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Abstract. Suppose B is a Brownian motion and Bn is an approximating sequence of rescaled
random walks on the same probability space converging to B pointwise in probability. We
provide necessary and sufficient conditions for weak and strong L2-convergence of a discretized
Malliavin derivative, a discrete Skorokhod integral, and discrete analogues of the Clark-Ocone
derivative to their continuous counterparts. Moreover, given a sequence (Xn) of random vari-
ables which admit a chaos decomposition in terms of discrete multiple Wiener integrals with
respect to Bn, we derive necessary and sufficient conditions for strong L2-convergence to a σ(B)-
measurable random variable X via convergence of the discrete chaos coefficients of Xn to the
continuous chaos coefficients of X. In the special case of binary noise, our results support the
known formal analogies between Malliavin calculus on the Wiener space and Malliavin calculus
on the Bernoulli space by rigorous L2-convergence results.
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1. Introduction

Let B = (Bt)t≥0 be a Brownian motion on a probability space (Ω,F , P ), where the σ-field F is
generated by the Brownian motion and completed by null sets. Suppose ξ is a square-integrable
random variable with zero expectation and variance one. As a discrete counterpart of B we
consider, for every n ∈ N = {1, 2, . . .}, a random walk approximation

Bn
t :=

1√
n

bntc∑
i=1

ξni , t ≥ 0,

where (ξni )i∈N is a sequence of independent random variables which have the same distribution
as ξ. We assume that the approximating sequence Bn converges to B pointwise in probability,
i.e.

∀ t ≥ 0 : lim
n→∞

Bn
t = Bt in probability. (1)

The aim of the paper is to provide L2-approximation results for some basic operators of Malliavin
calculus with respect to the Brownian motion B such as the chaos decomposition, the Malliavin
derivative, and the Skorokhod integral by appropriate sequences of approximating operators
based on the discrete time noise (ξni )i∈N. It turns out that in all our approximation results, the
limits do not depend on the distribution of the discrete time noise, hence our results can be
regarded as some kind of invariance principle for Malliavin calculus.
We briefly discuss our main convergence results in a slightly informal way:

(1) Chaos decomposition: The heuristic idea behind the chaos decomposition in terms of
multiple Wiener integrals is to project a random variable X ∈ L2(Ω,F , P ) on products

of the white noise Ḃt1 · · · Ḃtk . This idea can be made rigorous with respect to the discrete
noise (ξni )i∈N by considering the discrete time functions

fn,k
X (i1, . . . ik) =

nk/2

k!
E

X k∏
j=1

ξnij


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for pairwise distinct (i1, . . . ik) ∈ Nk. Our results show that, after a natural embedding

as step functions into continuous time, the sequence (fn,k
X )n∈N converges strongly in

L2([0,∞)k) to the kth chaos coefficient of X, for every k ∈ N (Example 34). This is
a simple consequence of a general Wiener chaos limit theorem (Theorem 28), which
provides equivalent conditions for the strong L2(Ω,F , P )-convergence of a sequence of
random variables (Xn)n∈N (with each Xn admitting a chaos decomposition via multiple
Wiener integrals with respect to the discrete time noise (ξni )i∈N) in terms of the chaos
coefficient functions. As a corollary, this Wiener chaos limit theorem lifts a classical result
by Surgailis [28] on convergence in distribution of discrete multiple Wiener integrals to
strong L2(Ω,F , P )-convergence and adds the converse implication (in our setting, i.e.
when the limiting multiple Wiener integral is driven by a Brownian motion).

(2) Malliavin derivative: With our weak moment assumptions on the discrete time noise,
we cannot define a discrete Malliavin derivative in terms of a polynomial chaos as in
the survey paper by [11] and the references therein. Instead we think of the discretized
Malliavin derivative at time j ∈ N with respect to the noise (ξni )i∈N as

Dn
j X =

√
nE[ξnj X|(ξni )i∈N\{j}],

which is the gradient of the best approximation in L2(Ω,F , P ) of X as a linear func-
tion in ξnj with σ(ξni , i ∈ N \ {j})-measurable coefficients. In the case of binary noise,
this definition coincides with the standard notion of the Malliavin derivative on the
Bernoulli space, see, e.g., [25]. Theorem 12 below implies that, if (Xn) converges weakly
in L2(Ω,F , P ) to X and the sequence of discretized Malliavin derivatives (Dn

dn·eX
n)n∈N

converges weakly in L2(Ω × [0,∞)), then X belongs to the domain of the continu-
ous Malliavin derivative and the continuous Malliavin derivative appears as the weak
L2(Ω× [0,∞))-limit. As the Malliavin derivative is a closed, but discontinuous operator,
this is the best type of approximation result which can be expected when discretizing
the Malliavin derivative. Sufficient conditions for the strong convergence of a sequence
of discretized Malliavin derivatives, which can be checked in terms of the discrete-time
approximations, are presented in Theorems 16 and 35.

(3) Skorokhod integral: Defining the discrete Skorokhod integral as the adjoint operator to
the discretized Malliavin derivative leads to

δn(Zn) := lim
M→∞

M∑
i=1

E[Zn
i |(ξnj )j∈{1,...,M}\{i}]

ξni√
n
,

for a suitable class of discrete time processes Zn, which is in line with the Riemann-
sum approximation for Skorokhod integrals in terms of the driving Brownian motion
in [24]. Analogous results for the ‘closedness across the discretization levels’ as in the case
of the discretized Malliavin derivative and sufficient conditions for strong L2(Ω,F , P )-
convergence of a sequence of discrete Skorokhod integrals are provided in Theorems 8,
18 and 36. When restricted to predictable integrands, the convergence results for the
Skorokhod integral give rise to necessary and sufficient conditions for strong and weak
L2(Ω,F , P )-convergence of a sequence of discrete Itô integrals (Theorem 20). This result
can be applied to study different discretization schemes for the generalized Clark-Ocone
derivative (which provides the integrand in the predictable representation of a square-
integrable random variable as Itô integral with respect to the Brownian motion B). In
this respect, Theorems 23 and 25 below complement related results in the literature such
as [6, 20] and the references therein.

We note that related classical semimartingale limit theorems for stochastic integrals (with
adapted integrands) [15, 19] and for multiple Wiener integrals [2, 3, 28], or robustness results
for martingale representations [6, 14] are usually obtained in the framework of (or using tech-
niques of) convergence in distribution (on the Skorokhod space). In contrast, we exploit that
strong and weak convergence in L2(Ω,F , P ) can be characterized in terms of the S-transform,
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which is an important tool in white noise analysis, see e.g. [13,16,18], and corresponds to taking
expectation under suitable changes of measure. We introduce a discrete time version of the S-
transform in terms of the noise (ξni )i∈N and show that strong and weak L2(Ω,F , P )-convergence
can be equivalently expressed via convergence of the discrete S-transform to the continuous
S-transform (Theorem 1). With this observation at hand, all our convergence results can be
obtained in a surprisingly simple way by computing suitable L2(Ω, σ(ξni )i∈N, P )-inner products
and their limits as n tends to infinity.
The paper is organized as follows: In Section 2, we introduce the discrete S-transform and
discuss the connections between weak (and strong) L2(Ω,F , P )-convergence and the convergence
of the discrete S-transform to the continuous one. Equivalent conditions for the weak L2-
convergence of sequences of discretized Malliavin derivatives and discrete Skorokhod integrals to
their continuous counterparts are derived in Section 3. By combining these weak L2-convergence
results with the duality between discrete Skorokhod integral and discretized Malliavin derivative,
we also identify sufficient conditions for the strong L2-convergence which can be checked solely
in terms of the discrete time approximations. We are not aware of any such convergence results
for general discrete time noise distributions in the literature. In Section 4, we specialize to the
nonanticipating case and prove limit theorems for discrete Itô integrals and discretized Clark-
Ocone derivatives. The strong L2-Wiener chaos limit theorem is presented in Section 5, and is
applied in order to provide equivalent conditions for the strong L2-convergence of sequences of
discretized Malliavin derivatives and discrete Skorokhod integrals in terms of tail conditions of
the discrete chaos coefficients in Section 6. In the final Section 7, we first the consider the special
case of binary noise (Subsection 7.1), in which discrete Malliavin calculus is very well studied, see
e.g. the monograph [25]. We explain how our convergence results can be stated in a simplified
way in this case and demonstrate by a toy example how to apply the results numerically in a
Monte Carlo framework. In Subsection 7.2, we finally show, how our main convergence results
can be translated into Donsker type theorems on convergence in distribution, when the discrete
time noise is not necessarily assumed to be embedded into the driving Brownian motion. Two
auxiliary results on the S-transform characterization of the Malliavin derivative and on the
connection between strong L2-convergence and convergence in distribution are postponed to the
Appendix.

2. Weak and strong L2-convergence via discrete S-transforms

In this section, we study strong and weak L2(Ω,F , P )-convergence of a sequence (Xn) of random
variables, where Xn is Fn := σ(ξni , i ∈ N)-measurable, to an F-measurable X. As a main result
of this section (Theorem 1), we provide an equivalent criterion for this convergence, which only
requires to compute a family of L2(Ω,Fn, P )-inner products (hence, expectations which involve
functionals of the discrete time noise (ξni )i∈N only) and their limits as n tends to infinity.
Before doing so, let us recall that Bn can be constructed via a Skorokhod embedding of the
random walk(

j∑
i=1

ξi

)
j∈N

, ξ1, ξ2, . . . independent and with the same distribution as ξ,

into the rescaled Brownian motion (
√
nBt/n)t≥0. In this way, one obtains, for every n ∈ N, a

sequence of stopping times (τni )i∈N0 with respect to the augmentation of the filtration generated
by B such that

Bn :=
(
Bτnbntc

)
t≥0

has the same distribution as ( 1√
n

bntc∑
i=1

ξi)t≥0 and converges to B uniformly on compacts in prob-

ability (see e.g. [22, Lemma 5.24 (b)]).
We now introduce the S-transform simultaneously in the continuous time setting and the discrete
time setting, which turns ou to be the key tool for the proofs of our limit theorems. Recall,
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that the mapping 1(0,t] 7→ Bt can be extended to a continuous linear mapping from L2([0,∞))

to L2(Ω,F , P ), which is known as the Wiener integral. We denote the Wiener integral of a
function f ∈ L2([0,∞)) by I(f). The discrete Wiener integral is given by

In(fn) :=
1√
n

∞∑
i=1

fn(i)ξni .

Here, the discrete time function fn is a member of

L2
n(N) :=

{
fn : N → R : ‖fn‖2L2

n(N)
:=

1

n

∞∑
i=1

(fn(i))2 < ∞

}
,

which obviously ensures that the series In(fn) converges (strongly) in L2(Ω,Fn, P ).
The Wick exponential is, by definition, the stochastic exponential of a Wiener integral I(f), i.e.,

exp�(I(f)) := exp

(
I(f)− 1/2

∫ ∞

0
f2(s)ds

)
.

Hence, its discrete counterpart, the discrete Wick exponential, is given by

exp�n(In(fn)) :=

∞∏
i=1

(
1 +

1√
n
fn(i)ξni

)
.

In particular, by Fatou’s lemma and the estimate 1 + x ≤ exp(x),

E[(exp�n(In(fn)))2] ≤ exp(‖fn‖2L2
n(N)

) < ∞. (2)

Notice also that, by the martingale convergence theorem,

exp�n(In(fn)) = 1 +
∞∑
i=1

(
E
[
exp�n(In(fn))| (ξnj )j≤i

]
− E

[
exp�n(In(fn))| (ξnj )j≤i−1

])
= 1 +

∞∑
i=1

fn(i) exp�n(In(fn1[1,i−1]))
ξni√
n
, (3)

which is the discrete counterpart of the Doléans-Dade equation.
We finally recall that, for every X ∈ L2(Ω,F , P ) and f ∈ L2([0,∞)), the S-transform is defined
as

(SX)(f) := E[X exp�(I(f))].

Analogously, for every Xn ∈ L2(Ω,Fn, P ) and fn ∈ L2
n(N), we introduce the discrete S-

transform as

(SnXn)(fn) := E[Xn exp�n(In(fn))].

We emphasize that the S-transform is a powerful tool in the white noise analysis, see, e.g., [18],
and has been successfully applied in the theory of stochastic partial differential equations, see
[13]. To the best of our knowledge the discrete S-transform has, however, not been studied in
the literature.
Let us next denote by E the set of step functions on left half-open intervals, i.e., functions of
the form

g(x) =

m∑
j=1

aj1(bj ,cj ](x), m ∈ N, aj , bj , cj ∈ R.

As the set of Wick exponentials of step functions {exp�(I(g)), g ∈ E} is total in L2(Ω,F , P ),
see e.g. [16, Corollary 3.40], every L2(Ω,F , P )-random variable is uniquely determined by its
S-transform. More precisely, if for X,Y ∈ L2(Ω,F , P ), (SX)(g) = (SY )(g) for every g ∈ E ,
then X = Y P -almost surely. We define the discretization of a step function g ∈ E as

ǧn = (ǧn(1), ǧn(2), . . .) := (g(1/n), g(2/n), . . .) ,
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and notice that

{ǧn : g ∈ E} ⊂ L2
n(N)

is the dense subspace of discrete time functions with finite support.
The convergence results of integral and derivative operators in this paper rely on the following
characterization of L2(Ω,F , P )-convergence in terms of convergence of the discrete S-transform
to the continuous S-transform.

Theorem 1. Suppose X,Xn ∈ L2(Ω,F , P ) for every n ∈ N, with Xn being Fn-measurable.
Then the following assertions are equivalent as n tends to infinity:

(i) Xn → X strongly (resp. weakly) in L2(Ω,F , P ).
(ii) (SnXn)(ǧn) → (SX)(g) for every g ∈ E, and additionally E[(Xn)2] → E[X2] in the case

of strong convergence (resp. supn∈N E[(Xn)2] < ∞ in the case of weak convergence).

In view of Lemma 3 below, the proof of Theorem 1 can be reduced to the following strong
L2-convergence result for (discrete) Wick exponentials.

Proposition 2. Suppose g ∈ E. Then, we have strongly in L2(Ω,F , P ), as n tends to infinity:

exp�n(In(ǧn)) → exp�(I(g)).

These type of convergence results for stochastic exponentials are somewhat standard and can
be obtained in a much more general context by applying results on convergence in distribution
for stochastic differential equations, see, e.g., [2, 19] and the references therein. For sake of
completeness, we here provide an elementary proof.

Proof. Let

g =

m∑
j=1

aj1(bj ,cj ] ∈ E .

We denote by C,N constants in N such that g is bounded by C and has support in [0, N ]. It
suffices to show

(i) limn→∞ E
[
(exp�n(In(ǧn)))2

]
= E

[
(exp�(I(g)))2

]
,

(ii) exp�n(In(ǧn)) → exp�(I(g)) in probability.

(i) Due to p < dqe ≤ r ⇔ bpc < q ≤ brc for all p, q, r ∈ R, we obtain for every t ∈ (0,∞),

ǧn(dnte) =
m∑
j=1

aj1(bbjnc/n,bcjnc/n](t). (4)

Hence,

‖g − ǧn(dn·e)‖L2([0,∞)) ≤
√
2

 m∑
j=1

|aj |

 1√
n
→ 0, (5)

and in particular,

Nn∑
i=1

(ǧn(i))2
1

n
= ‖ǧn(dn·e)‖2L2([0,∞)) →

∫ ∞

0
g(s)2ds.

Thus, by the independence of the centered random variables (ξni )i∈N with unit variance and
taking the boundedness of g into account, we get

E
[
(exp�n(In(ǧn)))2

]
=

Nn∏
i=1

E
[
(1 +

1√
n
ǧn(i)ξni )

2

]
=

Nn∏
i=1

(
1 +

1

n
(ǧn(i))2

)
→ exp

(∫ ∞

0
g(s)2ds

)
= E

[
(exp�(I(g)))2

]
.
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(ii) In order to treat the large jumps of Bn and the small ones separately, we consider

ξn,1i := ξni 1{|ξni |≤
√

n
2C

}, ξn,2i := ξni 1{|ξni |>
√
n

2C
},

cp. also [27]. Then,

exp�n(In(ǧn)) =

Nn∏
i=1

(
1 +

1√
n
ǧn(i)ξn,1i

) Nn∏
i=1

(
1 +

1√
n
ǧn(i)ξn,2i

)
=: En,1 · En,2.

We note that, for every ε > 0, by the independence of (ξni )i∈N,

P

({
sup

i=1,...,Nn

|ξni |√
n

> ε

})
= 1−

(
1− P ({|ξ| > ε

√
n})Nn

Nn

)Nn

→ 0, (6)

because, by square-integrability of ξ, P ({|ξ| > ε
√
n})n → 0, see, e.g., [26, p. 208]. Hence, for

every ε > 0,

P ({|En,2 − 1| ≥ ε}) ≤ P ({ sup
i=1,...,Nn

|ξn,2i | > 0}) = P

({
sup

i=1,...,Nn

|ξni |√
n

> 1/(2C)

})
→ 0,

i.e., (En,2)n∈N converges to 1 in probability. By construction, each factor in En,1 is larger than
1/2. Applying a Taylor expansion to the logarithm, thus, yields

logEn,1 =
Nn∑
i=1

ǧn(i)
ξn,1i√
n

− 1

2

Nn∑
i=1

(ǧn(i))2
(ξn,1i )2

n
+Rn

with a remainder term satisfying

|Rn| ≤
8C

3

(
sup

j=1,...,Nn

|ξnj |√
n

)
Nn∑
i=1

(ǧn(i))2
(ξn,1i )2

n
.

It, thus, suffices to show

(iii)
∑Nn

i=1 ǧ
n(i)

ξn,1
i√
n
→ I(g) in probability,

(iv)
∑Nn

i=1 (ǧ
n(i))2

(ξn,1
i )2

n →
∫∞
0 g(s)2ds in probability.

Indeed, by (6), the remainder term then vanishes in probability as n tends to infinity, and, thus,

En,1 → exp

(
I(g)− 1

2

∫ ∞

0
g(s)2ds

)
in probability.

The same argument, which was applied for the convergence of En,2, shows that we can (and

shall) replace ξn,1i by ξni in (iii) and (iv). However, by (1) and (4),

lim
n→∞

Nn∑
i=1

ǧn(i)
ξni√
n
= lim

n→∞

m∑
j=1

aj

(
Bn

cj −Bn
bj

)
=

m∑
j=1

aj
(
Bcj −Bbj

)
= I(g)

in probability. Finally, by the law of large numbers, 1
n

∑bntc
i=1 (ξ

n
i )

2 converges to t in probability
for every t ≥ 0, and, hence, by (4),

lim
n→∞

Nn∑
i=1

(ǧn(i))2
(ξni )

2

n
=

m∑
j=1

a2j (cj − bj) =

∫ ∞

0
g(s)2ds, in probability.

�
The following lemma from functional analysis turns out to be useful.

Lemma 3. Suppose H is a Hilbert space, A is an arbitrary index set, {xa, a ∈ A} is total in H,
and, for every a ∈ A, (xan)n∈N is a sequence in H which converges strongly in H to xa. Then,
the following are equivalent, as n tends to infinity:
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(i) xn → x strongly (resp. weakly) in H.
(ii) 〈xn, xan〉H → 〈x, xa〉H for every a ∈ A, and additionally ‖xn‖H → ‖x‖H in the case of

strong convergence (resp. supn∈N ‖xn‖H < ∞ in the case of weak convergence).

Proof. Firstly, we observe that supn∈N ‖xn‖H is finite, either by weak convergence [29, Theorem
V.1.1] in (i) or by assumption (ii). Thus, for every a ∈ A, by the strong convergence of (xan) to
xa,

|〈xn, xan〉H − 〈xn, xa〉H | = |〈xn, xan − xa〉H | ≤ sup
m∈N

‖xm‖H‖xan − xa‖H → 0. (7)

Let us treat the case of weak convergence: If (i) holds, the term 〈xn, xa〉H in (7) converges
to 〈x, xa〉H , and then so does 〈xn, xan〉H , which implies (ii). Conversely, if (ii) holds, the first
term 〈xn, xan〉H in (7) tends to 〈x, xa〉H , and then so does 〈xn, xa〉H , which yields (i) in view
of [29, Theorem V.1.3]. The case of strong convergence is an immediate consequence, as, in
a Hilbert space, strong convergence is equivalent to weak convergence and convergence of the
norms [29, Theorem V.1.8]. �

In view of the definition of the (discrete) S-transform, and as the set of Wick exponentials of
step functions {exp�(I(g)), g ∈ E} is total in L2(Ω,F , P ), Theorem 1 now turns out to be a
direct consequence of Proposition 2 and Lemma 3 with H = L2(Ω,F , P ).
We close this section with an example.

Example 4. (i) In this example, we provide a simple proof, that, for every X ∈ L2(Ω,F , P ),
Xn := E[X|Fn] converges to X strongly in L2(Ω,F , P ). Indeed, by Proposition 2, for every
g ∈ E,

(SnXn)(ǧn) = E [E[X|Fn] exp�n(In(ǧn))]

= E [X exp�n(In(ǧn))] → E [X exp�(I(g))] = (SX)(g).

As E[(Xn)2] ≤ E[X2], Theorem 1 implies weak L2(Ω,F , P )-convergence of (Xn) to X. The
same theorem finally yields strong L2(Ω,F , P )-convergence, since, by the already established
weak convergence,

E[(Xn)2] = E [E [Xn| Fn]X] = E[XnX] → E[X2].

We note that this result can also be derived by the uniform integrability of ((Xn)2) via the concept
of convergence of filtrations making use of [8, Proposition 2].

(ii) Denote by (Ft)t≥0 the augmented Brownian filtration and let Fn
i = σ(ξn1 , . . . , ξ

n
i ). We

assume X ∈ L2(Ω,FT , P ). Then, one can always approximate X by a sequence (Xn
T ) strongly

in L2(Ω,F , P ), where Xn
T is measurable with respect to Fn

bnT c. Indeed, take any sequence (Xn)

of Fn-measurable random variables which converges strongly in L2(Ω,F , P ) to X, and define
Xn

T = E[Xn|Fn
bnT c]. Then, for every g ∈ E, by Proposition 2,

(SnXn
T )(ǧ

n) = E

Xn

bnT c∏
i=1

(
1 +

1√
n
g(i/n)ξni

)
= E

[
Xn exp�n(In( ˇ(g1(0,T ])

n
))
]
→ E

[
X exp�(I(g1(0,T ]))

]
= E [XE[exp�(I(g))|FT ]] = (SX) (g) .

Moreover,

sup
n∈N

E[(Xn
T )

2] ≤ sup
n∈N

E[(Xn)2] < ∞.

Hence, (Xn
T ) converges weakly in L2(Ω,F , P ) to X by Theorem 1. Then, strong L2(Ω,F , P )-

convergence follows by Theorem 1 as well, because

E[(Xn
T )

2] = E[Xn
TX] + E[Xn

T (X
n −X)] → E[X2].
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3. Weak L2-approximation of the Skorokhod integral and the Malliavin
derivative

In this section, we first discuss weak L2-approximations of the Skorokhod integral and the
Malliavin derivative via appropriate discrete-time counterparts. We then show how to lift these
results from weak convergence to strong convergence via duality under appropriate conditions
which can be formulated in terms of the discrete-time approximations.
While most presentations of Malliavin calculus first introduce the Malliavin derivative and then
define the Skorokhod integral as adjoint operator of the Malliavin derivative, we shall here employ
the following equivalent characterization of the Skorokhod integral in terms of the S-transform,
cp. [16, Theorem 16.46, Theorem 16.50].

Definition 5. Z ∈ L2(Ω× [0,∞)) := L2(Ω× [0,∞),F ⊗B([0,∞)), P ⊗λ[0,∞)) is said to belong

to the domain D(δ) of the Skorokhod integral, if there is an X ∈ L2(Ω,F , P ) such that for every
g ∈ E

(SX)(g) =

∫ ∞

0
(SZt)(g)g(t)dt.

In this case, X is uniquely determined and δ(Z) := X is called the Skorokhod integral of Z.

For the discrete-time approximation we first introduce the space

L2
n(Ω× N) :=

{
Zn : N → L2(Ω,Fn, P ), ‖Zn‖2L2

n(Ω×N) :=
1

n

∞∑
i=1

E[(Zn
i )

2] < ∞

}
.

Moreover, we recall the definitions

Fn := σ(ξnj , j ∈ N), Fn
M := σ(ξn1 , . . . , ξM ),

and introduce the shorthand notations

Fn
−i := σ(ξnj , j ∈ N \ {i}), Fn

M,−i := σ(ξnj , j ∈ {1, . . . ,M} \ {i}).

Definition 6. We say, Zn ∈ L2
n(Ω×N) belongs to the domain D(δn) of the discrete Skorokhod

integral, if

δn(Zn) := lim
M→∞

M∑
i=1

E[Zn
i |Fn

M,−i]
ξni√
n
. (8)

exists strongly in L2(Ω,F , P ). If this is the case, δn(Zn) is called the discrete Skorokhod integral
of Zn.

We note that, by the independence of E[Zn
i |Fn

M,−i] and ξni , each summand on the right-hand

side of (8) is indeed a member of L2(Ω,F , P ). Moreover, the martingale convergence theorem
implies that, for every Zn ∈ L2

n(Ω× N) and N ∈ N, Zn1[1,N ] ∈ D(δn) and

δn(Zn1[1,N ]) =
N∑
i=1

E[Zn
i |Fn

−i]
ξni√
n
. (9)

Hence, the discrete Skorokhod integral is densely defined from L2
n(Ω × N) to L2(Ω,F , P ). We

will show in Proposition 13 below that it is a closed operator.

Remark 7. This definition of the discrete Skorokhod integral closely resembles the following
Riemann-sum approximation of the Skorokhod integral by [24], who show that under appropriate
conditions on Z,

E

[
n

∫ i+1
n

i
n

Zsds

∣∣∣∣∣ (Bs, B1 −Br)0≤s≤ i
n
≤ i+1

n
≤r≤1

] (
B(i+1)/n −Bi/n

)
converges strongly in L2(Ω,F , P ) to δ(Z1[0,1]).



DISCRETIZING MALLIAVIN CALCULUS 9

As a first main result of this section we are going to show the following weak approximation
theorem for Skorokhod integrals.

Theorem 8. Suppose Zn ∈ D(δn) for every n ∈ N, and (Zn
dn·e)n∈N converges to Z weakly in

L2(Ω× [0,∞)). Then, the following assertions are equivalent:

(i) supn∈N E[|δn(Zn)|2] < ∞.
(ii) Z ∈ D(δ) and (δn(Zn)) converges to δ(Z) weakly in L2(Ω,F , P ) as n tends to infinity.

As a first tool for the proof we state the discrete S-transform of a discrete Skorokhod integral.

Proposition 9. Suppose Zn ∈ D(δn). Then, for every g ∈ E,

(Snδn(Zn)) (ǧn) =
1

n

∞∑
i=1

(SnZn
i )(ǧ

n1N\{i})ǧ
n(i).

This result is a special case of the more general Proposition 13 below, to which we refer the
reader for the proof.
The second tool for the proof of Theorem 8 is the following variant of Theorem 1 for stochastic
processes.

Theorem 10. Suppose Z ∈ L2(Ω× [0,∞)), (Zn)n∈N satisfies Zn ∈ L2
n(Ω×N) for every n ∈ N.

Then the following assertions are equivalent as n tends to infinity:

(i) (Zn
dn·e) converges strongly (resp. weakly) to Z in L2(Ω× [0,∞)).

(ii) For every g, h ∈ E

1

n

∞∑
i=1

(SnZn
i )(ǧ

n)ȟn(i) →
∫ ∞

0
(SZs)(g)h(s)ds.

and, additionally, E[
∫∞
0 (Zn

dnse)
2ds] → E[

∫∞
0 Z2

sds] in the case of strong convergence

(resp. supn∈N E[
∫∞
0 (Zn

dnse)
2ds] < ∞ in the case of weak convergence).

Here, 1
n

∑∞
i=1(S

nZn
i )(ǧ

n)ȟn(i) can be replaced by 1
n

∑∞
i=1(S

nZn
i )(ǧ

n1N\{i})ȟ
n(i) in (ii).

Proof. We wish to apply Lemma 3 in order to prove the equivalence of (i) and (ii). As
L2(Ω × [0,∞)) = L2(Ω,F , P ) ⊗ L2([0,∞)) (with the tensor product in the sense of Hilbert
spaces), the set {exp�(I(g))h; g, h ∈ E} is total in L2(Ω × [0,∞)). By Proposition 2 and
(5), (exp�n(In(ǧn))ȟn(dn·e))n∈N converges to exp�(I(g))h strongly in L2(Ω × [0,∞)) for every
g, h ∈ E . As

1

n

∞∑
i=1

(SnZn
i )(ǧ

n)ȟn(i) =
〈
Zn
dn·e, e

�nIn(ǧn)ȟn(dn·e)
〉
L2(Ω×[0,∞))

,

Lemma 3 applies indeed. We finally note, that the modified assertion is an immediate conse-
quence of the Cauchy-Schwarz inequality and the estimate

E
[(
exp�n(In(ǧn))− exp�n(In(ǧn1N\{i}))

)2]
= E

[(
exp�n(In(ǧn1N\{i}))

)2]E [(ǧn(i)ξni /√n
)2]

≤ exp(‖ǧn‖2L2
n(N)

) sup
j∈N

|g(j)|2/n → 0,

making use of (2) in the last line. �

We are now ready to give the proof of Theorem 8.

Proof of Theorem 8. As the implication ‘(ii) ⇒ (i)’ is trivial, we only have to show the converse
implication. To this end, note first that, by Proposition 9 and Theorem 10, for every g ∈ E ,

lim
n→∞

(Snδn(Zn))(ǧn) =

∫ ∞

0
(SZt)(g)g(t)dt. (10)
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As the sequence (δn(Zn))n∈N is norm bounded by (i), it has a weakly convergent subsequence [29,
Theorem V.2.1]. We denote its limit by X. Then, applying Theorem 1 and (10) along the
subsequence, we obtain, for every g ∈ E ,

(SX)(g) =

∫ ∞

0
(SZt)(g)g(t)dt. (11)

Hence, by Definition 5, Z ∈ D(δ) and δ(Z) = X. Finally, by Theorem 1 and (10)–(11), weak
L2(Ω,F , P )-convergence of (δn(Zn))n∈N to δ(Z) holds along the whole sequence, and not only
along the subsequence. �

We now turn to the weak approximation of the Malliavin derivative. Again, we apply a definition
in terms of the S-transform, which we show to be equivalent to the more classical one in terms
of the chaos decomposition in the Appendix.

Definition 11. A random variable X ∈ L2(Ω,F , P ) is said to belong to the domain D1,2 of
the Malliavin derivative, if there is a stochastic process Z ∈ L2(Ω× [0,∞)) such that for every
g, h ∈ E, ∫ ∞

0
(SZs)(g)h(s)ds = E

[
X exp�(I(g))

(
I(h)−

∫ ∞

0
g(s)h(s)ds

)]
.

In this case, Z is unique and DX := Z is called the Malliavin derivative X.

For every X ∈ L2(Ω,F , P ) we define the discretized Malliavin derivative of X at j ∈ N with
respect to (ξni )i∈N by

Dn
j X :=

√
nE[ξnj X|Fn

−j ].

We note that, for fixed j, Dn
j is a continuous linear operator from L2(Ω,F , P ) to L2(Ω,F , P ),

because by Hölder’s inequality for conditional expectations and the independence of the family
(ξni )i∈N,

|Dn
j X|2 ≤ nE[X2|Fn

−j ]E[(ξnj )2|Fn
−j ] = nE[X2|Fn

−j ].

We say that X belongs to the domain D1,2
n of the discretized Malliavin derivative, if the process

DnX := (Dn
i X)i∈N is a member of L2

n(Ω×N). In this caseDnX is called the discretized Malliavin
derivative of X with respect to (ξni )i∈N. As Dn

j is continuous for fixed j, it is easy to check that

the discretized Malliavin derivative is a densely defined closed operator from L2(Ω,F , P ) to
L2
n(Ω× N).

In the following theorem and in the remainder of the paper we use the convention Zn
0 = 0 for

Zn ∈ L2
n(Ω× N).

Theorem 12. Suppose (Xn)n∈N converges to X weakly in L2(Ω,F , P ) and Xn ∈ D1,2
n for every

n ∈ N. Then, the following are equivalent:

(i) supn∈N
1
n

∑∞
i=1 E[(Dn

i X
n)2] < ∞.

(ii) X ∈ D1,2 and (Dn
dn·eX

n)n∈N converges to DX weakly in L2(Ω× [0,∞)).

The proof is prepared by two propositions. The first one contains the duality relation between
the discrete Skorokhod integral and discretized Malliavin derivative.

Proposition 13. For every n ∈ N, the discrete Skorokhod integral is the adjoint operator of
the discretized Malliavin derivative. In particular, δn is closed and, for every X ∈ D1,2

n and
Zn ∈ D(δn),

1

n

∞∑
i=1

E [Zn
i D

n
i X] = E[δn(Zn)X].

We emphasize that, choosing X = exp�n(In(ǧn)), g ∈ E , in Proposition 13, we obtain the
assertion of Proposition 9. Indeed, for every fn ∈ L2

n(N),

Dn
i exp

�n(In(fn)) = fn(i) exp�n(In(fn1N\{i})).
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Proof. Suppose first, that Zn ∈ D(δn) and X ∈ D1,2
n . Then, for every M ∈ N, and i ∈ N,

E
[∣∣√nE[ξni X|Fn

M,−i]
∣∣2] ≤ E

[
|Dn

i X|2
]
.

Hence, by the martingale convergence theorem and dominated convergence,

lim
M→∞

1

n

∞∑
i=1

E
[∣∣√nE[ξni X|Fn

M,−i]−Dn
i X
∣∣2] = 0.

Consequently,

1

n

∞∑
i=1

E [Zn
i D

n
i X] = lim

M→∞

1

n

M∑
i=1

E
[
Zn
i

√
nE[ξni X|Fn

M,−i]
]
= lim

M→∞

1√
n

M∑
i=1

E
[
Xξni E[Zn

i |Fn
M,−i]

]
= lim

M→∞
E

[
X

M∑
i=1

E[Zn
i |Fn

M,−i]
ξni√
n

]
= E[Xδn(Zn)].

Conversely, suppose that Zn is in the domain of the adjoint operator of the discretized Malliavin
derivative, i.e., there is an Y n ∈ L2(Ω,F , P ) such that for every X ∈ D1,2

n ,

1

n

∞∑
i=1

E [Zn
i D

n
i X] = E[Y nX]. (12)

We first note that, by construction, X ∈ D1,2
n if and only E[X|Fn] ∈ D1,2

n , and, if this is the
case, both random variables have the same discretized Malliavin derivative. Hence, applying
the duality relation (12), with X and E[X|Fn], we obtain Y n = E[Y n|Fn]. Now suppose that

X ∈ L2(Ω,Fn
M , P ). Then X ∈ D1,2

n , Dn
i X =

√
nE[ξni X|Fn

M,−i] for every i ≤ M , and Dn
i X = 0

for i > M . Hence, (12) and the same manipulations as above imply

E[Y nX] = E

[
X

M∑
i=1

E[Zn
i |Fn

M,−i]
ξni√
n

]
,

i.e.

E[Y n|Fn
M ] =

M∑
i=1

E[Zn
i |Fn

M,−i]
ξni√
n
.

By the martingale convergence theorem, (E[Y n|Fn
M ])M∈N converges strongly in L2(Ω,F , P ) to

E[Y n|Fn] = Y n. Hence, Zn ∈ D(δn) and δn(Zn) = Y n. Now, closedness is a general property
of adjoint operators, see [29, p. 196]. �
The next proposition is a consequence of the weak convergence result for discrete Skorokhod
integrals in Theorem 8.

Proposition 14. For every g, h ∈ E,

lim
n→∞

δn(exp�n(In(ǧn)) ȟn) = exp�(I(g))

(
I(h)−

∫ ∞

0
g(s)h(s)ds

)
strongly in L2(Ω,F , P ).

Proof. Notice first that, for fixed n ∈ N, exp�n(In(ǧn)) ȟn ∈ D(δn), because ȟn(i) vanishes, if i
is sufficiently large. A direct computation, making use of (9), shows

δn(exp�n(In(ǧn)) ȟn) =

∞∑
i=1

exp�n(In(ǧn1N\{i}))ȟ
n(i)

ξni√
n
.

For i 6= j we obtain, by independence of (ξnk )k∈N,

E
[
exp�n(In(ǧn1N\{i})) exp

�n(In(ǧn1N\{j}))ξ
n
i ξ

n
j

]
= ǧn(i)

1√
n
ǧn(j)

1√
n

∏
k∈N\{i,j}

(
1 + ǧn(k)2

1

n

)
.
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Combining this with an analogous calculation for the case i = j yields

E
[∣∣δn(exp�n(In(ǧn)) ȟn)∣∣2] = 1

n2

∞∑
i,j=1, i 6=j

ȟn(i)ǧn(i)ȟn(j)ǧn(j)
∏

k∈N\{i,j}

(
1 + ǧn(k)2

1

n

)

+
1

n

∞∑
i=1

ȟn(i)2
∏

k∈N\{i}

(
1 + ǧn(k)2

1

n

)
.

As g and h are bounded with compact support, it is straightforward to check in view of (5) that

lim
n→∞

E
[∣∣δn(exp�n(In(ǧn)) ȟn)∣∣2] = e

∫∞
0 g(s)2ds

((∫ ∞

0
h(s)g(s)ds

)2

+

∫ ∞

0
h(s)2ds

)
. (13)

Thus, (δn(exp�n(In(ǧn)) ȟn))n∈N converges to δ(exp�(I(g))h) weakly in L2(Ω,F , P ) by Theorem
8. The identity

δ(exp�(I(g))h) = exp�(I(g))

(
I(h)−

∫ ∞

0
g(s)h(s)ds

)
can either be derived by a direct computation making use of the S-transform definition of the
Skorokhod integral (Definition 5) or alternatively is a simple consequence of [23, Proposition
1.3.3] in conjunction with Definition 1.2.1 in the same reference. Applying the Cameron-Martin
shift [16, Theorem 14.1] twice, we observe

E

[(
e�I(g)

(
I(h)−

∫ ∞

0
g(s)h(s)ds

))2
]
= e

∫∞
0 g(s)2dsE

[
e�I(g)I(h)2

]
= e

∫∞
0 g(s)2dsE

[(
I(h) +

∫ ∞

0
g(s)h(s)ds

)2
]

= e
∫∞
0 g(s)2ds

((∫ ∞

0
h(s)g(s)ds

)2

+

∫ ∞

0
h(s)2ds

)
.

Thanks to (13), this turns weak into strong convergence. �
The proof of Theorem 12 is now analogous to that of Theorem 8.

Proof of Theorem 12. ‘(ii) ⇒ (i)’ is obvious, since

1

n

∞∑
i=1

E[(Dn
i X

n)2] =

∫ ∞

0
E[(Dn

dnseX
n)2]ds.

‘(i) ⇒ (ii)’: Notice first that, for every g, h ∈ E , by Proposition 13 with Zn = exp�n(In(ǧn)) ȟn

and Proposition 14,

lim
n→∞

1

n

∞∑
i=1

(SnDn
i X

n)(ǧn)ȟn(i) = lim
n→∞

E[Xnδn(exp�n(In(ǧn))ȟn)]

= E
[
X exp�(I(g))

(
I(h)−

∫ ∞

0
g(s)h(s)ds

)]
, (14)

since (Xn) converges to X weakly in L2(Ω,F , P ). The sequence (Dn
dn·eX

n)n∈N is norm bounded

in L2(Ω × [0,∞)) by (i), and, hence, it has a weakly convergent subsequence. We denote its
limit by Z. Applying (14) and Theorem 10 along this subsequence, we conclude∫ ∞

0
(SZs)(g)h(s)ds = E

[
X exp�(I(g))

(
I(h)−

∫ ∞

0
g(s)h(s)ds

)]
. (15)

Hence, X ∈ D1,2 and DX = Z by Definition 11. Finally, applying (14)–(15) and Theorem 10
along the whole sequence (Dn

dn·eX
n)n∈N, shows that this sequence converges weakly in L2(Ω ×

[0,∞)) to DX. �



DISCRETIZING MALLIAVIN CALCULUS 13

In order to check the assumptions of Theorem 8, we consider the space L1,2
n , which consists of

processes Zn ∈ L2
n(Ω× N) such that Zn

i ∈ D1,2
n for every i ∈ N and

1

n2

∞∑
i,j=1, i 6=j

E
[
|Dn

j Z
n
i |2
]
< ∞.

Proposition 15. For every n ∈ N, L1,2
n ⊂ D(δn) and, for Zn ∈ L1,2

n ,

δn(Zn) =

∞∑
i=1

E[Zn
i |Fn

−i]
ξni√
n
, (strong L2(Ω,F , P )-convergence), (16)

E
[
(δn(Zn))2

]
=

1

n

∞∑
i=1

E
[
E
[
Zn
i |Fn

−i

]2]
+

1

n2

∞∑
i,j=1, i 6=j

E
[
(Dn

i Z
n
j )(D

n
j Z

n
i )
]
. (17)

In particular, in the context of Theorem 8, assertion (i) is equivalent to

(i’) supn∈N
1
n2

∑∞
i,j=1, i 6=j E

[
(Dn

i Z
n
j )(D

n
j Z

n
i )
]
< ∞,

if we additionally assume that Zn ∈ L1,2
n for every n ∈ N.

Proof. Fix N1 < N2 ∈ N. Then,

E

 N2∑
i=N1

E[Zn
i |Fn

−i]
ξni√
n

2 =
1

n

N2∑
i=N1

E
[
E[Zn

i |Fn
−i]

2 (ξni )
2
]

+
1

n

N2∑
i,j=N1, i 6=j

E
[
E[Zn

i |Fn
−i]E[Zn

j |Fn
−j ]ξ

n
i ξ

n
j

]
= (I)N1,N2 + (II)N1,N2 .

By the independence of the discrete-time noise (ξni )i∈N and as the conditional expectation has
norm 1, we obtain as N tends to infinity,

(I)1,N =
1

n

N∑
i=1

E
[
E[Zn

i |Fn
−i]

2
]
→ 1

n

∞∑
i=1

E
[
E[Zn

i |Fn
−i]

2
]
< ∞,

and (I)N1,N2 → 0 as N1, N2 tend to infinity. In order to treat (II)N1,N2 , we first note that for
any random variable Xn ∈ L1(Ω,Fn, P ) and i 6= j ∈ N, by Fubini’s theorem,

E
[
E
[
Xn|Fn

−i

]∣∣Fn
−j

]
= E

[
E
[
Xn|Fn

−j

]∣∣Fn
−i

]
. (18)

Hence, for i 6= j ∈ N,
E
[
E[Zn

i |Fn
−i]E[Zn

j |Fn
−j ]ξ

n
i ξ

n
j

]
= E

[
E[Zn

i ξ
n
j |Fn

−i]E[Zn
j ξ

n
i |Fn

−j ]
]

= E
[
E
[
E[Zn

i ξ
n
j |Fn

−i]
∣∣Fn

−j

]
Zn
j ξ

n
i

]
= E

[
E
[
E[Zn

i ξ
n
j |Fn

−j ]
∣∣Fn

−i

]
Zn
j ξ

n
i

]
= E

[
E[Zn

i ξ
n
j |Fn

−j ]E[Zn
j ξ

n
i |Fn

−i]
]
=

1

n
E
[
(Dn

i Z
n
j )(D

n
j Z

n
i )
]
.

Consequently, by Young’s inequality,

n
∣∣E [E[Zn

i |Fn
−i]E[Zn

j |Fn
−j ]ξ

n
i ξ

n
j

]∣∣ ≤ 1

2
E
[
(Dn

i Z
n
j )

2
]
+

1

2
E
[
(Dn

j Z
n
i )

2
]
.

The L1,2
n -assumption, thus, ensures that

lim
N→∞

(II)1,N =
1

n2

∞∑
i,j=1,i6=j

E
[
(Dn

i Z
n
j )(D

n
j Z

n
i )
]
< ∞

and (II)N1,N2 → 0 as N1, N2 tend to infinity. Hence, by (9), the sequence (δn(Zn1[1,N ]))N∈N is

Cauchy in L2(Ω,F , P ). By the closedness of the discrete Skorokhod integral, Zn ∈ D(δn) and
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we obtain L1,2
n ⊂ D(δn), (16) and (17). We finally suppose that the assumptions of Theorem 8

are in force and that Zn ∈ L1,2
n for every n ∈ N. Then,

sup
n∈N

1

n

∞∑
i=1

E
[
E[Zn

i |Fn
−i]

2
]
< ∞,

because of the assumed weak convergence of the sequence (Zn
dn·e)n∈N. Thus, the sequence

(δn(Zn))n∈N is norm bounded in L2(Ω,F , P ), if and only if (i’) holds. �

As a consequence of the previous proposition, we obtain the following strong L2(Ω,F , P )-
convergence results to the Malliavin derivative.

Theorem 16. Suppose (Xn)n∈N converges to X strongly in L2(Ω,F , P ). Moreover assume that

Xn ∈ D2,2
n for every n ∈ N, i.e.

1

n

∞∑
i=1

E
[
(Dn

i X
n)2
]
+

1

n2

∞∑
i,j=1, i 6=j

E
[
(Dn

j D
n
i X

n)2
]
< ∞.

Then, the following assertions are equivalent:

(i) supn∈N

(
1
n

∑∞
i=1 E

[
(Dn

i X
n)2
]
+ 1

n2

∑∞
i,j=1, i 6=j E

[
(Dn

j D
n
i X

n)2
])

< ∞.

(ii) X ∈ D1,2, DX ∈ D(δ), (Dn
dn·eX

n)n∈N converges to DX strongly in L2(Ω× [0,∞)), and

(δn(DnXn))n∈N converges to δ(DX) weakly in L2(Ω,F , P ).

Remark 17. Recall that L = −δ ◦ D is the infinitesimal generator of the Ornstein-Uhlenbeck
semigroup, see [23, Section 1.4], and is sometimes called Ornstein-Uhlenbeck operator (cf. also
[16, Example 4.7]). So the previous theorem provides, at the same time, sufficient conditions
for the strong convergence to the Malliavin derivative and the weak convergence to the Ornstein-
Uhlenbeck operator.

Proof. Let Zn
i = Dn

i X
n. Then, Xn ∈ D2,2

n implies Zn ∈ L1,2
n . Note that, for i 6= j, by (18),

Dn
j Z

n
i = Dn

j D
n
i X = Dn

i D
n
j X = Dn

i Z
n
j ,

i.e. (Dn
j Z

n
i )(D

n
i Z

n
j ) = (Dn

j D
n
i X)2. Hence, by Theorem 12 and Theorem 8 in conjunction with

Proposition 15, assertion (i) is equivalent to

(ii’) X ∈ D1,2, DX ∈ D(δ), (Dn
dn·eX

n)n∈N converges to DX weakly in L2(Ω × [0,∞)), and

(δn(DnXn))n∈N converges to δ(DX) weakly in L2(Ω,F , P ).

So we only need to show that under (ii’) the convergence of (Dn
dn·eX

n)n∈N to DX holds true in

the strong topology. However, by the duality relation in Proposition 13, the weak L2(Ω,F , P )-
convergence of (δn(DnXn))n∈N and the strong L2(Ω,F , P )-convergence of (Xn)n∈N,∫ ∞

0
E[(Dn

dn·eX
n)2]dt = E[δn(DnXn)Xn] → E[δ(DX)X] =

∫ ∞

0
E[(DtX)2]dt,

making use of the continuous time duality between Skorokhod integral and Malliavin derivative
in the last step. �

The analogous result for the Skorokhod integral reads as follows.

Theorem 18. Suppose (Zn
dn·e)n∈N converges strongly to Z in L2(Ω × [0,∞)) and assume that

Zn ∈ L2,2
n , i.e., for every n ∈ N,

1

n2

∞∑
i,j=1, i 6=j

E
[
|Dn

i Z
n
j |2
]
+

1

n3

∞∑
i,j,k=1, |{i,j,k}|=3

E
[
|Dn

i D
n
j Z

n
k |2
]
< ∞.

Then the following assertions are equivalent:



DISCRETIZING MALLIAVIN CALCULUS 15

(i) supn∈N

(
1
n2

∑∞
i,j=1, i 6=j E

[
(Dn

i Z
n
j )(D

n
j Z

n
i )
])

< ∞ and

sup
n∈N

 1

n2

∞∑
i,j=1, i 6=j

E
[
E[Dn

i Z
n
j |Fn

−j ]
2
]
+

1

n3

∞∑
i,j,k=1, |{i,j,k}|=3

E
[
(Dn

i D
n
j Z

n
k )(D

n
kD

n
j Z

n
i )
] < ∞.

(ii) Z ∈ D(δ), δ(Z) ∈ D1,2, (δn(Zn))n∈N converges to δ(Z) strongly in L2(Ω,F , P ) and
(Dn

dn·eδ
n(Zn))n∈N converges to Dδ(Z) weakly in L2(Ω× [0,∞)).

As a preparation we explain how to compute the dicretized Malliavin derivative of a discrete
Skorokhod integral, which is analogous to the continuous-time situation, cp. e.g. [23, Proposition
1.3.8].

Proposition 19. Suppose Zn ∈ L1,2
n . Then (Dn

i Z
n)1N\{i} ∈ D(δn) for every i ∈ N, and

Dn
i δ

n(Zn) = E[Zn
i |Fn

−i] + δn(Dn
i Z

n1N\{i}).

Proof. By (16) and the continuity of Dn
i ,

Dn
i δ

n(Zn) = Dn
i

(
E[Zn

i |Fn
−i]

ξni√
n

)
+

∞∑
j=1, j 6=i

Dn
i

(
E[Zn

j |Fn
−j ]

ξnj√
n

)
,

(including the strong convergence of the series on the right-hand side in L2(Ω,F , P )). By (18),
for i 6= j,

E[ξni E[Zn
j |Fn

−j ]ξ
n
j |Fn

−i] = E[E[ξni Zn
j |Fn

−j ]|Fn
−i]ξ

n
j = E[E[ξni Zn

j |Fn
−i]|Fn

−j ]ξ
n
j .

Moreover,

E[(ξni )2E[Zn
i |Fn

−i]|Fn
−i] = E[Zn

i |Fn
−i].

Hence,

Dn
i δ

n(Zn) = E[Zn
i |Fn

−i] +
∞∑

j=1, j 6=i

E[Dn
i Z

n
j |Fn

−j ]
ξnj√
n
,

and the closedness of the discrete Skorokhod integral concludes. �

Proof of Theorem 18. The L2,2
n -assumption guarantees that, for every i ∈ N, (Dn

i Z
n)1N\{i} ∈

L1,2
n . As (Zn

dn·e)n∈N is norm bounded in L2(Ω × [0,∞)) by the assumed strong convergence to

Z, we observe in view of Propositions 15 and 19 that (i) is equivalent to

(i’) supn∈N E[|δn(Zn)|2] < ∞ and supn∈N
1
n

∑∞
i=1 E[|Dn

i δ
n(Zn)|2] < ∞.

Thanks to Theorems 8 and 12, assertion (i’) is equivalent to

(ii’) Z ∈ D(δ), δ(Z) ∈ D1,2, (δn(Zn))n∈N converges weakly to δ(Z) in L2(Ω,F , P ), and
(Dnδn(Zn))n∈N converges to Dδ(Z) weakly in L2(Ω× [0,∞)).

Due to the strong convergence of (Zn
dn·e)n∈N to Z and the weak convergence of (Dn

dn·eδ
n(Zn))n∈N

to D(δ(Z)), the continuous time duality between Skorokhod integral and Malliavin derivative
and its discrete time counterpart in Proposition 13 imply

‖δn(Zn)‖2L2(Ω,F ,P ) =

∫ ∞

0
E[Zn

dnseD
n
dnseδ

n(Zn)]ds →
∫ ∞

0
E[ZsDsδ(Z)]ds = ‖δ(Z)‖2L2(Ω,F ,P ).

Hence we obtain the convergence of (δn(Zn))n∈N to δ(Z) in the strong topology, i.e., assertion
(ii’) is equivalent to assertion (ii). �
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4. Strong and weak L2-approximation of the Itô integral and the Clark-Ocone
derivative

In this section, we first specialize the approximation result for the Skorokhod integral to pre-
dictable integrands. In this way, we obtain necessary and sufficient conditions for strong and
weak L2-convergence of discrete Itô integrals with respect to the noise (ξni )i∈N to Itô integrals
with respect to the Brownian motion B. Then, we discuss strong and weak L2-approximations to
the Clark-Ocone derivative, which provides the predictable integral representation of a random
variable in L2(Ω,F , P ) with respect to the Brownian motion B.
Suppose Zn ∈ L2

n(Ω × N) is predictable with respect to (Fn
i )i∈N, i.e., for every i ∈ N, Zn

i is
measurable with respect to Fn

i−1 = σ(ξn1 , . . . , ξ
n
i−1). Then,

δn(Zn) =

∞∑
i=1

Zn
i

ξni√
n
=:

∫
ZndBn,

which means that the discrete Skorokhod integral reduces to the discrete Itô integral. Analo-
gously, the Skorokhod integral δ(Z) is well-known to coincide with the Itô integral

∫∞
0 ZsdBs,

when Z ∈ L2(Ω × [0,∞)) is predictable with respect to the augmented Brownian filtration
(Ft)t∈[0,∞), see, e.g. [16, Theorem 7.41]. In this case of predictable integrands, the approxima-
tion theorem for Skorokhod integrals (Theorem 8) can be improved as follows.

Theorem 20. Suppose Z ∈ L2(Ω×[0,∞)) is predictable with respect to the augmented Brownian
filtration (Ft)t∈[0,∞), and, for every n ∈ N, Zn ∈ L2

n(Ω×N) is predictable with respect to (Fn
i )i∈N.

Then, the following are equivalent:

(i) (Zn
dn·e)n∈N converges to Z strongly (resp. weakly) in L2(Ω× [0,∞)).

(ii) The sequence of discrete Itô integrals
(∫

ZndBn
)
n∈N converges strongly (resp. weakly)

in L2(Ω,F , P ) to
∫∞
0 ZsdBs.

Remark 21. We note that, in order to study convergence of Itô integrals (with respect to
different filtrations), techniques of convergence in distribution on the Skorokhod space of right-
continuous functions with left limits are classically applied. E.g., the results by [19] immediately
imply the following result in our setting: Suppose that Z is predictable with respect to the Brow-
nian filtration and its paths are right-continuous with left limits. Moreover, assume that Zn

is predictable with respect to (Fn
i )i∈N and (Zn

b1+n(·)c) converges to Z uniformly on compacts in

probability. Then,

lim
n→∞

bn·c∑
i=1

Zn
i

1√
n
ξni =

∫ ·

0
Zs−dBs,

uniformly on compacts in probability. In contrast, our Theorem 20 provides an L2-theory and,
in particular, includes the converse implication, namely that convergence of the discrete Itô
integrals implies convergence of the integrands.

The proof of Theorem 20 will make use of the following proposition.

Proposition 22. Suppose g, h ∈ E. Then, strongly in L2(Ω× [0,∞)),

lim
n→∞

exp�n(In(ǧn1[1,dn·e−1]))ȟ
n(dn·e) = exp�(I(g1(0,·]))h(·).

Proof. Recall that the support of h is contained in [0,M ] for some M ∈ N. Hence, we can
decompose, ∫ ∞

0
E
[(
exp�n(In(ǧn1[1,dnte−1]))ȟ

n(dnte)− exp�(I(g1(0,t]))h(t)
)2]

dt

≤ 2

∫ M

0
E
[(
exp�n(In(ǧn1[1,bntc]))− exp�(I(g1(0,t]))

)2]
h(t)2dt
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+2

∫ ∞

0
E
[(
exp�n(In(ǧn1[1,dnte−1]))

)2] |ȟn(dnte)− h(t)|2dt,

since dnte − 1 = bntc for Lebesgue almost every t ≥ 0. As, by (2)

sup
n∈N, t∈[0,∞)

E
[(
exp�n(In(ǧn1[1,dnte−1]))

)2] ≤ sup
n∈N

e
‖ǧn(dn·e)‖2

L2([0,∞)) < ∞,

the second term goes to zero by (5). Moreover, by the boundedness of h, the first one tends to
zero by the dominated convergence theorem, since, for every t ∈ [0,∞), by Proposition 2,

lim
n→∞

E
[(
exp�n(In((ǧn1[1,bntc])))− exp�(I(g1(0,t]))

)2]
= 0.

�

Proof of Theorem 20. ‘(i) ⇒ (ii)’: By the isometry for discrete Itô integrals, we have

E

[(∫
ZndBn

)2
]
= E

∣∣∣∣∣
∞∑
i=1

Zn
i

1√
n
ξni

∣∣∣∣∣
2
 =

∫ ∞

0
E
[
|Zn

dnse|
2
]
ds. (19)

Hence, if (Zn
dn·e)n∈N converges to Z weakly in L2(Ω,F , P ), then the left-hand side in (19) is

bounded in n ∈ N, and so Theorem 8 implies the asserted weak L2(Ω,F , P ) convergence of
the sequence of discrete Itô integrals to

∫∞
0 ZsdBs. If (Zn

dn·e)n∈N converges to Z strongly in

L2(Ω,F , P ), then, by (19) and the continuous time Itô isometry,

lim
n→∞

E

[(∫
ZndBn

)2
]
=

∫ ∞

0
E
[
|Zs|2

]
ds = E

[(∫ ∞

0
ZsdBs

)2
]
,

which turns the weak L2(Ω,F , P )-convergence of the sequence of discrete Itô integrals into
strong L2(Ω,F , P )-convergence.

‘(ii) ⇒ (i)’: We first assume that the sequence of discrete Itô integrals converges weakly in
L2(Ω,F , P ) to the continuous time Itô integral. By the implication ‘(i) ⇒ (ii)’ (which we have
already proved) and Proposition 22, we obtain, for every g, h ∈ E ,

lim
n→∞

∞∑
i=1

exp�n(In(ǧn1[1,i−1]))ȟ
n(i)

1√
n
ξni =

∫ ∞

0
exp�(I(g1(0,s]))h(s) dBs (20)

strongly in L2(Ω,F , P ). As Zn is predictable, we get, for every g, h ∈ E , by the discrete Itô
isometry,

1

n

∞∑
i=1

(SnZn
i )(ǧ

n)ȟn(i) =
1

n

∞∑
i=1

E[E[Zn
i |Fn

i−1] exp
�n(In(ǧn))ȟn(i)]

=
1

n

∞∑
i=1

E[Zn
i exp�n(In(ǧn1[1,i−1]))ȟ

n(i)]

= E

[( ∞∑
i=1

Zn
i

1√
n
ξni

)( ∞∑
i=1

exp�n(In(ǧn1[1,i−1]))ȟ
n(i)

1√
n
ξni

)]
.

The assumed weak L2(Ω,F , P )-convergence of the sequence of discrete Itô integrals and the
strong L2(Ω,F , P )-convergence in (20) now imply

lim
n→∞

1

n

∞∑
i=1

(SnZn
i )(ǧ

n)ȟn(i) = E
[(∫ ∞

0
ZsdBs

)(∫ ∞

0
e�I(g1(0,s]) h(s) dBs

)]
.
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As (exp�(I(g1(0,s])))s∈[0,∞) is a uniformly integrable martingale and Z is predictable, we obtain,
by the Itô isometry and the definition of the S-transform,

lim
n→∞

1

n

∞∑
i=1

(SnZn
i )(ǧ

n)ȟn(i) =

∫ ∞

0
(SZs)(g)h(s)ds, g, h ∈ E .

We can now apply Theorem 10. As
∫∞
0 E

[
|Zn

dnse|
2
]
ds is bounded in n by (19) and by the

assumed weak L2(Ω,F , P )-convergence of the discrete Itô integrals, the latter Theorem im-
plies that (Zn

dn·e)n∈N converges to Z weakly in L2(Ω × [0,∞)). If we instead assume strong

L2(Ω,F , P )-convergence of the sequence of the discrete Itô integrals, a straightforward applica-
tion of the isometries for discrete and continuous-time Itô integrals turns the weak L2(Ω×[0,∞))-
convergence again into strong convergence. �

We now turn to the Clark-Ocone derivative. Recall that a Brownian motion has the predictable
representation property with respect to its natural filtration, i.e., for every X ∈ L2(Ω,F , P )
there is a unique (Ft)t∈[0,∞)-predictable process ∇X ∈ L2(Ω× [0,∞)) such that

X = E[X] +

∫ ∞

0
∇sXdBs. (21)

We refer to ∇X as the generalized Clark-Ocone derivative and recall that (∇tX)t≥0 is the
predictable projection of the Malliavin derivative (DtX)t≥0, if X ∈ D1,2. By Itô’s isometry the
operator ∇ : L2(Ω,F , P ) → L2(Ω× [0,∞)) is continuous with norm 1.

Except in the case of binary noise, the discrete time approximation B(n) of the Brownian motion
B does not satisfy the discrete time predictable representation property with respect to (Fn

i )i∈N.
Nonetheless one can consider the discrete time predictable projection of the discretized Malliavin
derivative

∇n
i X := E[Dn

i X|Fn
i−1] =

√
nE[ξni X|Fn

i−1], X ∈ L2(Ω,F , P ), i ∈ N,

as discretization of the generalized Clark-Ocone derivative. We refer to (∇n
i X)i∈N as discretized

Clark-Ocone derivative of X and note that it has been extensively studied in the context of
discretization of backward stochastic differential equations, see, e.g., [6, 10,30].
The operator

∇n : L2(Ω,F , P ) → L2
n(Ω× N), X 7→ (∇n

i X)i∈N

is continuous with norm one. Indeed, introducing the shorthand notation En,i[·] = E[·|Fn
i ] and

noting that the martingale (En,i[X])i∈N is, for fixed n ∈ N, uniformly integrable, and, thus,
converges almost surely to E[X|Fn], as i tends to infinity, one gets, by Hölder’s and Jensen’s
inequality,

1

n

∞∑
i=1

E
[(√

nEn,i−1 [ξ
n
i X]

)2]
=

∞∑
i=1

E
[
(En,i−1 [ξ

n
i (En,i[X]− En,i−1[X])])2

]
≤

∞∑
i=1

E
[
En,i−1

[
(ξni )

2
]
En,i−1

[
(En,i[X]− En,i−1[X])2

]]
= E

[ ∞∑
i=1

(
(En,i[X])2 − (En,i−1[X])2

)]
= E

[
(E[X|Fn])2

]
− E [X]2

≤ E
[
(X)2

]
− E [X]2 .

We now denote by

Pn :=

{
a+

∫
ZndBn; a ∈ R, Zn ∈ L2

n(Ω× N) predictable
}



DISCRETIZING MALLIAVIN CALCULUS 19

the closed subspace in L2(Ω,F , P ), which admits a discrete time predictable integral represen-
tation. Note that, for every X ∈ L2(Ω,F , P ), a ∈ R, and (Fn

i )i∈N-predictable Zn ∈ L2
n(Ω×N),

by the discrete Itô isometry,

E
[
X

(
a+

∫
ZndBn

)]
= aE[X] +

1√
n

∞∑
i=1

E[Xξni E[Zn
i |Fn

i−1]]

= aE[X] +
1

n

∞∑
i=1

E
[
Zn
i

√
nE[Xξni |Fn

i−1]
]

= E
[(

E[X] +

∫
∇nXdBn

)(
a+

∫
ZndBn

)]
.

Hence,

πPnX = E[X] +

∫
∇nXdBn, (22)

where, for any closed subspace A in L2(Ω,F , P ), πA denotes the orthogonal projection on A.
Our first approximation result for the Clark-Ocone derivative now reads as follows:

Theorem 23. Suppose (Xn)n∈N is a sequence in L2(Ω,F , P ) and X ∈ L2(Ω,F , P ). Then, the
following are equivalent, as n tends to infinity:

(i) (πPnXn − E[Xn])n∈N converges to X − E[X] strongly (weakly) in L2(Ω,F , P ).
(ii) (∇n

dn·eX
n)n∈N converges to ∇X strongly (weakly) in L2(Ω× [0,∞)).

A sufficient condition for (i), (ii) is that (Xn)n∈N converges to X strongly (weakly) in L2(Ω,F , P ).

Proof. Recall that by (21) and (22)

X − E[X] =

∫ ∞

0
∇XsdBs,

πPnXn − E[Xn] =

∫
∇nXndBn.

Hence, Theorem 20 provides the equivalence of (i) and (ii). As, for every g ∈ E , exp�n(In(ǧn)) ∈
Pn by (3), the sufficient condition is a consequence of the following lemma. �

Lemma 24. Suppose that An, n ∈ N, are closed subspaces of L2(Ω,F , P ) such that for every
n ∈ N,

{exp�n(In(ǧn)), g ∈ E} ⊂ An.

Then, strong (weak) L2(Ω,F , P )-convergence of (Xn)n∈N to X implies that (πAnXn)n∈N con-
verges to X strongly (weakly) in L2(Ω,F , P ) as well.

Proof. As, for every g ∈ E ,

E[(πAnXn) exp�n(In(ǧn))] = E[Xn πAn(exp�n(In(ǧn)))] = E[Xn exp�n(In(ǧn))],

we obtain that (SnXn)(ǧn) = (Sn(πAnXn))(ǧn). In the case of weak convergence, Theorem 1
now immediately applies, because

E
[
(πAnXn)2

]
≤ E

[
(Xn)2

]
.

In the case of strong convergence, we also make use of Theorem 1, and note that by the already
established weak convergence of (πAnXn)n∈N and Hölder’s inequality, as n tends to infinity,

E
[
(πAnXn)2

]
= E [X(πAnXn)] + E [(Xn −X)(πAnXn)] → E

[
X2
]
.

�
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We shall finally discuss an alternative approximation of the generalized Clark-Ocone derivative,
which involves orthogonal projections on appropriate finite-dimensional subspaces. To this end,
we denote by Hn the strong closure in L2(Ω,F , P ) of the linear span of

Ξn :=

{
Ξn
A :=

∏
i∈A

ξni , A ⊆ N, |A| < ∞

}
,

and emphasize that Hn = L2(Ω,Fn, P ), if and only if the noise distribution of ξ is binary. As
Ξn consists of an orthonormal basis of Hn, every Xn ∈ Hn has a unique expansion in terms of
this Hilbert space basis, which is called the Walsh decomposition of Xn,

Xn =
∑

|A|<∞

Xn
AΞ

n
A, (23)

where Xn
A = E[XnΞn

A] satisfies
∑

|A|<∞(Xn
A)

2 < ∞. The expectation and L2(Ω,F , P )-inner

product can be computed in terms of the Walsh decomposition via E[Xn] = Xn
∅ and

E [XnY n] =
∑

|A|<∞

Xn
AY

n
A , Xn, Y n ∈ Hn,

cp. [12]. A direct computation shows that the Walsh decomposition of a discrete Wick expo-
nential is given by

exp�n(In(fn)) =
∑

|A|<∞

(
n−|A|/2

∏
i∈A

fn(i)

)
Ξn
A. (24)

In view of the Möbius inversion formula [1, Theorem 5.5], we obtain, for every finite subset B
of N,

Ξn
B = n|B|/2

∑
C⊆B

(−1)|B|−|C| exp�n(In(1C)).

Hence, the set {exp�n(In(ǧn)), g ∈ E} is total in Hn.
We now consider the finite-dimensional subspaces

Hn
i := span{Ξn

A, A ⊂ {1, . . . , i}},
and introduce, as a second approximation of the generalized Clark-Ocone derivative, the operator

∇̄n : L2(Ω,F , P ) → L2
n(Ω× N), X 7→ (πHn

i−1
(∇n

i X))i∈N.

Notice that
∇̄n

i X =
√
nπHn

i−1
(ξni X),

if ξni X ∈ L2(Ω,F , P ).
We are now going to show the following variant of Theorem 23.

Theorem 25. Suppose (Xn)n∈N is a sequence in L2(Ω,F , P ) and X ∈ L2(Ω,F , P ). Then, the
following are equivalent, as n tends to infinity:

(i) (πHnXn − E[Xn])n∈N converges to X − E[X] strongly (weakly) in L2(Ω,F , P ).
(ii) (∇̄n

dn·eX
n)n∈N converges to ∇X strongly (weakly) in L2(Ω× [0,∞)).

A sufficient condition for (i), (ii) is that (Xn)n∈N converges to X strongly (weakly) in L2(Ω,F , P ).

The proof is based on the simple observation that Hn ⊂ Pn, i.e., for every Xn ∈ Hn,

Xn = E[Xn] +

∞∑
i=1

∇n
i X

n 1√
n
ξni . (25)

In order to show this, we recall that {exp�n(In(ǧn)), g ∈ E} is total in Hn. Thus, by continuity
of the discretized Clark-Ocone derivative and by the discrete Itô isometry, it suffices to show
(25) in the case Xn = exp�n(In(f̌n)) for f ∈ E . A direct computation shows,

∇n
i exp

�n(In(fn)) = fn(i) exp�n(In(fn1[1,i−1])), (26)



DISCRETIZING MALLIAVIN CALCULUS 21

which in view of (3) completes the proof of (25).

Proof of Theorem 25. We first note that, for every X ∈ L2(Ω,F , P ),

E[πHnX] = E[X], (27)

∇̄n
i X = ∇n

i (πHnX). (28)

Indeed, as

πHnX = E[X] +
∑

1≤|A|<∞

E[XΞn
A]Ξ

n
A,

Eq. (27) is obvious. In order to prove (28), we recall first that ∇n
i (πHnX) ∈ Hn

i−1 (by (26)
and continuity of the discretized Clark-Ocone derivative) and then note that, for every A ⊂
{1, . . . , i− 1},

E
[
Ξn
AE
[
ξni X| Fn

i−1

]]
= E[Ξn

A∪{i}X] = E[Ξn
A∪{i}πHn(X)]

= E
[
Ξn
AE
[
ξni πHn(X)| Fn

i−1

]]
= E

[
Ξn
A

1√
n
∇n

i (πHnX)

]
.

In particular, by (25), (27), and (28)

πHnX = E[X] +

∫
∇̄nXdBn, (29)

which is the analogue of (22). The proof of Theorem 23 can now be repeated verbatim with Pn

replaced by Hn. �

We close this section with two remarks.

Remark 26. In view of Lemma 24 and the inclusion Hn ⊂ Pn we observe that, for any sequence
(Xn)n∈N in L2(Ω,F , P ),

lim
n→∞

Xn = X strongly (weakly) in L2(Ω,F , P )

⇒ lim
n→∞

πPnXn = X strongly (weakly) in L2(Ω,F , P )

⇒ lim
n→∞

πHnXn = X strongly (weakly) in L2(Ω,F , P ).

In particular, by Theorems 23 and 25, if the sequence of discretized Clark-Ocone derivatives
(∇n

dn·eX
n)n∈N converges to ∇X strongly (weakly) in L2(Ω × [0,∞)), then so does the sequence

of modified discretized Clark-Ocone derivatives (∇̄n
dn·eX

n)n∈N .

Remark 27. The following result can be derived from [6, Theorem 5 and the examples in
Section 5] under the additional assumption that E[|ξ|2+ε] < ∞ for some ε > 0 and on a finite
time horizon: Strong convergence of (Xn)n∈N to X in L2(Ω,F , P ) implies convergence of the
sequence of discretized Clark-Ocone derivatives as stated in (ii) of Theorem 23. Our Theorem 25
additionally shows that the conditional expectations E[·|Fn

i−1] in the definition of the discretized
Clark-Ocone derivative can be replaced by the projection on the finite dimensional subspace Hn

i ,
i.e., if (Xn)n∈N converges to X strongly in L2(Ω,F , P ), then(√

nπHn
dnte−1

(ξndnte (τn(X
n))
)
t∈[0,∞)

→ ∇X

strongly in L2(Ω× [0,∞)), where τn denotes the truncation at ±n.
We also note that, in view of (29),

∇̄iX =
(πHn

i
X)− (πHn

i−1
X)

Bn
i −Bn

i−1

can be rewritten as difference operator (where we apply the convention
ξni
ξni

= 1 when ξni vanishes).

This representation shows the close relation to the weak L2(Ω× [0,∞))-approximation result for
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the generalized Clark-Ocone derivative which is derived in [20, Corollary 4.1] for the case of
binary noise.

5. Strong L2-approximation of the chaos decomposition

In this section, we apply Theorem 1 in order to characterize strong L2(Ω,F , P )-convergence of
a sequence (Xn) (where Xn can be represented via multiple Wiener integrals with respect to
the discrete time noise (ξni )i∈N) via convergence of the coefficient functions of such a discrete
chaos decomposition.
Recall first, that every X ∈ L2(Ω,F , P ) has a unique Wiener chaos decomposition in terms of
multiple Wiener integrals

X =

∞∑
k=0

Ik(fk
X), (30)

where fk
X ∈ L̃2([0,∞)k), see e.g. [23, Theorem 1.1.2]. Here, we denote by L2([0,∞)k) the Hilbert

space of square-integrable functions with respect to the k-dimensional Lebesgue measure and by

L̃2([0,∞)k) the subspace of functions in L2([0,∞)k) which are symmetric in the k variables. We

apply the standard convention L̃2([0,∞)0) = L2([0,∞)0) = R, I0(f0) = f0, and recall that, for

k ≥ 1 and fk ∈ L̃2([0,∞)k), the multiple Wiener integral can be defined as iterated Itô integral:

Ik(fk) = k!

∫ ∞

0

∫ tk

0
· · ·
∫ t2

0
fk(t1, . . . , tk)dBt1 · · · dBtk−1

dBtk .

The Itô isometry therefore immediately implies the following well-konwn Wiener-Itô isometry
for multiple Wiener integrals,

E[Ik(fk) Ik
′
(gk

′
)] = δk,k′ k! 〈fk, gk〉L2([0,∞)k (31)

for functions fk ∈ L̃2([0,∞)k) and gk
′ ∈ L̃2([0,∞)k

′
).

The main theorem of this section now reads as follows:

Theorem 28 (Wiener chaos limit theorem). Suppose (Xn)n∈N is a sequence in L2(Ω,F , P ).
Then the following assertions are equivalent as n tends to infinity:

(i) The sequence (πHnXn) converges strongly in L2(Ω,F , P ).

(ii) For every k ∈ N0, the sequence (f̂n,k
Xn )n∈N, defined via

f̂n,k
Xn (u1, . . . , uk) := E

[
Xnn

k/2

k!
Ξn
{dnu1e,...,dnuke}

]
1{|{dnu1e,...,dnuke}∩N|=k}. (32)

is strongly convergent in L2([0,∞)k) and

lim
m→∞

lim sup
n→∞

∞∑
k=m

k!‖f̂n,k
Xn‖2L2([0,∞)k) = 0. (33)

In this case, the limit X of (πHnXn)n∈N has the Wiener chaos decomposition X =
∞∑
k=0

Ik(fk
X)

with fk
X = lim

n→∞
f̂n,k
Xn in L2([0,∞)k).

We recall that, by Remark 26, the strong L2(Ω,F , P )-convergence of (Xn) to X is a sufficient
condition for the strong approximation of the chaos coefficients of X as stated in (ii) of the
above theorem.
Before proving Theorem 28, we briefly discuss this result. To this end, we first recall the relation
between Walsh decomposition and discrete chaos decomposition. The discrete multiple Wiener
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integrals are defined analogously to the continuous setting, see e.g. [25, Section 1.3]. For all
k, n ∈ N we consider the Hilbert space

L2
n(Nk) :=

fn,k : Nk → R :
∑

(i1,...,ik)∈Nk

(
fn,k(i1, . . . , ik)

)2
< ∞


endowed with the inner product

〈fn,k, gn,k〉L2
n(Nk) := n−k

∑
(i1,...,ik)∈Nk

fn,k(i1, . . . , ik)g
n,k(i1, . . . , ik).

The closed subspace of symmetric functions in L2
n(Nk) which vanish on the diagonal part

∂k :=
{
(i1, . . . , ik) ∈ Nk : |{i1, . . . , ik}| < k

}
is denoted by L̃2

n(Nk).

Then, for k ∈ N, the discrete multiple Wiener integral of fn,k ∈ L̃2
n(Nk) with respect to the

random walk Bn is defined as

In,k(fn,k) := n−k/2k!
∑

(i1,...,ik)∈Nk, i1<···<ik

fn,k(i1, . . . , ik)Ξ
n
{i1,...,ik}.

We notice that In,k is linear on L̃2
n(Nk) and fulfills E[In,k(fn,k)] = 0 as well as the isometry

E[In,k(fn,k)In,k
′
(gn,k

′
)] = δk,k′ k! 〈fn,k, gn,k〉L2

n(Nk) (34)

for fn,k ∈ L̃2
n(Nk), gn,k

′ ∈ L̃2
n(Nk′) and possibly different orders k, k′ ∈ N. As in the continuous

time setting, we apply the convention that In,0 is the identity on L̃2
n(N0) := R, and refer

to [25, Section 1.3] for further properties of such discrete multiple Wiener integrals.
We now fix Xn ∈ Hn. The Walsh decomposition Xn =

∑
|A|<∞ E[XnΞn

A]Ξ
n
A implies that the

discrete analog of the Wiener chaos decomposition

Xn =
∞∑
k=0

n−k/2k!
∑

(i1,...,ik)∈Nk,i1<···<ik

nk/2

k!
Xn

{i1,...,ik}Ξ
n
{i1,...,ik} =

∞∑
k=0

In,k(fn,k
Xn ), (35)

holds for the integrands fn,k
Xn ∈ L̃2

n(Nk) given by

fn,k
Xn (i1, . . . , ik) :=

{
E
[
nk/2

k! XnΞn
{i1,...,ik}

]
, |{i1, . . . , ik} ∩ N| = k

0, otherwise.
(36)

Hence, this discrete analog of the Wiener chaos decomposition (30) for random variables in Hn

is a reformulation of the Walsh decomposition (23).

Given a general element fn,k ∈ L̃2
n(Nk) we define its embedding into simple continuous time

functions in k variables as

f̂n,k(u1, . . . , uk) := fn,k (dnu1e, . . . , dnuke)

=
∞∑

i1,...,ik=1

fn,k(i1, . . . , ik)1( i1−1
n

,
i1
n
]×···×(

ik−1

n
,
ik
n
]
(u1, . . . , uk),

which is consistent with the notation already applied in (32) and (36). Here and in what follows,
we apply the convention that fn,k vanishes when one of its arguments is set to zero.
We can now rephrase Theorem 28 in the following way:

The sequence (Xn), with Xn ∈ Hn, converges to X strongly in L2(Ω,F , P ), if and only if, for
all orders k ∈ N0, the sequence of coefficient functions of the discrete chaos decomposition of
Xn converge (after the natural embedding into continuous time) to the coefficient functions of
the Wiener chaos of X strongly in L2([0,∞)k) and the tail condition (33) is satisfied.
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Remark 29. Convergence of discrete multiple Wiener integrals to continuous multiple Wiener
integrals was studied in [28] as a main tool for proving noncentral limit theorems. The results
in Section 4 of the latter reference imply that, for every k ∈ N0, the sequence of discrete mul-
tiple Wiener integrals (In,k(fn,k))n∈N converges in distribution to the multiple Wiener integral

Ik(fk), if (f̂n,k)n∈N converges to fk strongly in L2([0,∞)k). Our result lifts this convergence in
distribution to strong L2(Ω,F , P )-convergence and, more importantly, adds the converse:

L2(Ω,F , P )- lim
n→∞

In,k(fn,k) = Ik(fk) ⇔ L2([0,∞)k)- lim
n→∞

f̂n,k = fk.

We note that the L2(Ω,F , P )-convergence of the sequence (In,k(fn,k)) even implies convergence
in Lp(Ω,F , P ) for p > 2, if E[|ξ|r] < ∞ for some r > p. Indeed, in this case, the sequence
(|In,k(fn,k)|p) is uniformly integrable by the hypercontractivity inequality of [17] in the variant
of [4, Proposition 5.2].

The following elementary corollary of Theorem 28 generalizes Proposition 2. It makes use
of the fact that the chaos decompositions of (discrete) Wick exponentials are given, for all
f ∈ L2([0,∞)), fn ∈ L2

n(N), by

e�I(f) =

∞∑
k=0

Ik(
1

k!
f⊗k), exp�n(In(fn)) =

∞∑
k=0

In,k(
1

k!
(fn)⊗k1∂c

k
). (37)

For a proof of the continuous case see e.g. [16, Theorem 3.21, Theorem 7.26]. The statement of
the discrete case is a direct consequence of (24).

Corollary 30. Suppose f ∈ L2([0,∞)) and (fn) is a sequence with fn ∈ L2
n(N) for every n ∈ N.

Then, as n tends to infinity (in the sense of strong convergence),

f̂n → f in L2([0,∞)) ⇔ In(fn) → I(f) in L2(Ω,F , P )

⇔ exp�n(In(fn)) → exp�(I(f)) in L2(Ω,F , P ).

Proof. In view of Theorem 28 and (37), we only have to show that f̂n → f strongly in L2([0,∞))

implies that ̂(fn)⊗k1∂c
k
→ f⊗k strongly in L2([0,∞)k), for every k ≥ 2. This is a consequence

of the following lemma. �

Lemma 31. (i) Fix k ∈ N0. Suppose (fn,k)n∈N is a sequence such that fn,k ∈ L2
n(Nk) for every

n ∈ N and (f̂n,k) converges to some fk strongly in L2([0,∞)k). Then, the sequence ( ̂fn,k1∂c
k
)

converges to fk strongly in L2([0,∞)k) as well.

(ii) Suppose (fn)n∈N is a sequence such that fn ∈ L2
n(N) for every n ∈ N and (f̂n) converges to

some f strongly in L2([0,∞)). Then, for every k ≥ 2, the sequences ((̂fn)⊗k) and ( ̂(fn)⊗k1∂c
k
)

converge to f⊗k strongly in L2([0,∞)k).

Proof. (i) We decompose,

‖ ̂fn,k1∂c
k
− fk‖L2([0,∞)k) ≤ ‖ ̂fn,k1∂c

k
− f̂n,k‖L2([0,∞)k) + ‖f̂n,k − fk‖L2([0,∞)k).

The second term goes to zero by assumption. The first one equals(∫
[0,∞)k

|fn,k(dnu1e, . . . , dnuke)|21{|{dnu1e,...,dnuke}|<k}

)1/2

.

The sequence of integrands tends to 0 almost everywhere, because

lim
n→∞

1{|{dnu1e,...,dnuke}|<k} = 1{ul=up, for some l 6=p}.

Moreover, the sequence of integrands inherits uniform integrability from the L2([0,∞)k)-convergent

series (f̂n,k). Therefore, the first term goes to zero by interchanging limit and integration.
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(ii) As tensor powers commute with discretization and embedding, i.e.

(ǧn)⊗k = ( ˇ(g)⊗k)n, ĥn
⊗k

= (̂hn)⊗k

for all k ∈ N, g ∈ E , hn ∈ L2
n(N), and as the tensor product is continuous, we observe inductively

that (̂fn)⊗k → f⊗k strongly in L2([0,∞)k). Then, for the second sequence, part (i) applies. �

We now start to prepare the proof of Theorem 28.

Proposition 32. Let k ∈ N0. Then, for all g ∈ E and sequences (fn,k)n∈N such that fn,k ∈
L̃2
n(Nk) and supn∈N ‖fn,k‖L2

n(N) < ∞,

lim
n→∞

∣∣∣(SnIn,k(fn,k))(ǧn)− (SIk(f̂n,k))(g)
∣∣∣ = 0.

Proof. First note that, by (34), (37), and as fn,k vanishes on the diagonal ∂k,

(Sn In,k(fn,k))(ǧn) = E
[
In,k(fn,k) exp�n(In(ǧn))

]
= 〈fn,k, (ǧn)⊗k〉L2

n(Nk)

=

∫
[0,∞)k

f̂n,k(x1, . . . , xk)(̂ǧn)⊗k(x1, . . . , xk)dx1 · · · dxk.

Analogously, making use of the Wiener-Itô isometry for the continuous chaos decomposition
(31) instead of (34), we get

(SIk(f̂n,k))(g) =

∫
[0,∞)k

f̂n,k(x1, . . . , xk)g
⊗k(x1, . . . , xk)dx1 · · · dxk.

Hence, by the Cauchy-Schwarz inequality, we conclude∣∣∣(SnIn,k(fn,k))(ǧn)− (SIk(f̂n,k))(g)
∣∣∣

=

∣∣∣∣∣
∫
[0,∞)k

f̂n,k(x1, . . . , xk)
(
(̂ǧn)⊗k − g⊗k

)
(x1, . . . , xk)dx1 · · · dxk

∣∣∣∣∣
≤
(
sup
m∈N

‖fm,k‖L2
n(N)

)1/2

‖g⊗k − (̂ǧn)⊗k‖L2([0,∞)k),

which tends to zero for n → ∞ by Lemma 31. �

Corollary 33. Suppose g ∈ E. Then, for every k ∈ N,

In,k((ǧn)⊗k1∂c
k
) → Ik(g⊗k)

strongly in L2(Ω,F , P ).

Proof. We check item (ii) in Theorem 1. To this end, we decompose, for every g, h ∈ E ,∣∣∣(SnIn,k((ǧn)⊗k1∂c
k
))(ȟn)− (SIk(g⊗k))(h)

∣∣∣
≤

∣∣∣(SnIn,k((ǧn)⊗k1∂c
k
))(ȟn)− (SIk( ̂(ǧn)⊗k1∂c

k
))(h)

∣∣∣
+
∣∣∣(SIk( ̂(ǧn)⊗k1∂c

k
))(h)− (SIk(g⊗k))(h)

∣∣∣ .
The first term on the righthand side tends to zero by Proposition 32. The second one equals,
by the isometry for multiple Wiener integrals,∫

[0,∞)k
h⊗k(x)

(
̂(ǧn)⊗k1∂c

k
− g⊗k

)
(x)dx

and goes to zero by Lemma 31. Consequently,

lim
n→∞

(SnIn,k((ǧn)⊗k1∂c
k
))(ȟn) = (SIk(g⊗k))(h)
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for all k ∈ N0 and g, h ∈ E . For h = g, this implies E[In,k((ǧn)⊗k1∂c
k
)2] → E[Ik(g⊗k)2] by

the orthogonality of (discrete) multiple Wiener integrals of different orders. Thus, Theorem 1
applies. �

We are now in the position to give the proof of Theorem 28.

Proof of Theorem 28. ‘(i) ⇒ (ii)’: We denote the limit of (πHnXn)n∈N in L2(Ω,F , P ) by X and
recall that

πHnXn =
∑

|A|<∞

E[XnΞn
A]Ξ

n
A =

∞∑
k=0

In,k(fn,k
Xn ),

with fn,k
Xn as defined in (36). Throughout the proof we omit the subscripts from the coeffi-

cients and write πHnXn =
∞∑
k=0

In,k(fn,k) and X =
∞∑
k=0

Ik(fk). Thanks to Corollary 33 and the

orthogonality of (discrete) multiple Wiener integrals of different orders, we obtain, for every
k ∈ N0,

(SnIn,k(fn,k))(ǧn) =
1

k!
E[πHn(Xn)In,k((ǧn)⊗k1∂c

k
)] → 1

k!
E[XIk(g⊗k)](SIk(fk))(g).

The estimate supn∈N E[(In,k(fn,k))2] ≤ supn∈N E[(πHnXn)2] < ∞ now yields, in view of The-
orem 1, weak L2(Ω,F , P )-convergence of (In,k(fn,k))n∈N towards Ik(fk). As πHnXn → X
strongly in L2(Ω,F , P ), we thus obtain

E[(In,k(fn,k))2] = E[In,k(fn,k)πHnXn] → E[Ik(fk)X] = E[(Ik(fk))2]. (38)

Hence, In,k(fn,k) → Ik(fk) strongly in L2(Ω,F , P ) for all k ∈ N0 by Theorem 1. Moreover, for
every g ∈ E , we obtain

〈g⊗k, f̂n,k − fk〉L2([0,∞)k) = (SIk(f̂n,k))(g)− (SIk(fk))(g)

=
(
(SIk(f̂n,k))(g)− (SnIn,k(fn,k))(ǧn)

)
+ E

[
In,k(fn,k) exp�n(In(ǧn))− Ik(fk) exp�(I(g))

]
→ 0,

by Propositions 2 and 32, and the L2(Ω,F , P )-convergence of (In,k(fn,k))n∈N to Ik(fk). Since

the set {g⊗k, g ∈ E} is total in L̃2([0,∞)k), we may conclude that (f̂n,k) converges weakly in

L̃2([0,∞)k) to fk by [29, Theorem V.1.3]. Finally, (38) and the isometry for discrete multiple
Wiener integrals turn this weak convergence into strong L2([0,∞)k)-convergence. In particular,
the kth coefficient in the chaos decomposition of the limiting random variable X is the strong

L2([0,∞)k)-limit of (f̂n,k), as asserted. It remains to show (33). However, by (38) and the
isometries for (discrete) multiple Wiener integrals,

lim
n→∞

∞∑
k=m

k!‖f̂n,k‖2L2([0,∞)k) = lim
n→∞

∞∑
k=m

‖In,k(fn,k)‖2L2(Ω,F ,P )

= lim
n→∞

(
‖πHnXn‖2L2(Ω,F ,P ) −

m−1∑
k=0

‖In,k(fn,k)‖2L2(Ω,F ,P )

)

= ‖X‖2L2(Ω,F ,P ) −
m−1∑
k=0

‖Ik(fk)‖2L2(Ω,F ,P ) → 0

as m tends to infinity.

‘(ii) ⇒ (i)’: In order to lighten the notation, we again denote the function fn,k
Xn from (36) by

fn,k. Assuming (ii), the strong L2([0,∞)k)-limit of f̂n,k exists and will be denoted fk. We first
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show that (In,k(fn,k)) converges to Ik(fk) strongly in L2(Ω,F , P ) for all k ∈ N0 by means of
Theorem 1. To this end, we observe that, for every g ∈ E ,

(Sn In,k(fn,k))(ǧn) =
(
(Sn In,k(fn,k))(ǧn)− (S Ik(f̂n,k))(g)

)
+ (S Ik(f̂n,k))(g) → (S Ik(fk))(g)

by Proposition 32 and the isometry for continuous multiple Wiener integrals. Moreover, again,
by the isometries for discrete and continuous multiple Wiener integrals,

E
[
(In,k(fn,k))2

]
= k!‖fn,k‖2L2

n(Nk) = k!‖f̂n,k‖2L2([0,∞)k) → k!‖fk‖2L2([0,∞)k) = E
[
(Ik(fk))2

]
.

So, Theorem 1 applies indeed. With the L2(Ω,F , P )-convergence of In,k(fn,k) to Ik(fk) at
hand, we can now decompose, for every m ∈ N,

lim sup
n→∞

E

∣∣∣∣∣πHnXn −
∞∑
k=0

Ik(fk)

∣∣∣∣∣
2


≤ 3 lim sup
n→∞

(
‖
m−1∑
k=0

Ik(fk)−
m−1∑
k=0

In,k(fn,k)‖2L2(Ω,F ,P )

+
∞∑

k=m

‖Ik(fk)‖2L2(Ω,F ,P ) +
∞∑

k=m

‖In,k(fn,k)‖2L2(Ω,F ,P )

)

= 3

∞∑
k=m

k!‖fk‖2L2([0,∞)k) + 3 lim sup
n→∞

∞∑
k=m

k!‖f̂n,k‖2L2([0,∞)k). (39)

By Fatou’s lemma and the strong convergence of (f̂n,k)n∈N to fk,

∞∑
k=m

k!‖fk‖2L2([0,∞)k) ≤ lim inf
n→∞

∞∑
k=m

k!‖f̂n,k‖2L2([0,∞)k).

Hence, letting m tend to infinity in (39), we observe, thanks to (33), that (πHnXn) converges
strongly in L2(Ω,F , P ). �

We close this section with an example.

Example 34. Fix X ∈ L2(Ω,F , P ). Theorem 28 with Xn = X for every n ∈ N, implies that
the chaos coefficients fk

X , k ∈ N0, of X are given as the strong L2([0,∞)k)-limit of

f̂n,k(u1, . . . , uk) :=
1

k!
E

[
X

(
k∏

l=1

Bn
dnule −Bn

(dnule−1)

1/n

)]
1{|{dnu1e,...,dnuke}∩N|=k}.

This formula can be further simplified when X is FT -measurable. Then, one can show, analo-
gously to Example 4 (ii), that the sequence (πHn

bnTc
X) converges to X strongly in L2(Ω,F , P ).

Applying Theorem 28 with the latter sequence, shows that the chaos coefficients fk
X , k ∈ N0, are

the strong L2([0,∞)k)-limit of

f̂n,k(u1, . . . , uk) :=
1

k!
E

[
X

(
k∏

l=1

Bn
dnule −Bn

(dnule−1)

1/n

)]
1{|{dnu1e,...,dnuke}∩{1,...,bnT c}|=k}.

In this case, for each fixed n ∈ N, only finitely many of the functions f̂n,k, k ∈ N0, are not
constant zero, and these are simple functions with finitely many steps sizes only.
These two approximation formulas for the chaos coefficients of X are one way to give a rigorous
meaning of the heuristic formula

fk
X(u1, . . . , uk) =

1

k!
E

[
X

(
k∏

l=1

Ḃul

)]
,
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where Ḃ is white noise, which is called Wiener’s intuitive recipe in [9]. The latter paper provides
another rigorous meaning to Wiener’s recipe via nonstandard analysis, which is closely related
to our approximation formulas in the special case of symmetric Bernoulli noise. The authors
show that

fk
X(◦t1, . . . ,

◦tk) =
1

k!
◦E
[
x(b)

(
∆bt1
∆t

· · · ∆btk
∆t

)]
,

tl ∈ T = {j∆t, 0 ≤ j < N2}, where N is infinite, ∆t = 1/N , bt(ω) =
√
∆t
∑

s<t ω(s), t ∈ T ,

ω ∈ Ω := {−1, 1}T , which is equipped with the internal counting measure, x(b) is a lifting of
X, E is the expectation operator with respect to the internal counting measure, and the circle
denotes the standard part.

6. Strong L2-approximation of the Skorokhod integral and the Malliavin
derivative

In this section, we apply the Wiener chaos limit theorem (Theorem 28) in order to prove strong
L2-approximation results for the Skorokhod integral and the Malliavin derivative. For the con-
struction of the approximating sequences we compose the discrete Skorokhod integral and the
discretized Malliavin derivative with the orthogonal projection on Hn, i.e. on the subspace of
random variables which admit a discrete chaos decomposition in terms of multiple integrals with
respect to the discrete time noise (ξni )i∈N.
We first treat the Malliavin derivative and aim at proving the following result.

Theorem 35. Suppose (Xn)n∈N converges strongly in L2(Ω,F , P ) to X and, for every n ∈ N,
πHnXn ∈ D1,2

n . Then the following are equivalent:

(i) lim
m→∞

lim sup
n→∞

∞∑
k=m

kk!‖f̂n,k
Xn

‖2
L2([0,∞)k)

= 0 (with f̂n,k
Xn

as defined in (32)).

(ii) X ∈ D1,2 and the sequence (Dn
dn·e(πHnXn))n∈N converges to DX strongly in L2(Ω ×

[0,∞)) as n tends to infinity.

Note first, that by continuity of Dn
i for a fixed time i ∈ N, we get

Dn
i (πHnXn) =

∑
|A|<∞

E[XnΞn
A]D

n
i Ξ

n
A =

√
n

∑
|A|<∞; i∈A

E[XnΞn
A]Ξ

n
A\{i}

=
√
n

∑
|B|<∞; i/∈B

E[XnΞn
B∪{i}]Ξ

n
B.

By the relation (35)–(36) between Walsh decomposition and discrete chaos decomposition, this
identity can be reformulated as

Dn
i (πHnXn) =

∞∑
k=1

kIn,k−1(fn,k
Xn (·, i)).

Hence, the isometry for discrete multiple Wiener integrals (34) implies

1

n

∞∑
i=1

E
[
|Dn

i (πHnXn)|2
]
=

∞∑
k=1

kk!‖f̂n,k
Xn‖2L2([0,∞)k), (40)

i.e.,

πHnXn ∈ D1,2
n ⇔

∞∑
k=1

kk!‖f̂n,k
Xn‖2L2([0,∞)k) < ∞.

This is in line with the characterization of the continuous Malliavin derivative in terms of the
chaos decomposition, see e.g. [23], which we show to be equivalent to Definition 11 in the
Appendix:

X ∈ D1,2 ⇔
∞∑
k=1

kk!‖fk
X‖2L2([0,∞)k) < ∞, (41)
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and, if this is the case,

DtX =

∞∑
k=1

kIn,k−1(fk
X(·, t)), a.e. t ≥ 0, (42)

∫ ∞

0
E[(DtX)2]dt =

∞∑
k=1

kk!‖fk
X‖2L2([0,∞)k).

After these considerations on the connection between (discretized) Malliavin derivative and
(discrete) chaos decomposition, the proof of Theorem 35 turns out to be rather straightforward.

Proof of Theorem 35. By Theorem 28 (in conjunction with Remark 26), we observe that, for

every k ∈ N0, (f̂
n,k
Xn

)n∈N converges to fk
X strongly in L2([0,∞)k). Hence, by (40), (41), and (42),

(i) ⇔ lim
n→∞

∞∑
k=1

kk!‖f̂n,k
Xn‖2L2([0,∞)k) =

∞∑
k=1

kk!‖fk
X‖2L2([0,∞)k) < ∞

⇔ X ∈ D1,2 and lim
n→∞

1

n

∞∑
i=1

E
[
|Dn

i (πHnXn)|2
]
=

∫ ∞

0
E[(DtX)2]dt.

Hence, the asserted equivalence is a direct consequence of Theorem 12. �

We now wish to derive an analogous strong approximation result for the Skorokhod integral,
which requires some additional notation. For every Zn ∈ L2

n(Ω× N) and k ∈ N0, we denote

fn,kZn (i1, . . . , ik, i) := fn,k
Zn
i
(i1, . . . , ik) =

{
E
[
nk/2

k! Zn
i Ξ

n
{i1,...,ik}

]
, |{i1, . . . , ik} ∩ N| = k

0, otherwise.

Then, with πHnZn := (πHnZn
i )i∈N,

∞∑
k=0

k!‖fn,kZn ‖2L2
n(Nk+1) = ‖πHnZn‖2L2

n(Ω×N) < ∞,

but fn,kZn is symmetric in the first k variables only and does not, in general, vanish on the diagonal.
For a function F in k variables, we denote its symmetrization by

F̃ (y1, . . . , yk) =
1

k!

∑
π

F (yπ(1), . . . , yπ(k)),

where the sum runs over the group of permutations of {1, . . . , k}. With this notation, f̃n,kZn1∂c
k+1

is an element of L̃2
n(Nk+1).

We can now state:

Theorem 36. Suppose that, for every n ∈ N, Zn ∈ L2
n(Ω×N) and πHnZn ∈ D(δn). Moreover,

assume that (Zn
dn·e)n∈N converges to Z strongly in L2(Ω× [0,∞)). Then, the following assertions

are equivalent:

(i) lim
m→∞

lim sup
n→∞

∞∑
k=m

k!‖̃fn,k−1
Zn 1∂c

k
‖2
L2
n(Nk)

= 0.

(ii) Z ∈ D(δ) and (δn(πHnZn)) converges to δ(Z) strongly in L2(Ω,F , P ) as n tends to
infinity.

As a preparation of the proof we note that, for every M ∈ N,
M∑
i=1

E[πHnZn
i |Fn

M,−i]
ξni√
n
=

M∑
i=1

∑
|A|<∞

E[Zn
i Ξ

n
A]E[Ξn

A|Fn
M,−i]

ξni√
n
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= n−1/2
M∑
i=1

∑
A⊂{1,...,M}

1{i/∈A} E[Zn
i Ξ

n
A]Ξ

n
A∪{i}

= n−1/2
M∑
k=1

∑
B⊂{1...,M},|B|=k

∑
i∈B

E[Zn
i Ξ

n
B\{i}]Ξ

n
B

= n−1/2
M∑
k=1

k
∑

(i1,...,ik)∈Nk,
i1<···<ik

1⊗k
[1,M ](i1, . . . , ik)

1

k

k∑
j=1

E[Zn
ijΞ

n
{i1,...,ik}\{ij}]Ξ

n
{i1,...,ik}

=

M∑
k=1

In,k (̃fn,k−1
Zn 1⊗k

[1,M ]1∂c
k
).

Hence, by the isometry for discrete multiple Wiener integrals,

πHnZn ∈ D(δn) ⇔
∞∑
k=1

k!‖̃fn,k−1
Zn 1∂c

k
‖2L2

n(Nk) < ∞, (43)

and, if this is the case,

δn(πHnZn) =

∞∑
k=1

In,k (̃fn,k−1
Zn 1∂c

k
), (44)

i.e., fn,0
δn(πHnZn) = 0 and, for every k ∈ N, fn,k

δn(πHnZn) = f̃n,k−1
Zn 1∂c

k
.

For the proof of Theorem 36, we also provide the following variant of Theorem 28, ‘(i) ⇒ (ii)’,
for stochastic processes.

Proposition 37. Suppose Zn ∈ L2
n(Ω × N) for every n ∈ N and (Zn

dn·e) converges strongly

in L2(Ω × [0,∞)) to Z as n tends to infinity. Define the functions fkZ ∈ L2([0,∞)k+1) via

fkZ(t1, . . . , tk+1) := fk
Ztk+1

(t1, . . . , tk). Then, for every k ∈ N0, as n tends to infinity, f̂n,kZn → fkZ

strongly in L2([0,∞)k+1).

Proof. The proof largely follows the arguments in the proof of Theorem 28. We spell it out
for sake of completeness. Let g, h ∈ E . Then, by the isometry for (discrete) multiple Wiener
integrals, Corollary 33, and (5),〈

f̂n,kZn , (̂ǧn)
⊗k

⊗ ̂̌hn〉
L2([0,∞)k+1)

=
1

n

∞∑
i=1

〈
fn,k
Zn
i
, (ǧn)⊗k1∂c

k

〉
L2
n(Nk)

ȟn(i)

=
1

n

∞∑
i=1

E[(πHnZn
i )I

n,k((ǧn)⊗k1∂c
k
)]ȟn(i)

=
1

n

∞∑
i=1

E[Zn
i I

n,k((ǧn)⊗k1∂c
k
)]ȟn(i) →

∫ ∞

0
E[ZsI

k(g⊗k)]h(s)ds

=
〈
fkZ , g

⊗k ⊗ h
〉
L2([0,∞)k+1)

. (45)

As

sup
n∈N

∥∥∥∥f̂n,kZn

∥∥∥∥2
L2([0,∞)k+1)

= sup
n∈N

∫ ∞

0
E
[∣∣∣In,k(fn,k

Zn
dnse

)
∣∣∣2] ds ≤ sup

n∈N

∥∥∥Zn
dn·e

∥∥∥2
L2(Ω×[0,∞))

< ∞, (46)

(̂ǧn)
⊗k

⊗ ̂̌hn → g⊗k ⊗ h strongly in L2([0,∞)k+1) by (5), and the set {g⊗k ⊗ h : g, h ∈ E} is
total in the closed subspace of functions in L2([0,∞)k+1), which are symmetric in the first k
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variables, we conclude again that f̂n,kZn converges weakly to fkZ in this subspace. Hence, it only
remains to argue that ∥∥∥∥f̂n,kZn

∥∥∥∥2
L2([0,∞)k+1)

→
∥∥∥fkZ∥∥∥2

L2([0,∞)k+1)
, n → ∞.

As

1

n

∞∑
i=1

E[Zn
i I

n,k((ǧn)⊗k1∂c
k
)]ȟn(i) =

1

n

∞∑
i=1

(SnIn,k(fn,k
Zn
i
))(ǧn)ȟn(i),∫ ∞

0
E[ZsI

k(g⊗k)]h(s)ds =

∫ ∞

0
(SIk(fk

Zs
))(g)h(s)ds,

we may derive from (45)–(46) and Theorem 10, that In,k(fn,k
Zn
dn·e

) converges to Ik(fk
Z·
) weakly in

L2(Ω× [0,∞)). Thus,∥∥∥∥f̂n,kZn

∥∥∥∥2
L2([0,∞)k+1)

=

∫ ∞

0
E
[
In,k(fn,k

Zn
dnse

)Zs

]
ds+

∫ ∞

0
E
[
In,k(fn,k

Zn
dnse

)(Zn
dnse − Zs)

]
ds

→
∫ ∞

0
E
[
Ik(fk

Zs
)Zs

]
ds =

∥∥∥fkZ∥∥∥2
L2([0,∞)k+1)

.

�
Proof of Theorem 36. By the linearity of the embedding operator (̂·), Minkowski inequality,
Proposition 37, and Lemma 31, we obtain, for every k ∈ N0,∥∥∥∥ ̂

f̃n,kZn1∂c
k+1

− f̃kZ

∥∥∥∥
L2([0,∞)k+1)

=

∥∥∥∥ ˜
f̂n,kZn1∂c

k+1
− f̃kZ

∥∥∥∥
L2([0,∞)k+1)

≤
∥∥∥∥ ̂
fn,kZn1∂c

k+1
− fkZ

∥∥∥∥
L2([0,∞)k+1)

→ 0

as n tends to infinity. Thus, due to Theorem 28 and (44),

(i) ⇔ (δn(πHnZn))n∈N converges strongly in L2(Ω,F , P ).

Now, the implication ‘(ii) ⇒ (i)’ is obvious, while the converse implication is a consequence of
Theorem 8. �
Remark 38. As a by-product of the proof of Theorem 36, we recover, thanks to Theorem 28,
the well-known chaos decomposition of the Skorokhod integral as

δ(Z) =

∞∑
k=1

Ik (̃fk−1
Z ).

7. Examples

In this section, we first specialize the previous results to the case of binary noise in discrete time.
Then, we explain how to translate the main results of this paper into the language of convergence
in distribution without imposing the condition that the discrete-time noise is embedded into the
driving Brownian motion.

7.1. Binary noise. In this subsection, we specialize to the case of binary noise, i.e., we suppose
that, for some constant b > 0,

P ({ξ = −1/b}) = b2

b2 + 1
, P ({ξ = b}) = 1

b2 + 1
.

We illustrate, that in this binary case, our approximation formulas for the Malliavin derivative
and the Skorokhod integral give rise to a straightforward numerical implementation.
We recall first that Malliavin calculus on the Bernoulli space is well-studied, see, e.g. [12], [21],
[25], and the references therein, usually with the aim to explain the main ideas of Malliavin calcu-
lus by discussing the analogous operators in the simple toy setting. Note first that L2(Ω,Fn

i , P )
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equals Hn
i in the binary case (and in this case only) by observing that both spaces have dimen-

sion 2i in this case. Hence, L2(Ω,Fn, P ) coincides with Hn for binary noise, and we can drop
the orthogonal projections πHn on Hn in the statement of all previous results. In particular,
every random variable Xn ∈ L2(Ω,Fn, P ) then admits a chaos decomposition in terms of dis-
crete multiple Wiener integrals, and the representations of the discretized Malliavin derivative
and the discrete Skorokhod integral in terms of the discrete chaos in Section 6 show that these
operators coincide with the Malliavin derivative and the Skorokhod integral on the Bernoulli
space, see [25].
In the binary case, the representations for the discrete Malliavin derivative and the discrete
Skorokhod integral can be simplified considerably. Suppose Xn ∈ L2(Ω,Fn, P ). Then, there is
a measurable map FXn : R∞ → R such that Xn = FXn(ξn1 , ξ

n
2 , . . .). A direct computation shows

that, for every i ∈ N,
Dn

i X =
√
nE[ξni FXn(ξn1 , ξ

n
2 , . . .)|Fn

−i]

=

√
nb

b2 + 1

(
FXn(ξn1 , . . . , ξ

n
i−1, b, ξ

n
i+1, . . .)− FXn(ξn1 , . . . , ξ

n
i−1,−1/b, ξni+1, . . .)

)
,

hence, the Malliavin derivative becomes a difference operator. Moreover, for Zn ∈ L2
n(Ω × N)

and N ∈ N, the discrete Skorokhod integral can be rewritten as

δn(Zn1[1,N ]) =

N∑
i=1

Zn
i

ξni√
n
− 1

n

N∑
i=1

(ξni )
2Dn

i Z
n
i ,

which can either be derived from [25, Proposition 1.8.3] or by expanding Zn
i in its Walsh de-

composition and noting that, for every finite subset A ⊂ N,(
Ξn
A − E[Ξn

A|Fn
−i]
)√

nξni =

{ √
nΞn

A\{i}(ξ
n
i )

2, i ∈ A

0, i /∈ A

}
= (ξni )

2Dn
i Ξ

n
A.

Hence, for Zn ∈ L2
n(Ω× N) and N ∈ N,

δn(Zn1[1,N ]) =
N∑
i=1

FZn
i
(ξn1 , ξ

n
2 , . . .)

ξni√
n

−
N∑
i=1

(ξni )
2b√

n(b2 + 1)

(
FZn

i
(ξn1 , . . . , ξ

n
i−1, b, ξ

n
i+1, . . .)FZn

i
(ξn1 , . . . , ξ

n
i−1,−1/b, ξni+1, . . .)

)
. (47)

Recall that the discrete noise (ξni )i∈N, can be constructed from the underlying Brownian motion
(Bt)t∈[0,∞) via a Skorokhod embedding as

ξni =
√
n
(
Bτni

−Bτni−1

)
,

where, in the binary case,

τn0 := 0 , τni := inf

{
s ≥ τni−1 : Bs −Bτni−1

∈
{

b√
n
,
−1

b
√
n

}}
, (48)

and the Brownian motion at the first-passage times τni can be simulated by the acceptance-
rejection algorithm of Burq&Jones [7].
We close this paper by a toy example which illustrates how to numerically compute Skorokhod
integrals by our approximation results.

Example 39. In this example, we approximate the Skorokhod integral δ(Z) for the process

Zt = sign(1/2− t)(B1B1−t − (1− t)))1[0,1](t), t ≥ 0,

where we choose the sign-function to be rightcontinuous at 0. For the discrete time approximation
we consider

Zn
i = sign(1/2− i/n)

(
Bn

nB
n
n−i − (1− i/n)

)
1[1,n−1](i), i ∈ N,



DISCRETIZING MALLIAVIN CALCULUS 33

and note that (Zn
dnte) converges to Zt for almost every t ≥ 0 in probability by (1). Hence, by

uniform integrability and dominated convergence, it is easy to check that (Zn
dn·e)n∈N converges

to Z strongly in L2(Ω × [0,∞)). We next observe that in the discrete chaos decomposition of

δn(Zn), all the coefficient functions fn,k
δn(Zn) for k ≥ 4 vanish, because Zn

i is a polynomial of

degree 2 in Bn. Hence, the tail condition in Theorem 36 is trivially satisfied and, consequently,
(δn(Zn))n∈N converges to δ(Z) strongly in L2(Ω,F , P ). We now suppose that Bn is constructed
via the Skorokhod embedding (48) and simulate, for n = 4, 8, . . . , 215, 10000 independent copies
(Bn,l)l=1,...,10000 of Bn by the Burq&Jones algorithm. The correponding realizations of δn(Zn)

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

Figure 1. Log-log plot of the simulated strong L2(Ω,F , P )-approximation as
the number of time steps increases.

and δ(Z) along the lth trajectory of the underlying Brownian motion are denoted δnl (Z
n) and

δl(Z), l = 1, . . . 10000, respectively. For the discrete Skorokhod integral we implement formula
(47) with N = n, while for the continuous Skorokhod integral we exploit that it can be computed
analytically and equals

δ(Z) = B1B
2
1/2 −

B1

2
−B1/2.

Figure 1 shows, in the case of symmetric binary noise (b = 1), a log-log-plot of the empirical mean
(indicated by crosses) of |δnl (Zn)−δl(Z)|2, l = 1, . . . , 10000, and the corresponding (asymptotical)
95%-confidence bounds (indicated by dots) as the number of time steps n increases. A linear
regression (solid line) exhibits a slope of −0.5036 and, thus, indicates that strong L2(Ω,F , P )-
convergence takes place at the expected rate of 1/2.

7.2. Donsker type theorems. In this subsection, we explain how the main results of the paper
can be translated into Donsker type results on convergence in distribution, without assuming
that the discrete time noise is embedded into the driving Brownian motion B. To this end,
we construct, without loss of generality, the discrete time noise as coordinate mapping on the
canonical space (R∞,B∞, P∞

ξ ), where Pξ is the distribution of ξ and P∞
ξ its countable product

measure. We denote expectation with respect to P∞
ξ by E[·], while E[·] still denotes expectation

on (Ω,F , P ), i.e. on the probability space which carries the driving Brownian motion B. We
write L2(R∞×N) for the set of mappings z : N → L2(R∞,B∞, P∞

ξ ) such that
∑∞

i=1E[z2i ] < ∞.
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We also note that, for every n ∈ N, the map F 7→ F ((ξni )i∈N) provides a one-to-one corre-
spondence between L2(R∞,B∞, P∞

ξ ) and L2(Ω,Fn, P ) thanks to the Doob-Dynkin lemma. The

rescaled random walk approximation to B on (R∞,B∞, P∞
ξ ) is given by bnt (x) =

1√
n

∑bntc
j=1 xi,

and, hence, Bn
t = bnt ((ξ

n
i )i∈N).

The translation of the strong L2-approximation results derived in the previous sections into
results on convergence in distribution relies on the following key lemma. Here, D([0,∞)) de-
notes the space of rightcontinuous functions with left limits from [0,∞) to R endowed with the
Skorokhod topology.

Lemma 40. a) Suppose (Fn)n∈N is a sequence in L2(R∞,B∞, P∞
ξ ) and X ∈ L2(Ω,F , P ). Then,

the following are equivalent:

(i) The sequence (Fn((ξni )i∈N))n∈N converges to X strongly in L2(Ω,F , P ).
(ii) The sequence (Fn, bn)n∈N converges in distribution to (X,B) in R × D([0,∞)) and the

sequence (|Fn|2)n∈N is uniformly integrable (with respect to P∞
ξ ).

b) Suppose (zn)n∈N is a sequence in L2(R∞ × N) and Z ∈ L2(Ω× [0,∞)). Then, the following
are equivalent:

(i) The sequence (zndn·e((ξ
n
i )i∈N))n∈N converges to Z strongly in L2(Ω× [0,∞)).

(ii) The sequence (zndn·e, b
n)n∈N converges in distribution to (Z,B) in L2([0,∞))×D([0,∞))

and the sequence (n−1
∑n

i=1(z
n
i )

2)n∈N is uniformly integrable (with respect to P∞
ξ ).

Proof. We first prove b). We wish to apply Theorem 44 in Appendix B with E = D([0,∞)),
H = L2([0,∞)), L = B, and Ln = Bn. To this end, we first note that the sequence (Bbntc/n−Bn)
converges to zero in finite-dimensional distributions by (1). It is easy to check by standard criteria
such as [5, Theorem 15.6] that this sequence is tight in D([0,∞)). Hence, this sequence converges
to zero in distribution in D([0,∞)). Thus, by the (generalized) continuous mapping theorem [5,
Theorem 5.5], supt∈[0,K] |Bbntc/n − Bn

t | converges to zero in distribution (and consequently in

probability) for every K ∈ N. Then, by continuity of B, (Bn) converges to B uniformly on
compacts in probability. In particular, the Skorokhod distance between Bn and B converges to
zero in probability. Moreover, L2(Ω × [0,∞)) = L2(Ω,F , P ;L2([0,∞))) by [16, Appendix C].
Therefore, Theorem 44 is indeed applicable and yields the equivalence of (i) and

(ii’) The sequence (zndn·e((ξ
n
j )j∈N), B

n)n∈N converges in distribution to (Z,B) in L2([0,∞))×
D([0,∞)) and the sequence (n−1

∑n
i=1 |zni ((ξnj )j∈N)|2)n∈N is uniformly integrable (with

respect to P ).

Since (zndn·e((ξ
n
j )j∈N), B

n) has the same distribution under P as (zndn·e, b
n) has under P∞

ξ , the

equivalence of (ii) and (ii’) is immediate. The proof of a) is the very same, but with H = R. �
As an example, we now explain how to reformulate two of the main convergence results for the
Malliavin derivative (Theorems 12 and 16) in the present setting. We leave it to the reader to
rewrite Theorem 35 and the corresponding theorems for the Skorokhod integral in the obvious
way. For F ∈ L2(R∞,B∞, P∞

ξ ) and i ∈ N, we denote

Dn
i F :=

√
n

∫
R
xiF (x1, . . . , xi, . . .)Pξ(dxi),

whence, (Dn
i F )((ξnj )j∈N) = Dn

i F ((ξnj )j∈N).

Theorem 41. Suppose (Fn)n∈N is a sequence in L2(R∞,B∞, P∞
ξ ) such that (|Fn|2)n∈N is uni-

formly integrable and (Fn, bn)n∈N converges in distribution to (X,B) in R×D([0,∞)) for some
X ∈ L2(Ω,F , P ). Then:

a) If the sequence (n−1
∑∞

i=1(Dn
i F

n)2)n∈N is uniformly integrable, then X ∈ D1,2 and the fol-
lowing are equivalent as n tends to infinity:

(i) (n−1
∑∞

i=1E[(Dn
i F

n)2])n∈N converges to
∫∞
0 E[(DsX)2]ds.
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(ii) There is a Z ∈ L2(Ω × [0,∞)) such that (Dn
dn·eF

n, bn)n∈N converges in distribution to

(Z,B) in L2([0,∞))× D([0,∞)).
(iii) (Dn

dn·eF
n, bn)n∈N converges in distribution to (DX,B) in L2([0,∞))× D([0,∞)).

b) If

sup
n∈N

 1

n

∞∑
i=1

E
[
(Dn

i F
n)2
]
+

1

n2

∞∑
i,j=1, i 6=j

E
[
(Dn

j Dn
i F

n)2
] < ∞,

then (n−1
∑∞

i=1(Dn
i F

n)2)n∈N is uniformly integrable and (Dn
dn·eF

n, bn)n∈N converges in distribu-

tion to (DX,B) in L2([0,∞))× D([0,∞)).

Remark 42. The general assumptions of the previous theorem are, in particular, satisfied, when
X = g(B) and Fn = g(bn), n ∈ N, for some bounded and continuous function g : D([0,∞)) → R.

Proof of Theorem 41. We write Xn := Fn((ξni )i∈N). Note first, that the assumptions guarantee,
in view of Lemma 40 a), that (Xn)n∈N converges to X strongly in L2(Ω,F , P ).

a) Uniform integrability implies norm-boundedness. Hence,

sup
n∈N

1

n

∞∑
i=1

E
[
(Dn

i X
n)2
]
= sup

n∈N

1

n

∞∑
i=1

E
[
(Dn

i F
n)2
]
< ∞.

Thus, by Theorem 12, X ∈ D1,2 and (Dn
dn·eX

n) converges to DX weakly in L2(Ω× [0,∞)).

‘(i)⇒ (iii)’: As

‖Dn
dn·eX

n‖2L2(Ω×[0,∞)) =
1

n

∞∑
i=1

E[(Dn
i F

n)2], (49)

condition (i) turns weak L2(Ω×[0,∞))- convergence of (Dn
dn·eX

n) toDX into strong convergence.

Hence, Lemma 40 b) concludes.
‘(iii)⇒ (i)’: Assuming (iii), we obtain from Lemma 40 b), that (Dn

dn·eX
n) converges to DX

strongly in L2(Ω × [0,∞)). Hence, the sequence of L2(Ω × [0,∞))-norms converges as well,
which thanks to (49) implies (i).
‘(ii)⇒ (iii)’: If (ii) holds, (Dn

dn·eX
n) converges to Z strongly in L2(Ω× [0,∞)) by Lemma 40 b).

The strong L2(Ω× [0,∞))-limit Z must, of course, coincide with the weak L2(Ω× [0,∞))-limit
DX, which establishes (iii).
‘(iii)⇒ (ii)’: obvious.

b) This assertion is an immediate consequence of Lemma 40 and Theorem 16, ‘(i) ⇒ (ii)’. �

Appendix A. S-transform characterization of the Malliavin derivative

In this appendix, we prove the equivalence between the definition of the Malliavin derivative in
terms of the S-transform (Definition 11) and the more classical characterization in terms of the
chaos decomposition, see (41)–(42).

Proposition 43. Suppose X =
∑

k I
k(fk

X) ∈ L2(Ω,F , P ). Then, the following are equivalent:

(i) There is a stochastic process Z ∈ L2(Ω× [0,∞)) such that, for every g, h ∈ E,∫ ∞

0
(SZs)(g)h(s)ds = E

[
X exp�(I(g))

(
I(h)−

∫ ∞

0
g(s)h(s)ds

)]
.

(ii)
∞∑
k=1

kk!‖fk
X‖2

L2([0,∞)k)
< ∞.

If this is the case, then Zt =
∞∑
k=1

kIn,k−1(fk
X(·, t)) for almost every t ≥ 0.
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Proof. We first note that, for every f, g ∈ E ,

e�I(g)
(
I(h)−

∫ ∞

0
g(s)h(s)ds

)
=

∞∑
k=1

1

(k − 1)!
Ik( ˜(g⊗(k−1) ⊗ h)), (50)

which can be verified by computing the S-transform of both sides. By the Cauchy-Schwarz
inequality, we obtain for every f, g ∈ E ,

∞∑
k=1

∫
[0,∞)k

∣∣∣kfk
X(x)(g⊗k−1⊗h)(x)

∣∣∣ dx
≤

( ∞∑
k=1

k!‖fk
X‖2L2([0,∞)k)

) 1
2
( ∞∑

k=1

k

(k − 1)!
‖g‖2(k−1)

L2([0,∞))
‖h‖2L2([0,∞))

) 1
2

< ∞.

Hence, Fubini’s theorem implies

∞∑
k=1

∫
[0,∞)k

kfk
X(x)(g⊗k−1 ⊗ h)(x)dx =

∫ ∞

0

( ∞∑
k=1

∫
[0,∞)k−1

kfk
X(x, t)g⊗k−1(x)

)
h(t)dt,

i.e., by (50) and the isometry for multiple Wiener integrals,

E
[
X exp�(I(g))

(
I(h)−

∫ ∞

0
g(s)h(s)ds

)]
=

∫ ∞

0

( ∞∑
k=1

∫
[0,∞)k−1

kfk
X(x, t)g⊗k−1(x)

)
h(t)dt

(51)

for every g, h ∈ E .
‘(i) ⇒ (ii)’: Assuming (i) and noting that (51) holds for every g, h ∈ E , we observe that for
every g ∈ E , α ∈ R, and Lebesgue-almost every s ∈ [0,∞),

∞∑
k=1

αk−1〈fk−1
Zs

(·), g⊗(k−1)〉L2([0,∞)k−1) = (SZs)(αg) =

∞∑
k=1

αk−1〈kfk
X(·, s), g⊗(k−1)〉L2([0,∞)k−1 .

(Note, that the Lebesgue null set can be chosen independent of g, α. Indeed, one can first take
α ∈ Q and step functions g with rational step sizes and interval limits, and then pass to the
limit). Comparing the coefficients in the power series and noting that {g⊗k, g ∈ E} is total in

L̃2([0,∞)k), we obtain, for every k ≥ 1 and almost every s ∈ [0,∞),

kfk
X(·, s) = fk−1

Zs
.

Therefore, the isometry for multiple Wiener-Itô integrals implies

∞∑
k=1

kk!‖fk
X‖2L2([0,∞)k) =

∫ ∞

0
E[|Zs|2]ds < ∞. (52)

‘(ii) ⇒ (i)’: Define Zt =
∞∑
k=1

kIn,k−1(fk
X(·, t)). Assuming (ii), we observe by the first identity in

(52) that Z belongs to L2(Ω × [0,∞)). By the isometry for multiple Wiener integrals and the
chaos decomposition of a Wick exponential we get, for every g, h ∈ E .∫ ∞

0
(SZs)(g)h(s)ds =

∫ ∞

0

( ∞∑
k=1

∫
[0,∞)k−1

kfk
X(x, t)g⊗k−1(x)dx

)
h(t)dt.

Hence, (51) concludes. �
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Appendix B. On the connection between strong L2-convergence and
convergence in distribution

In this appendix, we prove, that, under suitable conditions, strong L2-convergence is completely
specified by convergence in distribution of appropriate joint distributions in conjunction with
uniform integrability. This is the essential tool for the results in Section 7.2.
We make use of the following notations and assumptions:

• (Ω,F , P ) is a probability space, (E, dE) is a separable metric space, BE denotes the
Borel σ-field on E and (H, ‖ · ‖H) is a separable real Hilbert space.

• L : (Ω,F) → (E,BE) is a measurable map.
• Ln : (Ω,F) → (E,BE) for all n ∈ N, such that Ln is σ(L)-measurable and the sequence
(Ln)n∈N satisfies dE(L,Ln) → 0 in probability as n tends to infinity.

• L2(Ω, σ(L), P ;H) is the space of H-valued, σ(L)-measurable and square-integrable ran-
dom variables (i.e X : (Ω, σ(L)) → H measurable, where H is endowed with its Borel
σ-field, and satisfies E[‖X‖2H] < ∞).

The convergence in distribution is denoted by ⇒.

Theorem 44. Suppose the notations and assumptions above, X ∈ L2(Ω, σ(L), P ;H) and (Xn)n∈N
satisfies Xn ∈ L2(Ω, σ(L), P ;H) for all n ∈ N. Then the following assertions are equivalent as
n tends to infinity:

(i) Xn → X strongly in L2(Ω, σ(L), P ;H).
(ii) (Xn, Ln) ⇒ (X,L) in H× E and (‖Xn‖2H)n∈N is uniformly integrable.

Proof. ‘(i) ⇒ (ii)’: Due to the assumptions on the sequence (Ln)n∈N and (i), we have

‖Xn −X‖2H + dE(Ln, L) → 0 in probability

as n tends to infinity. This immediately implies the convergence in distribution in (ii). Moreover,
by the Cauchy-Schwarz inequality, we observe for n → ∞,

E[|‖Xn‖2H − ‖X‖2H|] = E[|〈Xn −X,Xn +X〉|] ≤ E[|‖Xn −X‖2H]1/2E[|‖Xn +X‖2H]1/2 → 0.

This gives the uniform integrability of the sequence (‖Xn‖2H)n∈N.
‘(ii) ⇒ (i)’: We firstly observe by the continuous mapping theorem, as n tends to infinity,

‖Xn‖2H ⇒ ‖X‖2H.

Hence, the uniform integrability implies

E[‖Xn‖2H] → E[‖X‖2H]. (53)

Now we fix a uniformly continuous and bounded (u.c.b., for shorthand) map f : E → R and
h ∈ H. The continuous mapping theorem gives that

f(Ln)〈Xn, h〉H ⇒ f(L)〈X,h〉H.

Moreover, by the de la Vallée-Poussin criterion, the inequality

sup
n∈N

E[|f(Ln)〈Xn, h〉H|2] ≤ (sup
e∈E

|f(e)|2)‖h‖2H sup
n∈N

E[‖Xn‖2H] < ∞

implies the uniform integrability of (〈Xn, f(Ln)h〉H)n∈N. Thus we conclude

E[〈Xn, f(Ln)h〉H] → E[〈X, f(L)h〉H]. (54)

Hence, (53) and (54) equal the expressions in Lemma 3 (ii) for the Hilbert space L2(Ω, σ(L), P ;H)
and it suffices to verify the assumptions in Lemma 3, i.e. that

(iii) The set {f(L)h : f is u.c.b., h ∈ H} is total in L2(Ω, σ(L), P ;H).
(iv) For all u.c.b. f and h ∈ H: f(Ln)h → f(L)h strongly in L2(Ω, σ(L), P ;H) as n tends

to infinity.
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‘(iii)’: As L2(Ω, σ(L), P ;H) is (a realization of) L2(Ω, σ(L), P )⊗H (tensor product in the sense
of Hilbert spaces, cf. [16, Appendix E]), it suffices to show that the set {f(L) : f is u.c.b.} is
dense in L2(Ω, σ(L), P ). Let X = F (L) ∈ L2(Ω, σ(L), P ) and assume that E[Xf(L)] = 0 for all
u.c.b. f . Then ∫

E
F (x)f(x)PL(dx) = 0,

and, as in [5, Theorem 1.3], this implies∫
A
F (x)PL(dx) = 0, (55)

for every closed set A ⊂ E. Thanks to the regularity of probability measures on metric spaces,
this implies (55) for all A ∈ BE . Hence, F = 0 PL-a.s., and therefore X = F (L) = 0 P -a.s.
Thus we conclude (iii).
‘(iv)’: Due to dE(Ln, L) → 0 in probability and the continuous mapping theorem, we obtain
f(Ln) → f(L) in probability. Hence, the dominated convergence theorem implies

E[‖f(Ln)h− f(L)h‖2H] = E[|f(Ln)− f(L)|2]‖h‖2H → 0

as n tends to infinity. �
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