Mathematik für Informatiker III

12. Übung

Aufgabe 47 (4 Punkte)

Seien $b, m \in \mathbb{R}$ und $a, \sigma > 0$ beliebig, aber fest. Weiter sei X eine reelle Zufallsvariable auf einem W-Raum $(\Omega, \mathcal{F}, \mathbb{P})$.

- (i) Bestimmen Sie die Verteilung der Zufallsvariable Y := aX + b, falls $\mathbb{P}_X = \mathbb{N}_{m,\sigma^2}$ (Normalverteilung zu den Parametern m und σ).
- (ii) Bestimmen Sie die Verteilung der Zufallsvariable $Y := \log(X)$, falls \mathbb{P}_X die R-Dichte

$$f_X(x) := \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\log(x) - m)^2}{2\sigma^2}} \mathbb{1}_{(0,\infty)}(x), \qquad x \in \mathbb{R}$$

besitzt. Hierbei bezeichnet $\mathbb{1}_{(0,\infty)}$ die mit der Menge $(0,\infty)$ assoziierte Indikatorfunktion (vgl. Aufgabe 15).

Hinweis: Beachten Sie Bemerkung 2.10.19 und 2.10.20.

Aufgabe 48 (5 Punkte)

Sei $X=(X_1,X_2)$ eine Zufallsvariable auf einem W-Raum $(\Omega,\mathcal{F},\mathbb{P})$ mit Werten in $(\mathbb{R}^2,\mathcal{B}(\mathbb{R}^2))$, deren Verteilung \mathbb{P}_X die R-Dichte

$$f_X(x_1, x_2) := c(x_1^2 + x_2^2) \mathbb{1}_{[-1,1]^2}(x_1, x_2), \qquad (x_1, x_2) \in \mathbb{R}^2$$

mit einer geeigneten Konstanten c > 0 besitzt. Hierbei bezeichnet $\mathbb{1}_{[-1,1]^2}$ die mit der Menge $[-1,1]^2$ assoziierte Indikatorfunktion (vgl. Aufgabe 15).

(i) Bestimmen Sie die Konstante c.

Sei nun die in (i) bestimmte Konstante c fest.

- (ii) Bestimmen Sie jeweils eine R-Dichte von X_1 und von X_2 .
- (iii) Berechnen Sie $Corr(X_1, X_2)$ und interpretieren Sie das Ergebnis.

Hinweis für (iii): Verwenden Sie das Analogon von Proposition 2.7.12(i)+(iii) für allgemeine W-Räume.

Aufgabe 49 (4 Punkte)

Sei X eine reelle Zufallsvariable auf einem W-Raum $(\Omega, \mathcal{F}, \mathbb{P})$. Berechnen Sie den Erwartungswert und die Varianz von X, falls

- (i) $\mathbb{P}_X = \operatorname{Exp}_{\lambda}$ für ein festes $\lambda \in (0, \infty)$.
- (ii) $\mathbb{P}_X = \mathcal{N}_{m,\sigma^2}$ für feste $m \in \mathbb{R}$ und $\sigma > 0$.

Hinweis für (ii): Beachten Sie, dass gemäß Definition 2.10.14 die Funktion $f_{0,1}(x) := \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$, $x \in \mathbb{R}$, die R-Dichte der Normalverteilung $N_{0,1}$ ist, d. h. es gilt insbesondere $\int_{-\infty}^{\infty} f_{0,1}(x) dx = 1$.

Aufgabe 50 (3 Punkte)

Seien $\lambda_1, \lambda_2 \in (0, \infty)$ mit $\lambda_1 \neq \lambda_2$ beliebig, aber fest. Weiter seien X_1 und X_2 zwei unabhängige reelle Zufallsvariablen auf einem W-Raum $(\Omega, \mathcal{F}, \mathbb{P})$ derart, dass $\mathbb{P}_{X_i} = \operatorname{Exp}_{\lambda_i}$ für jedes i = 1, 2. Zeigen oder widerlegen Sie mithilfe der Faltungsformel (vgl. Satz 2.10.25), dass die Verteilung der Zufallsvariable $X_1 + X_2$ gegeben ist durch $\operatorname{Exp}_{\lambda_1 + \lambda_2}$.