(r∗j0),

where r∗ ∈ AF
j0

is such that for all j = j0, . . . , J − 1

(r∗j )
>Ej [βj+1Yj+1]− F#

j (r∗j ) = Fj(Ej [βj+1Yj+1]),

see Lemma A.1. In a next step we define the set Aj0,N by

Aj0,N =

{
Ej0

[
(r>j0βj0+1)−

]
≥ 1

N

}
∩
{
Ej0

[
(rj0 − r∗j0)>βj0+1Yj0+1

]
− F#

j0
(rj0) + F#

j0
(r∗j0) > −N

}
.
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For N ∈ N sufficiently large (which is fixed from now on), we get that P (Aj0,N ) > 0 and therefore

(Y j0 − Yj0)1Aj0,N > −N +
n

N
= 0

for n = N2, which means that the comparison principle is violated for the subsolution Y (with

this choice of n) and the (super-)solution Y .

B.2 Proof of Theorem 4.5

The proof of Theorem 4.5 is prepared by two propositions. The first of them shows almost sure

optimality of optimal controls and martingales. For convenience, we show this simultaneously for

the processes Θup and Θlow from Theorem 4.7.

Proposition B.2. With the notation in Theorems 4.5 and 4.7, we have for every i = j, . . . J,

Yi = θupi (ρ(1,∗), ρ(0,∗), r∗,M∗) = Θup
i (ρ(1,∗), ρ(0,∗),M∗) = θlowi (ρ(1,∗), ρ(0,∗), r∗,M∗) = Θlow

i (r∗,M∗).

Proof. The proof is by backward induction on i = J, . . . , j. The case i = J is obvious as all five

processes have the same terminal condition ξ by construction. Now suppose the claim is already

shown for i+ 1 ∈ {j + 1, . . . , J}. Then, applying the induction hypothesis to the right hand side

of the recursion formulas, we observe

Θup,∗
i := Θup

i (ρ(1,∗), ρ(0,∗),M∗) = θupi (ρ(1,∗), ρ(0,∗), r∗,M∗),

Θlow,∗
i := Θlow

i (ρ(1,∗), ρ(0,∗),M∗) = θlowi (ρ(1,∗), ρ(0,∗), r∗,M∗).

Exploiting again the induction hypothesis as well as the definition of the Doob martingale and

the duality relation (25) we obtain

Θup,∗
i =

(
ρ

(1,∗)
i

)> (
βi+1Yi+1 −∆M∗i+1

)
+ ρ

(0,∗)
i Fi(βi+1Yi+1 −∆M∗i+1)−G#

i (ρ
(1,∗)
i , ρ

(0,∗)
i )

=
(
ρ

(1,∗)
i

)>
Ei[βi+1Yi+1] + ρ

(0,∗)
i Fi(Ei[βi+1Yi+1])−G#

i (ρ
(1,∗)
i , ρ

(0,∗)
i )

= Gi (Ei[βi+1Yi+1], Fi(Ei[βi+1Yi+1])) = Yi.

An analogous argument, making use of (26), shows Θlow,∗
i = Yi.

The key step in the proof of Theorem 4.5 is the following alternative recursion formula for

θupj and θlowj . This result enables us to establish inequalities between Yj , Ej [θ
up
j ] and Ej [θ

low
j ],

replacing, in a sense, the comparison principle (Comp).

Proposition B.3. Suppose (R) and (C) and let M ∈ MD. Then, for every j = 0, . . . , J and
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(
ρ(1), ρ(0)

)
∈ AG

j and r ∈ AF
j , we have for all i = j, . . . , J the P -almost sure identities

θupi (ρ(1), ρ(0), r,M)

= sup
u∈RD

Φi+1

(
ρ

(1)
i , ρ

(0)
i , u, θupi+1(ρ(1), ρ(0), r,M), θlowi+1(ρ(1), ρ(0), r,M),∆Mi+1

)

θlowi (ρ(1), ρ(0), r,M)

= inf
(v(1),v(0))∈RD+1

Φi+1

(
v(1), v(0), ri, θ

low
i+1(ρ(1), ρ(0), r,M), θupi+1(ρ(1), ρ(0), r,M),∆Mi+1

)
,

where ΦJ+1(v(1), v(0), u, ϑ1, ϑ2,m) = ξ and

Φi+1

(
v(1), v(0), u, ϑ1, ϑ2,m

)
=

((
v(1)
)>

βi+1

)
+

ϑ1 −
((

v(1)
)>

βi+1

)
−
ϑ2 −

(
v(1)
)>

m

+v(0)

((
u>βi+1

)
+
ϑ1 −

(
u>βi+1

)
−
ϑ2 − u>m− F#

i (u)

)
−G#

i

(
v(1), v(0)

)
for i = j, ..., J −1. In particular, θlowi (ρ(1), ρ(0), r,M) ≤ θupi (ρ(1), ρ(0), r,M) for every i = j, . . . , J .

Proof. First we fix j ∈ {0, . . . , J − 1}, M ∈MD and controls
(
ρ(1), ρ(0)

)
and r in AG

j respectively

AF
j and define θup and θlow by (22). To lighten the notation, we set

Φlow
i+1

(
v(1), v(0), ri

)
= Φi+1

(
v(1), v(0), ri, θ

low
i+1(ρ(1), ρ(0), r,M), θupi+1(ρ(1), ρ(0), r,M),∆Mi+1

)
and define Φup

i+1 accordingly (interchanging the roles of θup and θlow). We show the assertion by

backward induction on i = J, . . . , j with the case i = J being trivial since θupJ = θlowJ = ΦJ+1 = ξ

by definition. Now suppose that the assertion is true for i + 1. For any (v(1), v(0)) ∈ RD+1 we

obtain, by (13), the following upper bound for θlowi :

Φlow
i+1

(
v(1), v(0), ri

)
=

(
v(1)
)> (

βi+1

(
θlowi+11{(v(1))>βi+1≥0} + θupi+11{(v(1))>βi+1<0}

)
−∆Mi+1

)
+v(0)

((
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1 − r

>
i ∆Mi+1 − F#

i (ri)

)
−G#

i

(
v(1), v(0)

)
≥ Gi

(
βi+1

(
θlowi+11{(v(1))>βi+1≥0} + θupi+11{(v(1))>βi+1<0}

)
−∆Mi+1,(

r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1 − r

>
i ∆Mi+1 − F#

i (ri)

)
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≥ min
ι∈{up,low}

Gi

(
βi+1θ

ι
i+1 −∆Mi+1,

(
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1

−r>i ∆Mi+1 − F#
i (ri)

)
= θlowi .

We emphasize that this chain of inequalities holds for every ω ∈ Ω. Hence,

inf
(v(1),v(0))∈RD+1

Φlow
i+1

(
v(1), v(0), ri

)
≥ θlowi

for every ω ∈ Ω. To conclude the argument for θlowi , it remains to show that the converse

inequality holds P -almost surely. Thanks to (13) we get

Gi

(
βi+1θ

ι
i+1 −∆Mi+1,

(
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1 − r

>
i ∆Mi+1 − F#

i (ri)

)
= inf

(v(1),v(0))∈RD+1

(
v(1)
)> (

βi+1θ
ι
i+1 −∆Mi+1

)
+ v(0)

((
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1

− r>i ∆Mi+1 − F#
i (ri)

)
−G#

i

(
v(1), v(0)

)
.

Together with θupi+1 ≥ θlowi+1 P -a.s. (by the induction hypothesis) we obtain

θlowi = min
ι∈{up,low}

Gi

(
βi+1θ

ι
i+1 −∆Mi+1,

(
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1

−r>i ∆Mi+1 − F#
i (ri)

)
= min

ι∈{up,low}
inf

(v(1),v(0))∈RD+1

(
v(1)
)>

βi+1θ
ι
i+1 −

(
v(1)
)>

∆Mi+1

+v(0)

((
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1 − r

>
i ∆Mi+1 − F#

i (ri)

)
−G#

i

(
v(1), v(0)

)
≥ inf

(v(1),v(0))∈RD+1

((
v(1)
)>

βi+1

)
+

θlowi+1 −
((

v(1)
)>

βi+1

)
−
θupi+1 −

(
v(1)
)>

∆Mi+1

+v(0)

((
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1 − r

>
i ∆Mi+1 − F#

i (ri)

)
−G#

i

(
v(1), v(0)

)
= inf

(v(1),v(0))∈RD+1
Φlow
i+1

(
v(1), v(0), ri

)
, P -a.s.

We next turn to θupi where the overall strategy of proof is similar. Recall first that the monotonicity

of G in the y-component implies existence of a set Ω̄ρ (depending on ρ(0)) of full P -measure such

that ρ
(0)
k (ω) ≥ 0 for every ω ∈ Ω̄ρ and k = j, . . . , J − 1. By (14) we find that, for any u ∈ RD,
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Φup
i+1(ρ

(0)
i , ρ

(1)
i , u) is a lower bound for θupi on Ω̄ρ:

Φup
i+1

(
ρ

(1)
i , ρ

(0)
i , u

)
=

((
ρ

(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i

((
u>βi+1

)
+
θupi+1 −

(
u>βi+1

)
−
θlowi+1 − u>∆Mi+1 − F#

i (u)

)
−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
≤

((
ρ

(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i Fi

(
βi+1

(
θupi+11{u>βi+1≥0} + θlowi+11{u>βi+1<0}

)
−∆Mi+1

)
−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
≤

((
ρ

(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i max

ι∈{up,low}
Fi(βi+1θ

ι
i+1 −∆Mi+1)−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
= θupi .

Hence,

sup
u∈RD

Φup
i+1

(
ρ

(1)
i , ρ

(0)
i , u

)
≤ θupi

on Ω̄ρ, and, thus, P -almost surely. To complete the proof of the proposition, we show the converse

inequality. As θupi+1 ≥ θlowi+1 P -a.s., we conclude, by (14),

θupi =

((
ρ

(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i max

ι∈{up,low}
Fi(βi+1θ

ι
i+1 −∆Mi+1)−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
=

((
ρ

(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i max

ι∈{up,low}
sup
u∈RD

(
u>βi+1θ

ι
i+1 − u>∆Mi+1 − F#

i (u)
)
−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
≤

((
ρ

(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i sup

u∈RD

((
u>βi+1

)
+
θupi+1 −

(
u>βi+1

)
−
θlowi+1 − u>∆Mi+1 − F#

i (u)

)
−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
= sup

u∈RD
Φup
i+1

(
ρ

(1)
i , ρ

(0)
i , u

)
, P -a.s.

As Φi+1

(
v(1), v(0), u, ϑ1, ϑ2,m

)
is increasing in ϑ1 and decreasing in ϑ2, we finally get

θupi = sup
u∈RD

Φi+1

(
ρ

(1)
i , ρ

(0)
i , u, θupi+1, θ

low
i+1,∆Mi+1

)
≥ sup

u∈RD
Φi+1

(
ρ

(1)
i , ρ

(0)
i , u, θlowi+1, θ

up
i+1,∆Mi+1

)
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≥ inf
(v(1),v(0))∈RD+1

Φi+1

(
v(1), v(0), ri, θ

low
i+1, θ

up
i+1,∆Mi+1

)
= θlowi , P -a.s.,

as θupi+1 ≥ θlowi+1 P -a.s. by the induction hypothesis.

We are now in the position to complete the proof of Theorem 4.5.

Proof of Theorem 4.5. Let j ∈ {0, . . . , J − 1} be fixed from now on. Due to Propositions B.2

and B.3, it only remains to show that Ei[θ
low
i ] ≤ Yi ≤ Ei[θ

up
i ] for i = j, ..., J . We prove this

by backward induction on i. To this end, we fix M ∈ MD and controls
(
ρ(1), ρ(0)

)
and r in AG

j

respectively AF
j , as well as ‘optimizers’

(
ρ(1,∗), ρ(0,∗)) and r∗ in AG

j respectively AF
j which satisfy

the duality relations (25) and (26). By definition of θup and θlow the assertion is trivially true for

i = J . Suppose that the assertion is true for i + 1. Recalling Proposition B.3 and applying the

tower property of the conditional expectation as well as the induction hypothesis, we get

Ei[θ
low
i ] = Ei

[
inf

(v(1),v(0))∈RD+1

((
v(1)
)>

βi+1

)
+

θlowi+1 −
((

v(1)
)>

βi+1

)
−
θupi+1

−
(
v(1)
)>

∆Mi+1 + v(0)

((
r>i βi+1

)
+
θlowi+1 −

(
r>i βi+1

)
−
θupi+1 − r

>
i ∆Mi+1

−F#
i (ri)

)
−G#

i

(
v(1), v(0)

)]

≤ Ei

[((
ρ

(1,∗)
i

)>
βi+1

)
+

Ei+1

[
θlowi+1

]
−
((

ρ
(1,∗)
i

)>
βi+1

)
−
Ei+1

[
θupi+1

]
−
(
ρ

(1,∗)
i

)>
∆Mi+1 + ρ

(0,∗)
i

((
r>i βi+1

)
+
Ei+1

[
θlowi+1

]
−
(
r>i βi+1

)
−
Ei+1

[
θupi+1

]
−r>i ∆Mi+1 − F#

i (ri)

)
−G#

i

(
ρ

(1,∗)
i , ρ

(0,∗)
i

)]
≤ Ei

[(
ρ

(1,∗)
i

)>
βi+1Yi+1 + ρ

(0,∗)
i

(
r>i βi+1Yi+1 − F#

i (ri)
)
−G#

i

(
ρ

(1,∗)
i , ρ

(0,∗)
i

)]
≤ Gi (Ei [βi+1Yi+1] , Fi (Ei [βi+1Yi+1])) = Yi.

Here, the last inequality is an immediate consequence of (14), the nonnegativity of ρ
(0,∗)
i and the

duality relation (25). Applying an analogous argument, we obtain that Ei[θ
up
i ] ≥ Yi. Indeed,

Ei[θ
up
i ] = Ei

[((
ρ

(1)
i

)>
βi+1

)
+

θupi+1 −
((

ρ
(1)
i

)>
βi+1

)
−
θlowi+1 −

(
ρ

(1)
i

)>
∆Mi+1

+ρ
(0)
i sup

u∈RD

((
u>βi+1

)
+
θupi+1 −

(
u>βi+1

)
−
θlowi+1 − u>∆Mi+1 − F#

i (u)

)
−G#

i

(
ρ

(1)
i , ρ

(0)
i

)]
≥ Ei

[((
ρ

(1)
i

)>
βi+1

)
+

Ei+1

[
θupi+1

]
−
((

ρ
(1)
i

)>
βi+1

)
−
Ei+1

[
θlowi+1

]
−
(
ρ

(1)
i

)>
∆Mi+1
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+ρ
(0)
i

((
(r∗i )

> βi+1

)
+
Ei+1

[
θupi+1

]
−
(

(r∗i )
> βi+1

)
−
Ei+1

[
θlowi+1

]
− (r∗i )

>∆Mi+1

−F#
i (r∗i )

)
−G#

i

(
ρ

(1)
i , ρ

(0)
i

)]
≥

(
ρ

(1)
i

)>
Ei [βi+1Yi+1] + ρ

(0)
i

(
(r∗i )

>Ei [βi+1Yi+1]− F#
i (r∗i )

)
−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
=

(
ρ

(1)
i

)>
Ei [βi+1Yi+1] + ρ

(0)
i Fi (Ei [βi+1Yi+1])−G#

i

(
ρ

(1)
i , ρ

(0)
i

)
≥ Gi (Ei [βi+1Yi+1] , Fi (Ei [βi+1Yi+1])) = Yi.

making now use of the nonnegativity of ρ
(0)
i , the duality relation (26), and (13). This establishes

Ei[θ
low
i ] ≤ Yi ≤ Ei[θupi ], for i = j, . . . , J .

B.3 Proof of Proposition 4.6

By the definition of θup, the tower property of the conditional expectation, Jensen’s inequality

(applied to the convex functions max and Fj), and the comparison Y up
j+1 ≥ Y low

j+1 (in view of

Proposition B.3), we obtain

Y up
j = Ej

[((
ρ

(1)
j

)>
βj+1

)
+

θupj+1 −
((

ρ
(1)
j

)>
βj+1

)
−
θlowj+1 −

(
ρ

(1)
j

)>
∆Mj+1

+ ρ
(0)
j max

ι∈{up,low}
Fj(βj+1θ

ι
j+1 −∆Mj+1)−G#

j

(
ρ

(1)
j , ρ

(0)
j

)]
≥ Ej

[((
ρ

(1)
j

)>
βj+1

)
+

Y up
j+1

]
− Ej

[((
ρ

(1)
j

)>
βj+1

)
−
Y low
j+1

]
+ρ

(0)
j max

ι∈{up,low}
Fj(Ej [βj+1Y

ι
j+1])−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
≥

(
ρ

(1)
j

)>
Ej

[
βj+1Y

up
j+1

]
+ ρ

(0)
j max

ι∈{up,low}
Fj(Ej [βj+1Y

ι
j+1])−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
≥

(
ρ

(1)
j

)>
Ej

[
βj+1Y

up
j+1

]
+ ρ

(0)
j Fj(Ej [βj+1Y

up
j+1])−G#

j

(
ρ

(1)
j , ρ

(0)
j

)
≥ Gj(Ej [βj+1Y

up
j+1], Fj(Ej [βj+1Y

up
j+1])),

making, again, use of the nonnegativity of ρ
(0)
j and (13). As in the previous proofs, the argument

for the lower bound Y low is essentially the same, and we skip the details.

B.4 Proof of Theorem 4.7

Let j ∈ {0, ..., J − 1} be fixed. Due to Proposition B.2 and the comparison principle (Comp),

it only remains to show that the pair of processes Y up and Y low given by Y up
i = Ei[Θ

up
i ] and

Y low
i = Ei[Θ

low
i ], i = j, ..., J, defines a super- and a subsolution to (12). The proof of this claim

is similar to the proof of Proposition 4.6 but simpler.
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C Proofs on Stochastic Games

C.1 Alternative Representation

We first derive an alternative representation for Θlow
0 (r,M) as a pathwise minimization problem.

To this end, define, for some fixed control r ∈ AF
0 and martingale M ∈MD,

Θ̃low
i = inf

(v
(1)
j ,v

(0)
j )∈RD+1, j=i,...,J−1

(
wi,J(v(1), v(0), r)ξ

−
J−1∑
j=i

wi,j(v
(1), v(0), r)

(
v

(0)
j F#

j (rj) + (v
(1)
j + v

(0)
j rj)

>∆Mj+1 +G#
j (v

(1)
j , v

(0)
j )
))

,

where wi,j(v
(1), v(0), u) =

∏j−1
k=i(v

(1)
k + v

(0)
k uk)

>βk+1. Then, Θ̃low
J = ξ and, for i = 0, . . . , J − 1,

Θ̃low
i = inf

(v
(1)
i ,v

(0)
i )∈RD+1

inf
(v

(1)
j ,v

(0)
j )∈RD+1, j=i+1,...,J−1

(
(v

(1)
i + v

(0)
i ri)

>βi+1

(
wi+1,J(v(1), v(0), r)ξ

−
J−1∑
j=i+1

wi+1,j(v
(1), v(0), r)

(
v

(0)
j F#

j (rj) + (v
(1)
j + v

(0)
j rj)

>∆Mj+1 +G#
j (v

(1)
j , v

(0)
j )
))

−
(
v

(0)
i F#

i (ri) + (v
(1)
i + v

(0)
i ri)

>∆Mi+1 +G#
i (v

(1)
i , v

(0)
i )
))

.

The outer infimum can be taken restricted to such (v
(1)
i , v

(0)
i ) ∈ RD+1 which belong to D

G#
i (ω,·),

because the expression which is to be minimized is +∞ otherwise. Then, (17) implies that the

inner infimum can be interchanged with the nonnegative factor (v
(1)
i + v

(0)
i ri)

>βi+1, which yields

Θ̃low
i = inf

(v
(1)
i ,v

(0)
i )∈D

G
#
i

(ω,·)

(
(v

(1)
i + v

(0)
i ri)

>βi+1Θ̃low
i+1

−
(
v

(0)
i F#

i (ri) + (v
(1)
i + v

(0)
i ri)

>∆Mi+1 +G#
j (v

(1)
i , v

(0)
i )
))
, (40)

and the infimum can, by the same argument as above, again be replaced by that over the whole

RD+1. Further rewriting (40) using (13) shows that the recursion for Θ̃low
i coincides with the one

for Θlow
i . Therefore,

Θlow
0 (r,M) = Θ̃low

0 = inf
(v

(1)
j ,v

(0)
j )∈RD+1, j=0,...,J−1

(
wJ(v(1), v(0), r)ξ

−
J−1∑
j=0

wj(v
(1), v(0), r)

(
v

(0)
j F#

j (rj) + (v
(1)
j + v

(0)
j rj)

>∆Mj+1 +G#
j (v

(1)
j , v

(0)
j )
))

.

The alternative expression for Θup
0 (ρ(1), ρ(0),M) in (28) can be shown in the same way.
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C.2 Equilibrium Value

It remains to show that Y0 is the equilibrium value of the two-player zero-sum game. We apply

the alternative representations for Θup and Θlow as pathwise optimization problems from Section

C.1 as well as Theorem 4.7 (twice) in order to conclude

Y0 = sup
r∈AF0 , M∈MD

E[Θlow
0 (r,M)]

= sup
r∈AF0 , M∈MD

E

[
inf

(v
(1)
j ,v

(0)
j )∈RD+1, j=0,...,J−1

(
wJ(v(1), v(0), r)ξ

−
J−1∑
j=0

wj(v
(1), v(0), r)

(
v

(0)
j F#

j (rj) + (v
(1)
j + v

(0)
j rj)

>∆Mj+1 +G#
j (v

(1)
j , v

(0)
j )
))]

≤ sup
r∈AF0 , M∈MD

inf
(ρ(1),ρ(0))∈AG0

E

[
wJ(ρ(1), ρ(0), r)ξ

−
J−1∑
j=0

wj(ρ
(1), ρ(0), r)

(
ρ

(0)
j F#

j (rj) + (ρ
(1)
j + ρ

(0)
j rj)

>∆Mj+1 +G#
j (ρ

(1)
j , ρ

(0)
j )
)]

= sup
r∈AF0

inf
(ρ(1),ρ(0))∈AG0

E

[
wJ(ρ(1), ρ(0), r)ξ −

J−1∑
j=0

wj(ρ
(1), ρ(0), r)

(
ρ

(0)
j F#

j (rj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)]

≤ inf
(ρ(1),ρ(0))∈AG0

sup
r∈AF0

E

[
wJ(ρ(1), ρ(0), r)ξ −

J−1∑
j=0

wj(ρ
(1), ρ(0), r)

(
ρ

(0)
j F#

j (rj) +G#
j (ρ

(1)
j , ρ

(0)
j )
)]

≤ inf
(ρ(1),ρ(0))∈AG0 , M∈MD

E

[
sup

(uj)∈RD, j=0,...,J−1

(
wJ(ρ(1), ρ(0), u)ξ

−
J−1∑
j=0

wj(ρ
(1), ρ(0), u)

(
ρ

(0)
j F#

j (uj) + (ρ
(1)
j + ρ

(0)
j uj)

>∆Mj+1 +G#
j (ρ

(1)
j , ρ

(0)
j )
))]

= inf
(ρ(1),ρ(0))∈AG0 , M∈MD

E[Θup
0 (ρ(1), ρ(0),M)] = Y0.

Here we also applied the zero-expectation property of martingale penalties at adapted controls.

Consequently, all inequalities turn into equalities, which completes the proof.
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F. Heyde, A. Löhne, B. Rudloff, and C. Schrage, editors, Set Optimization and Applications in

Finance - The State of the Art, pages 179–211. Springer, 2015.

48
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É. Pardoux. Backward stochastic differential equations and viscosity solutions of systems of

semilinear parabolic and elliptic PDEs of second order. In Stochastic Analysis and Related

Topics VI (Geilo 1996), pages 79–127. Birkhäuser, 1998.
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