24th October 2019

Stochastics II

2. Tutorial

Exercise 1 (3 Points) Let $(\xi_n)_{n\in\mathbb{N}}$ be a sequence in $L^1(\mathcal{F}, P)$ and $\mathcal{G} \subset \mathcal{F}$ a σ -field. Show that: If $\xi_n \geq 0$ and $\liminf_{n\to\infty} \xi_n \in L^1(\mathcal{F}, P)$, then it follows

$$E[\liminf_{n \to \infty} \xi_n | \mathcal{G}] \le \liminf_{n \to \infty} E[\xi | \mathcal{G}] \quad (P-\text{a.s.}).$$

Exercise 2 (4 Points) Let X and Y be independent random variables on the probability space (Ω, \mathcal{F}, P) which map Ω into the measurable space $(\mathcal{X}, \mathcal{A})$, respectively $(\mathcal{Y}, \mathcal{G})$. Furthermore let $g : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be a measurable function, such that $g(X, Y) \in L^1(\mathcal{F}, P)$. Show that:

$$E[g(X,Y)|X] = E[g(x,Y)]_{|_{x=X}}$$
 (P-a.s.).

Exercise 3 (4 Points) Let $X := (X_t)_{t \in \mathcal{T}}$ be a stochastic process with state space (E, \mathcal{E}) .

(i) Show that X is measurable in each of the following situations:

- (a) \mathcal{T} is at most countable.
- (b) $\mathcal{T} = [0, \infty), (E, \mathcal{E}) = (\mathbb{R}^D, \mathcal{B}^D)$ and X has right-continuous paths.
- (ii) Give an example for a stochastic process that is not measurable.
- **Exercise 4** (5 Points) Let $Y_k := \sum_{j=1}^k Z_j$, $k \in \mathbb{N}$, where $(Z_j)_{1 \le j \le k}$ is an independent family of exponential(λ)-distributed random variables with $\lambda > 0$.
 - (i) Show that Y_k is a Γ -distributed random variable with parameters (k, λ) , i.e. the density f_k of Y_k is given by

$$f_k(u) = \frac{(\lambda u)^{k-1}}{(k-1)!} \lambda e^{-\lambda u} \mathbb{1}_{(0,\infty)}(u)$$

for every $u \in \mathbb{R}$.

(ii) Show that

$$P(\{Y_k > \vartheta\}) = \sum_{i=0}^{k-1} \frac{(\lambda \vartheta)^j}{j!} e^{-\lambda \vartheta}$$

for every $\vartheta > 0$.