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Stochastics 11
11. Tutorial

Definition A function o : 7 x 7 — R is called positive semi-definite, if
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Exercise 1 (4 Points) Let 7 :=[0,7], m : T — R be arbitrary and p: 7 x T — R be symmetric
and positive semi-definite. Show that there exists a probability space (€2, F, P) and a
Gaussian process X = (X¢)ie7 on (2, F, P) such that E[X;] = m(t) and Cov (X, X;) =
o(s,t) for all s,t € T.

Exercise 2 (10 Points) Let 7" € R and (X¢):cjo,r) be the stochastic process defined by

T—t
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for every ¢t € [0,T), where (W})icj0,00) is @ Brownian motion.

(i) Show that Xp :=lim; »p X; P-a.s. exists and derive the distribution of Xr.

(ii) Show that (X;)ico,r] is @ Gaussian process and calculate E[X;] and Cov(Xj, X;)
for s,t € [0,T7.

(iii) Show that the random variables
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are independent for k € N, ¢1,...,¢, € [0,T).
(iv) Show that
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fori=1,....keN, t1,...,t, € [0,T) and z1, ...,z € R.
Exercise 3 (5 Points) Preliminaries for the proof of theorem 11.7:
(i) Show that
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for every x > 0 and conclude that
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for every N (0, 1)-distributed random variable ¢ and every x > 1.
(ii)) We define for n € N and ¢ > 1
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Show that » _yag, = 0.



