Stochastics II

6. Tutorial

Exercise 1 (3 Points) Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function.

(i) Let X be an integrable random variable, such that $f(X) \in L^1(P)$ and let \mathcal{G} be a sub σ -field of \mathcal{F} . Show that

$$E[f(X)|\mathcal{G}] \ge f(E[X|\mathcal{G}])$$
 P-a.s.

- (ii) Show that $(f(X_t))_{t \in [0,\infty)}$ is a submartingale, if
 - a) $(X_t)_{t\in[0,\infty)}$ is a martingale and $f(X_t) \in L^1(P)$ for every $t \in [0,\infty)$.
 - b) $(X_t)_{t\in[0,\infty)}$ is a submartingale, $f(X_t) \in L^1(P)$ for every $t \in [0,\infty)$ and f is non-decreasing.

Hint: Every convex function $f : \mathbb{R} \to \mathbb{R}$ can be expressed as the supremum over all linear functions which lie completely below the graph of f.

- **Exercise 2** (2 Points) Suppose $M = (M_t)_{t \in [0,\infty)}$ is a martingale such that $E[M_t^2] < \infty$ for every $t \ge 0$. Show that $E[(M_t M_s)(M_v M_u)] = 0$ for every $u \le v \le s \le t$.
- **Exercise 3** (3 Points) let J be an arbitrary index set and $X := (X_j)_{j \in J} \subset L^1(P)$ be a family of random variables. Show that X is uniformly integrable, if there exists a measurable function $f : \mathbb{R}_+ \to \mathbb{R}_+$ such that

$$\lim_{t \to \infty} \frac{f(t)}{t} = \infty \text{ and } \sup_{j \in J} E[f(|X_j|)] < \infty.$$

- **Exercise 4** (6 Points) Let $M = (M_n)_{n \in \mathbb{N}_0}$ be a martingale in discrete time with $M_n \in L^2(P)$ for every $n \in \mathbb{N}_0$.
 - (i) Show that the following statements are equivalent:
 - a) M_n converges in $L^2(P)$ to some random variable M_∞ in $L^2(P)$..
 - b) $\sup_n E[M_n^2] < \infty$
 - (c) $\sum_{n \in \mathbb{N}} E[(M_n M_{n-1})^2] < \infty.$
 - (ii) Show that M_n also converges *P*-almost surely to M_{∞} , if the statements in (i) hold true.
- **Exercise 5** (4 Points) Let $M = (M_n)_{n \in \mathbb{N}_0}$ be a martingale with $M_n \in L^2(P)$ for every $n \in \mathbb{N}_0$. Show that:

- (i) There exists an increasing and predictable process $A = (A_n)_{n \in \mathbb{N}_0}$ with $A_0 = 0$, such that the process $N = (N_n)_{n \in \mathbb{N}_0}$ defined as $N_n := M_n^2 - A_n$ for every $n \in \mathbb{N}_0$ is a martingale.
- (ii) If $E[A_{\infty}] < \infty$, then M_n converges *P*-almost surely and in $L^2(P)$ to a random variable M_{∞} in $L^2(P)$, where $A_{\infty} := \lim_{n \to \infty} A_n$.