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Stochastics II
13. Tutorial

Definition: A RD-valued stochastic process W = (Wt)t∈[0,∞) is called a D-dimensional
Brownian motion with respect to a filtration F = (Ft)t∈[0,∞), if the following conditions hold
true:

• W has continuous paths, W0 = 0 and W is F-adapted.

• Wt−Ws is for every 0 ≤ s < t independent of Fs and Gaussian distributed with mean
vector 0 and covariance matrix (t− s)ID, where ID is the unit matrix.

Exercise 1 (5 Points) Show that there exits a filtered probability space (Ω,F ,F = (Ft)t∈[0,∞), P )
and a RD valued process W = (Wt)t∈[0,∞), such that W is a D-dimensional Brownian
motion with respect to F.

Exercise 2 (5 Points) Let W = (Wt)t∈[0,∞) be a D-dimensional Brownian motion with respect
to a filtration F. Show that the components W (1), . . . ,W (D) are independent one-
dimensional Brownian motions with respect to F.

Exercise 3 (6 Points) Consider the finite difference scheme
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and g is a bounded Lipschitz

continuous function. We define the random walk
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We also define for n ∈ N the discrete time process
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Show that
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Si)τ for i = 0, . . . , n− 1.
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g(Ws)ds] for n→∞, where W is a Brownian motion.


