21st October 2019

Stochastics II

1. Tutorial

Exercise 1 (5 Points) Let $\Omega = [0, 1)$, \mathcal{F} be the σ -field of Borel sets on the interval [0, 1) and P be the Lebesgue measure on [0, 1). Furthermore let \mathcal{G} be the σ -field, generated by the intervals

$$\left[0,\frac{1}{2}\right), \left[\frac{1}{2},1\right)$$

and Y be a discrete random variable defined by

$$Y(x) = i \text{ für } x \in \left[\frac{i}{4}, \frac{i+1}{4}\right), i = 0, \dots, 3.$$

Define the random variable

$$\forall x \in \Omega : \, \xi(x) = x^2$$

on Ω and compute

- (i) the conditional expectation $E(\xi|\mathcal{G})$,
- (ii) the conditional expectation $\eta = E(\xi|Y)$,
- (iii) the conditional expectation $E(\eta|\mathcal{G})$.

Exercise 2 (5 Points) Let $\Omega = [0, 1)$, \mathcal{F} be the σ -field of Borel sets on the interval [0, 1) and P be the Lebesgue measure on [0, 1). Find $E(\xi|\eta)$ if

$$\xi(x) = 2x^2 \text{ and } \eta(x) = \begin{cases} 2x & \text{if } x \in [0, \frac{1}{2}) \\ 2x - 1 & \text{if } x \in [\frac{1}{2}, 1) \end{cases}.$$

Exercise 3 (5 Points)

Let $(\xi, \eta_1, \ldots, \eta_n)$, $n \in \mathbb{N}$ be an (n+1)-variate normal distributed random vector, where the random variables η_1, \ldots, η_n are independent. Calculate

- (i) the conditional expectation $E[\xi|\eta_1,\ldots,\eta_n]$.
- (ii) the conditional variance $E[(\xi E[\xi | \eta_1, \dots, \eta_n])^2 | \eta_1, \dots, \eta_n].$

Hint: Use the random variable

$$(\xi - E[\xi]) - \sum_{k=1}^{n} \frac{\operatorname{Cov}(\xi, \eta_k)}{\operatorname{Var}(\eta_k)} (\eta_k - E[\eta_k])$$

and show that it is independent of $\eta - E[\eta]$, where $\eta := (\eta_1, \dots, \eta_n)^T$.