Discrete-Time Mathematical Finance

Assignment sheet 8

Exercise 1 (4 points)

Let $\mathcal{M} = (\Omega, \mathcal{F}, P, (S_t)_{t \in \{0,1,2\}}, (\mathcal{F}_t)_{t \in \{0,1,2\}}, \mathcal{A}^{sf})$ be a market with two assets and 5 states, $\Omega = \{\omega_1, \ldots, \omega_5\}$. Let $S_t^0 = 1$ for t = 0, 1, 2 and

$$S_0^1 = 10, S_1^1(\omega_1) = S_1^1(\omega_2) = 11,$$

$$S_1^1(\omega_3) = S_1^1(\omega_4) = S_1^1(\omega_5) = 9,$$

$$S_2^1(\omega_1) = 12, \ S_2^1(\omega_2) = S_2^1(\omega_3) = 10,$$

$$S_2^1(\omega_4) = 9, \ S_2^1(\omega_5) = 8.$$

Moreover, let

$$\mathcal{F}_0 = \{\Omega, \emptyset\}, \ \mathcal{F}_1 = \{(S_1^1)^{-1}(B); \ B \text{ Borel set in } \mathbb{R}\}, \ \mathcal{F}_2 = 2^{\Omega}.$$

- (a) Show that an equivalent martingale measure for this model is given by $Q: 2^{\Omega} \to [0,1]$ with $Q(\{\omega_1\}) = Q(\{\omega_2\}) = \frac{1}{4}, Q(\{\omega_3\}) = \frac{1}{12}$ and $Q(\{\omega_4\}) = \frac{1}{3}$.
- (b) Consider the contract $\xi = 2Call(9, 2, 1) 3Put(10, 2, 1)$. Compute the fair price process $V_t^{\xi,Q}$ for t = 0, 1, 2.

Exercise 2 (4 points)

Let $\mathcal{M} = (\Omega, \mathcal{F}, P, (S_t)_{t \in \{0,1,2\}}, (\mathcal{F}_t)_{t \in \{0,1,2\}}, \mathcal{A}^{sf})$ be a market with two assets and 6 states, $\Omega = \{\omega_1, \ldots, \omega_6\}$. The value process of the assets is given by $S_t^0 = 1, t = 0, 1, 2$ as well as

$$S_0^1 = 100, \ S_1^1(\omega_1) = S_1^1(\omega_2) = S_1^1(\omega_3) = 110, \ S_1^1(\omega_4) = S_1^1(\omega_5) = S_1^1(\omega_6) = 90;$$

$$S_2^1(\omega_1) = 120, \ S_2^1(\omega_2) = 110, \ S_2^1(\omega_3) = 105, \ S_2^1(\omega_4) = 100, \ S_2^1(\omega_5) = 90, \ S_2^1(\omega_6) = 75.$$

Moreover, let

$$\mathcal{F}_0 = \{\Omega, \emptyset\}, \ \mathcal{F}_1 = \{(S_1^1)^{-1}(B); \ B \text{ Borel set in } \mathbb{R}\}, \ \mathcal{F}_2 = 2^{\Omega}$$

Find all equivalent martingale measures for this model.