9th January 2020

Stochastics II

11. Tutorial

Definition A function $\varrho : \mathcal{T} \times \mathcal{T} \to \mathbb{R}$ is called positive semi-definite, if

$$\forall k \in \mathbb{N} \ \forall t_1, \dots, t_k \in \mathcal{T} \ \forall \lambda_1, \dots, \lambda_k \in \mathbb{R} : \sum_{i=1}^k \sum_{j=1}^k \lambda_i \lambda_j \varrho(t_i, t_j) \ge 0.$$

- **Exercise 1** (4 **Points**) Let $\mathcal{T} := [0, T], m : \mathcal{T} \to \mathbb{R}$ be arbitrary and $\varrho : \mathcal{T} \times \mathcal{T} \to \mathbb{R}$ be symmetric and positive semi-definite. Show that there exists a probability space (Ω, \mathcal{F}, P) and a Gaussian process $X = (X_t)_{t \in \mathcal{T}}$ on (Ω, \mathcal{F}, P) such that $E[X_t] = m(t)$ and $Cov(X_s, X_t) = \varrho(s, t)$ for all $s, t \in \mathcal{T}$.
- **Exercise 2** (10 Points) Let $T \in \mathbb{R}$ and $(X_t)_{t \in [0,T)}$ be the stochastic process defined by

$$X_t := \frac{T-t}{T} W_{\frac{tT}{T-t}}$$

for every $t \in [0, T)$, where $(W_t)_{t \in [0,\infty)}$ is a Brownian motion.

- (i) Show that $X_T := \lim_{t \nearrow T} X_t$ *P*-a.s. exists and derive the distribution of X_T .
- (ii) Show that $(X_t)_{t \in [0,T]}$ is a Gaussian process and calculate $E[X_t]$ and $Cov(X_s, X_t)$ for $s, t \in [0, T]$.
- (iii) Show that the random variables

$$Z_i := \frac{X_{t_i}}{T - t_i} - \frac{X_{t_{i-1}}}{T - t_{i-1}}$$

are independent for $k \in \mathbb{N}, t_1, \ldots, t_k \in [0, T)$.

(iv) Show that

$$P\left(\bigcap_{i=1}^{k} \{X_{t_i} \le x_i\}\right) = \lim_{\epsilon \searrow 0} P\left(\bigcap_{i=1}^{k} \{W_{t_i} \le x_i\} \left| \{W_T \in (-\epsilon, \epsilon)\}\right)\right|$$

for $i = 1, \ldots, k \in \mathbb{N}, t_1, \ldots, t_k \in [0, T)$ and $x_1, \ldots, x_k \in \mathbb{R}$.

Exercise 3 (5 Points) Preliminaries for the proof of theorem 11.7:

(i) Show that

$$\frac{x}{1+x^2}e^{-x^2/2} \le \int_x^\infty e^{-t^2/2}dt \le \frac{1}{x}e^{-x^2/2}$$

for every x > 0 and conclude that

$$P(\{\xi > x\}) \ge \frac{1}{\sqrt{2}^3 \sqrt{\pi}} \frac{1}{x} e^{-x^2/2}$$

for every $\mathcal{N}(0,1)$ -distributed random variable ξ and every $x \ge 1$.

(ii) We define for $n \in \mathbb{N}$ and q > 1

$$a_n := \frac{e^{-\log\log(q^n - q^{n-1})}}{\sqrt{\log\log(q^n - q^{n-1})}}.$$

Show that $\sum_{n \in \mathbb{N}} a_{2n} = \infty$.