30. Oktober 2019

Analysis I

2. Übung

Aufgabe 1 (5 Punkte) Zeigen Sie: Sei $(K, +, \cdot)$ ein angeordneter Körper, dann gelten:

- i) $\forall a, b \in K$: Entweder a < b oder a = b oder a > b.
- ii) $\forall a, b, c \in K : a < b \text{ und } b < c \Rightarrow a < c.$
- iii) $\forall a, b, c, d \in K : a < b \text{ und } c \le d \Rightarrow a + c < b + d.$
- iv) $\forall a, b \in K : a < b \Rightarrow -a > -b$.
- v) $\forall a \in K : a \neq 0 \Rightarrow a^2 > 0$.
- vi) $\forall a, b \in K : 0 < a < b \Rightarrow a^{-1} > b^{-1}$.

Aufgabe 2 (4 Punkte) Finden Sie alle $x \in \mathbb{R}$ für die gilt:

- i) $x \in I_n := \left(0, \frac{1}{n^2}\right]$ für alle $n \in \mathbb{N}$.
- ii) $x \in J_n := \left[0, \frac{1}{n^2}\right)$ für alle $n \in \mathbb{N}$.
- iii) $x \in H_n := \left(-\frac{1}{n^2}, \frac{1}{n^2}\right)$ für alle $n \in \mathbb{N}$.

Aufgabe 3 (5 Punkte) Seien $(I_n)_{n\in\mathbb{N}}$ mit $I_n=[a_n,b_n]$ für alle $n\in\mathbb{N}$ und $(J_n)_{n\in\mathbb{N}}$ mit $J_n=[p_n,q_n]$ für alle $n\in\mathbb{N}$ zwei Intervallschachtelungen in \mathbb{R} . Seien $x,y\in\mathbb{R}$ mit

$$\forall n \in \mathbb{N} : (x \in I_n) \land (y \in J_n).$$

Zeigen Sie, dass gilt

$$x = y \Leftrightarrow \forall n \in \mathbb{N} : (a_n \le q_n) \land (p_n \le b_n).$$

Aufgabe 4 (6 Punkte) Betrachten Sie für jedes $n \in \mathbb{N}$ das abgeschlossene Intervall $I_n = [a_n, b_n]$ in \mathbb{R} mit

$$a_n = \left(1 + \frac{1}{n}\right)^n \text{ und } b_n = \left(1 + \frac{1}{n}\right)^{n+1}.$$

Zeigen Sie, dass $(I_n)_{n\in\mathbb{N}}$ eine Intervallschachtelung definiert.

Hinweis: Wenden Sie auf die Terme

$$\left(1 - \frac{1}{(n+1)^2}\right)^{n+1}$$
 und $\left(1 + \frac{1}{(n+1)^2 - 1}\right)^{n+1}$

die Bernoulli-Ungleichung an.