Stochastics II

12. Tutorial

Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,\infty)}, P)$ be the underlying filtered probability space for the whole assignment.

- **Exercise 1** (5 Points) Let $X := (X_t)_{t \in [0,\infty)}$ be a Brownian motion with respect to \mathbb{F} and let τ be a \mathbb{F} -stopping time. Show that $E[X_{\tau}] = 0$ if:
 - (i) $(|X_{t\wedge\tau}|)_{(t\in[0,\infty)}$ is bounded by a *P*-integrable random variable.

(ii)
$$E[\tau] < \infty$$

Hint: To solve (ii), take a look at the random variable

$$\sum_{k=1}^{\lceil \tau \rceil} \max_{t \in [0,1]} |X_{k+t} - X_k|.$$

Exercise 2 (3 Points) Let τ be a \mathbb{F} -stopping time. Show that

- (i) $\sigma \tau$ is a $(\mathcal{F}_{t+\tau})_{t \in [0,\infty)}$ -stopping time, if σ is a \mathbb{F} stopping time.
- (ii) $\rho + \tau$ is a \mathbb{F} -stopping time, if ρ is a $(\mathcal{F}_{t+\tau})_{t \in [0,\infty)}$ -stopping time.
- **Exercise 3** (7 Points) Let $W := (X_t)_{t \in [0,\infty)}$ be a Brownian motion with respect to \mathbb{F} and let $f : \mathbb{R} \to \mathbb{R}$ be a function with continuous and bounded first derivative. Calculate the quadratic variation of $(f(W_t))_{t \in [0,\infty)}$. Hint: Show that

$$(f(W_{t_i}) - f(W_{t_{i-1}}))^2 = f'(W_{t_{i-1}})^2 (t_i - t_{i-1}) + f'(W_{t_{i-1}})^2 ((W_{t_i} - W_{t_{i-1}})^2 - (t_i - t_{i-1})) + (f'(W_{u_i})^2 - f'(W_{t_i})^2) (W_{t_i} - W_{t_{i-1}})^2$$

for $t_i > t_{i-1}$, where $u_i = u_i(\omega) \in [t_{i-1}, t_i]$.

Exercise 4 (3 Points) Let $(\gamma_n)_{n \in \mathbb{N}}$ be a sequence in $[0, \infty)$, such that $\frac{\gamma_n}{n} \to 1$ for $n \to \infty$. Show that

$$\lim_{n \to \infty} \sup_{0 \le k \le n} \left| \frac{\gamma_k - k}{n} \right| = 0.$$