Stochastics II

7. Tutorial

Exercise 1 (4 **Points**) Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,\infty)}, P)$ be a filtered probability space and $X = (X_t)_{t \in [0,\infty)}$ be a \mathbb{F} -adapted and integrable stochastic process. Show that the following statements are equivalent.

- (i) X is a supermartingale.
- (ii) For all $s, t \in [0, \infty)$ and every $A \in \mathcal{F}_s$ we have

$$P(A) > 0 \Rightarrow E^{P(.|A)}[X_{s+t}] \le E^{P(.|A)}[X_s].$$

(iii) For all $s, t \in [0, \infty)$ and every $A \in \mathcal{F}_s$ we have

$$\int_A X_{s+t} dP \le \int_A X_s dP.$$

(iv) For all $s, t \in [0, \infty)$ and every bounded, non-negative and \mathcal{F}_s -measurable function Y, we have

$$E[YX_{s+t}] \le E[YX_s].$$

Exercise 2 (6 Points) For a martingale $X = (X_n)_{n \in \mathbb{N}_0}$ in $L^2(P)$ we define the process $(\langle X \rangle_n)_{n \in \mathbb{N}_0}$ as $\langle X \rangle_0 := 0$ and

$$\langle X \rangle_n := \langle X \rangle_{n-1} + E[(X_n - X_{n-1})^2 | \mathcal{F}_{n-1}]$$

for every $n \in \mathbb{N}$. Then $\langle X \rangle$ is predictable, increasing, and $(X_n^2 - \langle X \rangle_n)_{n \in \mathbb{N}_0}$ is a martingale as well (see exercise 4 of the 6th tutorial).

Now let M be a martingale in $L^2(P)$ such that $\langle M \rangle_n \to \infty$ for $n \to \infty$. Show that

$$\lim_{n \to \infty} \frac{M_n}{\langle M \rangle_n} = 0 \quad P\text{-allmost surely.}$$

Hint: Consider the process

$$W_n := \sum_{1 \le k \le n} \frac{M_k - M_{k-1}}{1 + \langle M \rangle_k}$$

and use exercise 4 of the 6th tutorial to show that W_n converges. Then use Kronecker's Lemma to conclude the statement.

Exercise 3 (5 Points)

(i) Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}, P)$ be a filtered probability space, $X = (X_n)_{n \in \mathbb{N}_0}$ be a \mathbb{F} -submartingale and σ be a \mathbb{F} -stopping time satisfying $E[\sigma] < \infty$. Furthermore assume there exists a constant C > 0 such that

$$|X_{n+1} - X_n| \le C$$

P-a.s. for every $n \in \mathbb{N}_0$. Show that

$$E[X_{\sigma}] \ge E[X_0].$$

(ii) Let $(\xi_n)_{n\in\mathbb{N}}$ be a sequence of independent random variables with

$$P(\{\xi_n = -1\}) = P(\{\xi_n = 1\}) = \frac{1}{2}.$$

Moreover define $S_n := \sum_{k=1}^n \xi_k$ and $\tau := \inf\{n \in \mathbb{N} | S_n = 1\}$. Show that $E[\tau] = \infty$.