Diskrete Finanzmathematik

4. Übung

Aufgabe 1 (2+1+1 Punkte)

Es sei \mathcal{M} ein endlicher Markt mit $\mathcal{T} = \{0, 1\}$, $\Omega = \{\omega_1, \omega_2, \omega_3\}$, D = 2, $\mathcal{F}_0 = \{\emptyset, \Omega\}$ sowie $S_0^0 = 100$, $S_1^0 = 105$ und

$$S_0^1 = 50, \ S_1^1(\omega_1) = 40, \ S_1^1(\omega_2) = 50, \ S_1^1(\omega_3) = 60,$$

$$S_0^2 = 20, \ S_1^2(\omega_1) = 40, \ S_1^2(\omega_2) = 20, \ S_1^2(\omega_3) = 10.$$

- (a) Bestimmen Sie ein lineares Preissystem π für den Markt.
- (b) Berechnen Sie $\pi(\text{Call}(15,1,2))$.
- (c) Verwenden Sie die Put-Call-Parität, um $\pi(\text{Put}(15,1,2))$ zu bestimmen.

Aufgabe 2 (4 Punkte)

Es sei \mathcal{M} ein arbitragefreies, endliches Ein-Perioden-Modell. Zeigen Sie, dass die Menge

$$\mathcal{I}_{\xi} := \{\pi(\xi), \ \pi \text{ lineares Preissystem}\}$$

für jeden Kontrakt ξ ein Intervall ist.

Hinweis: Zeigen Sie zunächst, dass die Menge der linearen Preissysteme konvex ist.