Stochastics II 13. Tutorial

Definition: A \mathbb{R}^{D} -valued stochastic process $W = (W_t)_{t \in [0,\infty)}$ is called a *D*-dimensional Brownian motion with respect to a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,\infty)}$, if the following conditions hold true:

- W has continuous paths, $W_0 = 0$ and W is F-adapted.
- $W_t W_s$ is for every $0 \le s < t$ independent of \mathcal{F}_s and Gaussian distributed with mean vector 0 and covariance matrix $(t s)I_D$, where I_D is the unit matrix.
- **Exercise 1** (5 Points) Show that there exits a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,\infty)}, P)$ and a \mathbb{R}^D valued process $W = (W_t)_{t \in [0,\infty)}$, such that W is a D-dimensional Brownian motion with respect to \mathbb{F} .
- **Exercise 2** (5 Points) Let $W = (W_t)_{t \in [0,\infty)}$ be a *D*-dimensional Brownian motion with respect to a filtration \mathbb{F} . Show that the components $W^{(1)}, \ldots, W^{(D)}$ are independent one-dimensional Brownian motions with respect to \mathbb{F} .

Exercise 3 (6 Points) Consider the finite difference scheme

$$-\frac{V_{i+1,j}^{(n)} - V_{i,j}^{(n)}}{\tau} = \frac{1}{2} \left(\frac{V_{i+1,j-1}^{(n)} - 2V_{i+1,j}^{(n)} + V_{i+1,j+1}^{(n)}}{h^2} \right) + g(jh)$$
$$V_{n,j}^{(n)} = 0,$$

where $n \in \mathbb{N}$, i = 1, ..., n, j = -i, ..., i, $\tau = \frac{1}{n}$, $h = \sqrt{\frac{3}{n}}$ and g is a bounded Lipschitz continuous function. We define the random walk

$$S_k := \sum_{i=1}^k \xi_i$$

where the random variables ξ_i , i = 1, ..., k are independent indentical distributed with

$$P(\{\xi_i = a\}) = \begin{cases} \frac{1}{6}, & a = -\sqrt{3} \\ \frac{2}{3}, & a = 0 \\ \frac{1}{6}, & a = \sqrt{3} \end{cases}$$

We also define for $n \in \mathbb{N}$ the discrete time process

$$Y_i^{(n)} = \sum_{j=-i}^{i} V_{i,j}^{(n)} \mathbb{1}_{\{S_i = j\sqrt{3}\}}, \quad i = 0, \dots n - 1$$
$$Y_n^{(n)} = 0$$

Show that

- (i) $Y_i^{(n)} = E[Y_{i+1}^{(n)} | \sigma(\xi_1, \dots, \xi_i)] + g(\frac{1}{\sqrt{n}}S_i)\tau$ for $i = 0, \dots, n-1$.
- (ii) $V_{0,0}^{(n)} \to E[\int_0^1 g(W_s) ds]$ for $n \to \infty$, where W is a Brownian motion.