Unirational moduli, Hurwitz spaces and random curves

Frank-Olaf Schreyer

Universität des Saarlandes E-Mail: schreyer@math.uni-sb.de.

Homological and Computational Methods in Commutative Algebra A conference dedicated to Winfried Bruns on the occasion of his 70th birthday Cortona, Mai 30 - June 3, 2016

Introduction

The moduli spaces \mathcal{M}_g of curves of genus g is

• unirational for $g \leq 14$, [Severi, Sernesi, Chang-Ran, Verra],

(日) (日) (日) (日) (日) (日) (日)

▶ of general type for g = 22 and g ≥ 24, [Harris-Mumford, Eisenbud-Harris, Farkas].

The cases in between are not fully understood:

- *M*₂₃ has positive Kodaira dimension [Farkas],
- ► *M*₁₅ is rationally connected [Bruno-Verra],
- \mathcal{M}_{16} is uniruled [Chang-Ran, Farkas].

Introduction

In this talk I will report on unirationality proofs for moduli spaces. The emphasis will lie on the construction technique, trying to point out, where (from my point of view) the methods fail for the next cases. We will focus on

► Hurwitz schemes \$\mathcal{H}_{g,d} = {C → P¹} → W¹_{g,d}\$ of degree d covers of P¹ by curves of genus g,

- Severi varieties V_{g,d} → W²_{g,d} of degree d nodal plane curves of geometric genus g,
- further spaces $W_{g,d}^r$ for $r \ge 3$.

Brill-Noether theory

A general curve *C* of genus *g* has a linear system g_d^r of dimension *r* of divisors of degree *d* if and only if the Brill-Noether number

$$\rho = \rho(g, r, d) = g - (r+1)(g+r-d)$$

is non-negative. Moreover, in this case, the Brill-Noether scheme

$$W_d^r(C) = \{L \in \mathsf{Pic}^d(C) \mid h^0(L) \ge r+1\}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

has dimension ρ .

Brill-Noether theory

A general curve *C* of genus *g* has a linear system g_d^r of dimension *r* of divisors of degree *d* if and only if the Brill-Noether number

$$\rho = \rho(g, r, d) = g - (r+1)(g+r-d)$$

is non-negative. Moreover, in this case, the Brill-Noether scheme

$$W_d^r(C) = \{L \in \mathsf{Pic}^d(C) \mid h^0(L) \ge r+1\}$$

has dimension ρ . Recall some notation from [ACGH]:

$$\mathcal{M}_{g,d}^r = \{ C \in \mathcal{M}_g \mid \exists L \in W_d^r(C) \},\$$
$$W_{g,d}^r = \{ (C,L) \mid C \in \mathcal{M}_{g,d}^r, L \in W_d^r(C) \}$$

and

$$G_{g,d}^r = \{(\mathcal{C}, \mathcal{L}, \mathcal{V}) \mid (\mathcal{C}, \mathcal{L}) \in W_{g,d}^r, \mathcal{V} \subset H^0(\mathcal{L}), \dim \mathcal{V} = r+1\}.$$

Brill-Noether theory

A general curve *C* of genus *g* has a linear system g_d^r of dimension *r* of divisors of degree *d* if and only if the Brill-Noether number

$$\rho = \rho(g, r, d) = g - (r+1)(g+r-d)$$

is non-negative. Moreover, in this case, the Brill-Noether scheme

$$W_d^r(C) = \{L \in \mathsf{Pic}^d(C) \mid h^0(L) \ge r+1\}$$

has dimension ρ . Recall some notation from [ACGH]:

$$\mathcal{M}_{g,d}^r = \{ C \in \mathcal{M}_g \mid \exists L \in W_d^r(C) \},$$

 $W_{g,d}^r = \{ (C,L) \mid C \in \mathcal{M}_{g,d}^r, L \in W_d^r(C) \}$

and

$$G_{g,d}^r = \{(C,L,V) \mid (C,L) \in W_{g,d}^r, V \subset H^0(L), \dim V = r+1\}.$$

Then we have natural morphisms

$$\mathcal{H}_{g,d} \to G^1_{g,d} \to W^1_{g,d} \to \mathcal{M}^1_{g,d} \subset \mathcal{M}_g.$$

Color coding

Color coding indicates where $W_{g,d}^1$ is known to be unirational, uniruled or not unirational.

Results are due to

- ▶ Petri (*d* ≤ 5) (1923) or B. Segre (*d* = 5) (1928)
- Harris and Mumford (1982)
- Chang and Ran (1984)
- Eisenbud and Harris (1987)
- ► Mukai (g ≤ 9) (1995)
- Farkas (2000), Verra (2005)
- Geiß (2012)
- Bini, Fontanari and Viviani (2012)
- Farkas and Verra (2013)
- Casalaina-Martin, Kass and Viviani (2014)

(日) (日) (日) (日) (日) (日) (日)

Damadi, Schreyer and Tanturri (2016)

45				Р	G								
40				P	G								
					~								
30				P	G								
30				6	G								
22				B	G								
22					u								
31				P	G								
30				P	G								
29				P	~								
28				P	G								
27				P	Ğ								
26				P	Ğ								EH
25				Р	G								HM
24				Р	G							EH	EH
23				Р	G							HM	HM
22				Р	G						F	F	F
21				Р	G								
16				Р	G								
15				P	G			V					
14				Р	G		V	OT				-	FV
13				Р	G	SI	OT	SI			-	FV	CKV
12				P	G	G	51	3				CKV	CKV
10				P	G	G	UR		E V		CKV	CKV	
10				P	<u> </u>	<u> </u>	De	M					
9				E E	G	G	M	M	M	M	M	M	M
7						M	M	M	M	M	M	M	M
6				r		IVI	IVI	IVI	IVI	IVI	IVI	IVI	IVI
Ĭ													
1													
q/d	2	3	4	5	6	7	8	9	10	11	12	13	14
0, -									-			-	

Color coding indicates where $W_{g,d}^1$ is known to be unirational, uniruled or not unirational. The red shaded region is just a guess.

Mukai's Theorem

A general canonical curve *C* of genus g = 7, 8, 9 arises as transversal intersection of a linear space with a homogeneous variety:

7	$C = \mathbb{P}^6 \cap \operatorname{Spinor}^{10} \subset \mathbb{P}^{15}$	isotropic subspaces of $Q^8 \subset \mathbb{P}^9$
8	$\mathcal{C} = \mathbb{P}^7 \cap \mathbb{G}(2,6)^8 \subset \mathbb{P}^{14}$	Grassmannian of line in \mathbb{P}^5
9	$\mathcal{C} = \mathbb{P}^8 \cap \mathbb{L}(3,6)^6 \subset \mathbb{P}^{13}$	Lagrangian subspaces of (\mathbb{C}^6, ω)

 \Rightarrow the moduli spaces $\mathcal{M}_{g,g}$ of *g*-pointed curves of genus *g* and the universal Picard varieties $\operatorname{Pic}_g^d \to \mathcal{M}_g$ are unirational for $g \leq 9$.

(日) (日) (日) (日) (日) (日) (日)

 $\Rightarrow \mathcal{M}_{q,d}^1$ and $\mathcal{H}_{g,d}$ are unirational for $g \leq 9$ and $d \geq g$.

Petry's Theorem on 5-gonal curves

Let $C \to \mathbb{P}^1$ be given by a complete linear series of degree 5. The canonical image of *C* lies on a 4-dimension scroll *X*

$$\mathcal{C}\subset \mathcal{X}=\mathbb{P}(\mathcal{E})\subset \mathbb{P}^{g-1}$$

of a rank 4 bundle $\mathcal{E} = \mathcal{O}(e_1) \oplus \ldots \oplus \mathcal{O}(e_4)$ degree f = g - 4 over \mathbb{P}^1 .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Petry's Theorem on 5-gonal curves

Let $C \to \mathbb{P}^1$ be given by a complete linear series of degree 5. The canonical image of *C* lies on a 4-dimension scroll *X*

$$\mathcal{C}\subset \mathcal{X}=\mathbb{P}(\mathcal{E})\subset \mathbb{P}^{g-1}$$

of a rank 4 bundle $\mathcal{E} = \mathcal{O}(e_1) \oplus \ldots \oplus \mathcal{O}(e_4)$ degree f = g - 4over \mathbb{P}^1 . As an \mathcal{O}_X -module \mathcal{O}_C has a self-dual resolution of shape

$$0 \to \mathcal{O}_X(-5H + (f-2)R) \to$$
$$\oplus_{j=1}^5 \mathcal{O}_X(-3H + b_jR) \xrightarrow{\psi} \oplus_{i=1}^5 \mathcal{O}_X(-3H + a_iR) \to$$
$$\mathcal{O}_X \to \mathcal{O}_C \to 0$$

(日) (日) (日) (日) (日) (日) (日)

Petry's Theorem on 5-gonal curves

Let $C \to \mathbb{P}^1$ be given by a complete linear series of degree 5. The canonical image of *C* lies on a 4-dimension scroll *X*

$$\mathcal{C}\subset \mathcal{X}=\mathbb{P}(\mathcal{E})\subset \mathbb{P}^{g-1}$$

of a rank 4 bundle $\mathcal{E} = \mathcal{O}(e_1) \oplus \ldots \oplus \mathcal{O}(e_4)$ degree f = g - 4over \mathbb{P}^1 . As an \mathcal{O}_X -module \mathcal{O}_C has a self-dual resolution of shape

$$\begin{array}{l} 0 \rightarrow \mathcal{O}_X(-5H+(f-2)R) \rightarrow \\ \oplus_{j=1}^5 \mathcal{O}_X(-3H+b_jR) \xrightarrow{\psi} \oplus_{i=1}^5 \mathcal{O}_X(-3H+a_iR) \rightarrow \\ \mathcal{O}_X \rightarrow \mathcal{O}_C \rightarrow 0 \\ \text{where the middle matrix } \psi = (\psi_{ij}) \text{ is skew-symmetric with} \\ \text{entries } \psi_{ij} \in H^0(\mathcal{O}_X(H-(b_j-a_i)R)) \text{ and } a_i+b_i=f-2. \text{ The} \\ \text{other maps have entries the } 4 \times 4 \text{ pfaffians of } \psi \text{ (in accordance} \\ \text{with the Buchsbaum-Eisenbud structure theorem)} \end{array}$$

 $\Rightarrow \mathcal{H}_{g,5}$ and $M^1_{g,5}$ are unirational for all $g \geq 7$.

Florian Geiß' approach to 6-gonal curves

No structure theorem for Gorenstein rings in codimension 4. Not even for the Betti table

	0	1	2	3	4
0	1	•		•	•
1		9	16	9	
2					1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Florian Geiß' approach to 6-gonal curves

No structure theorem for Gorenstein rings in codimension 4. Not even for the Betti table

	0	1	2	3	4
0	1	•			•
1		9	16	9	
2					1

Let $|L_1| = g_6^1$. Consider in addition an $|L_2| = g_d^2$ and the embedding

 $C \xrightarrow{|L_1| \times |L_2|} \mathbb{P}^1 \times \mathbb{P}^2.$

Florian Geiß' approach to 6-gonal curves

No structure theorem for Gorenstein rings in codimension 4. Not even for the Betti table

	0	1	2	3	4
0	1	•			•
1		9	16	9	
2					1

Let $|L_1| = g_6^1$. Consider in addition an $|L_2| = g_d^2$ and the embedding

 $C \xrightarrow{|L_1| \times |L_2|} \mathbb{P}^1 \times \mathbb{P}^2.$

Think of *C* as a family of 6 points in \mathbb{P}^2 . The ideal of six points in \mathbb{P}^2 is generated by cubics, and they are linked via two cubics to three points. Thus *C* is linked to a trigonal curve *E* via two hypersurface of bi-degree $(a_1, 3), (a_2, 3)$. *E* might be easier to construct.

Since $10 > 3 \cdot 3$ a curve of genus 10 has a 1-dimensional family of g_9^2 . So $C \subset \mathbb{P}^1 \times \mathbb{P}^2$ has intersection numbers C.A = 6, C.B = 9 with the two generators A, B of the Picard group.

Since $10 > 3 \cdot 3$ a curve of genus 10 has a 1-dimensional family of g_9^2 . So $C \subset \mathbb{P}^1 \times \mathbb{P}^2$ has intersection numbers C.A = 6, C.B = 9 with the two generators A, B of the Picard group.

$$h^0 \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^2}(a,3) = (a+1)10, h^0 \mathcal{O}_{\mathcal{C}}(a,3) = 6a+3 \cdot 9 + 1 - 10$$

(日) (日) (日) (日) (日) (日) (日)

hence $h^0 \mathcal{J}_C(a,3) \ge 4a - 8 \ge 2$ for a = 3.

Since $10 > 3 \cdot 3$ a curve of genus 10 has a 1-dimensional family of g_9^2 . So $C \subset \mathbb{P}^1 \times \mathbb{P}^2$ has intersection numbers C.A = 6, C.B = 9 with the two generators A, B of the Picard group.

$$h^0 \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^2}(a,3) = (a+1)10, h^0 \mathcal{O}_{\mathcal{C}}(a,3) = 6a+3 \cdot 9 + 1 - 10$$

hence $h^0\mathcal{J}_C(a,3) \ge 4a-8 \ge 2$ for a=3. So $C \sim_{(3A+3B)^2} E$.

$$(C+E).A = (3A+3B)^2.A = 9 = 6+3,$$

$$(C+E).B = (3A+3B)^2.B = 18 = 9 + 9$$

and $g_C - g_E = \frac{1}{2}(C - E).(4A + 3B) = (6 - 3) \cdot 2 = 6$. Thus *E* is a genus 10 - 6 = 4 curve of bi-degree (3,9) in $\mathbb{P}^1 \times \mathbb{P}^2$ which are easy to construct.

Since $10 > 3 \cdot 3$ a curve of genus 10 has a 1-dimensional family of g_9^2 . So $C \subset \mathbb{P}^1 \times \mathbb{P}^2$ has intersection numbers C.A = 6, C.B = 9 with the two generators A, B of the Picard group.

$$h^0 \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^2}(a,3) = (a+1)10, h^0 \mathcal{O}_C(a,3) = 6a+3 \cdot 9 + 1 - 10$$

hence $h^0\mathcal{J}_C(a,3) \ge 4a-8 \ge 2$ for a=3. So $C \sim_{(3A+3B)^2} E$.

$$(C+E).A = (3A+3B)^2.A = 9 = 6+3,$$

$$(C+E).B = (3A+3B)^2.B = 18 = 9+9$$

and $g_C - g_E = \frac{1}{2}(C - E).(4A + 3B) = (6 - 3) \cdot 2 = 6$. Thus *E* is a genus 10 - 6 = 4 curve of bi-degree (3, 9) in $\mathbb{P}^1 \times \mathbb{P}^2$ which are easy to construct. Since $h^0 \mathcal{J}_E(3,3) = 40 - (3 \cdot (3 + 9) + 1 - 4) = 7 > 2$ we can reverse the construction. Moreover we can impose that the two hypersurfaces pass to 5 general points in $\mathbb{P}^1 \times \mathbb{P}^2$. $\Rightarrow W_{10,6,5}^1 \to \mathcal{M}_{10,5}$ are both unirational.

Why does this approach to $W_{g,6}^1$ fails for $g \gg 0$? A general curve *C* of genus *g* has a g_d^2 if only if

$$3\cdot (g-d+2)\leq g\Leftrightarrow d\geq rac{2g+6}{3}.$$

$$h^0 \mathcal{O}_C(a,3) pprox 6a + 2g + 6 + 1 - g \le 10(a+1) - 1$$

 $\Leftrightarrow g + 8 \le 4a$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Why does this approach to $W_{g,6}^1$ fails for $g \gg 0$? A general curve *C* of genus *g* has a g_d^2 if only if

$$3\cdot (g-d+2)\leq g\Leftrightarrow d\geq rac{2g+6}{3}$$

$$h^0 \mathcal{O}_C(a,3) pprox 6a + 2g + 6 + 1 - g \le 10(a+1) - 1$$

 $\Leftrightarrow g + 8 \le 4a$

The two hypersurface have bi-degree $(a_1, 3), (a_2, 3)$ with

$$a_1 \approx a_2 \approx g/4 + 2$$

and

 $(C+E).B = (a_1A+3B).(a_2A+3B).B = 3(a_1+a_2) = d_C + d_E.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Why does this approach to $W_{g,6}^1$ fails for $g \gg 0$? A general curve *C* of genus *g* has a g_d^2 if only if

$$3 \cdot (g-d+2) \leq g \Leftrightarrow d \geq rac{2g+6}{3}$$

$$h^0 \mathcal{O}_C(a,3) pprox 6a + 2g + 6 + 1 - g \le 10(a+1) - 1$$

 $\Leftrightarrow g + 8 \le 4a$

The two hypersurface have bi-degree $(a_1, 3), (a_2, 3)$ with

$$a_1 pprox a_2 pprox g/4 + 2$$

and

 $(C + E).B = (a_1A + 3B).(a_2A + 3B).B = 3(a_1 + a_2) = d_C + d_E.$ For $g \gg 0$ the plane model *E* has larger degree than the plane model of *C*:

$$d_E \approx 3/2g - 2/3g = 5/6g > 2/3g \approx d_C.$$

The approach fails at the point where *E* has to be chosen special within its Hilbert scheme to achieve $h_{-}^{0}\mathcal{J}_{E}(a_{1},3) > 0$.

Verra's case: $W_{14,8}^1 \rightarrow \mathcal{M}_{14}$ are both unirational $h^0(D) - h^0(K - D) = 8 + 1 - 14 \Rightarrow h^0(K - D) = 7$. Betti numbers of $C \subset \mathbb{P}^6$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Verra's case: $W_{14,8}^1 \rightarrow \mathcal{M}_{14}$ are both unirational $h^0(D) - h^0(K - D) = 8 + 1 - 14 \Rightarrow h^0(K - D) = 7$. Betti numbers of $C \subset \mathbb{P}^6$

$$C \sim_{2^{5}} E, \quad 32 = \deg C + \deg E = 18 + 14$$

$$g_{C} - g_{E} = \frac{1}{2}(C - E).(5 \cdot 2 - 7)H = \frac{3}{2}(18 - 14) = 6 \Rightarrow g_{E} = 8$$

$$\beta(S_{E}) = \boxed{\begin{array}{c|c}0 & 1 & . & . & . \\ 0 & 1 & . & . & . & . \\ 2 & . & . & . & . & . \\ 2 & . & . & . & . & . \\ 35 & 56 & 35 & 8 \\ \mathcal{O}_{E}(H) = \omega_{E}(p_{1} + \ldots + p_{4} - (p_{5} + \ldots + p_{8}))$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Verra's case: $W_{14,8}^1 \rightarrow \mathcal{M}_{14}$ are both unirational $h^0(D) - h^0(K - D) = 8 + 1 - 14 \Rightarrow h^0(K - D) = 7$. Betti numbers of $C \subset \mathbb{P}^6$

$$C \sim_{2^{5}} E, \quad 32 = \deg C + \deg E = 18 + 14$$

$$g_{C} - g_{E} = \frac{1}{2}(C - E).(5 \cdot 2 - 7)H = \frac{3}{2}(18 - 14) = 6 \Rightarrow g_{E} = 8$$

$$\beta(S_{E}) = \frac{1}{2} \begin{vmatrix} 0 & 1 & . & . & . \\ 0 & 1 & . & . & . \\ 2 & . & . & . \\ 2 & . & . & . \\ 2 & . & . & . \\ 2 & . & . & . \\ 35 & 56 & 35 & 8 \\ \mathcal{O}_{E}(H) = \omega_{E}(p_{1} + \ldots + p_{4} - (p_{5} + \ldots + p_{8}))$$
Mukai: $\mathcal{M}_{8,8}$ unirational; $W_{14,8}^{1} \approx \mathbb{G}(5,7)$ -bundle over Pic₈¹⁴
also.

Sernesi, Chang-Ran unirationality of M_g for g = 11, 12, 13 via space curves

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Space curves via Hartshorne-Rao modules, $W_{12,9}^1$ $h^0(D) - h^0(K - D) = 9 + 1 - 12 \Rightarrow h^0(K - D) = 4$, study $C \subset \mathbb{P}^3$. Hartshorne-Rao module

$$M = \oplus_n H^1(\mathbb{P}^3, \mathcal{J}_C(n)).$$

Space curves via Hartshorne-Rao modules, $W_{12,9}^1$ $h^0(D) - h^0(K - D) = 9 + 1 - 12 \Rightarrow h^0(K - D) = 4$, study $C \subset \mathbb{P}^3$. Hartshorne-Rao module

$$M = \oplus_n H^1(\mathbb{P}^3, \mathcal{J}_C(n)).$$

C maximal rank \Rightarrow expected syzygies:

and

・ロト・西ト・西ト・西ト・日 のくの

Construction

Construction

 Choose a general map O¹²(-3) ← O⁴(-4) and compute generators 0 ← ker(φ^t) ← O(2)⁸ ⊕ O(1)⁸

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Construction of points in $W_{13,9}^1$ $\beta(M) = \begin{array}{c|cccc}
2 & 5 & 12 & 4 & . \\
3 & . & . & 4 & . \\
4 & . & . & 9 & 16 & 6
\end{array} \qquad \beta(\Gamma_*\mathcal{O}_C) = \begin{array}{c|ccccc}
0 & 1 & . & . \\
1 & . & . \\
2 & 5 & 12 & 4 \\
3 & . & . & 2
\end{array}$

Construction

- 1. Choose a general map $\mathcal{O}^{12}(-3) \xleftarrow{\varphi} \mathcal{O}^4(-4)$ and compute generators $0 \leftarrow \ker(\varphi^t) \leftarrow \mathcal{O}(2)^8 \oplus \mathcal{O}(1)^8$
- 2. Choose a point in $\mathbb{G}(5,8)$ and obtain the presentation

$$\mathbf{0} \leftarrow \mathbf{\textit{M}} \leftarrow \mathbf{\textit{S}}^{5}(-2) \xleftarrow{\psi} \mathbf{\textit{S}}^{12}(-3)$$

(日) (日) (日) (日) (日) (日) (日)

Construction

- 1. Choose a general map $\mathcal{O}^{12}(-3) \xleftarrow{\varphi} \mathcal{O}^4(-4)$ and compute generators $0 \leftarrow \ker(\varphi^t) \leftarrow \mathcal{O}(2)^8 \oplus \mathcal{O}(1)^8$
- 2. Choose a point in $\mathbb{G}(5,8)$ and obtain the presentation

$$\mathbf{0} \leftarrow \mathbf{\textit{M}} \leftarrow S^5(-2) \xleftarrow{\psi} S^{12}(-3)$$

 Choose a point in G(2,4) and obtain a locally free resolution

$$0 \leftarrow \mathcal{J}_{\mathcal{C}} \leftarrow \mathcal{F} \leftarrow \mathcal{O}^4(-4) \oplus \mathcal{O}^2(-5) \leftarrow 0$$

where $\mathcal{F} = \widecheck{\ker(\psi)}$ is a rank 7 vector bundle on \mathbb{P}^3 .

Strong maximal rank space curves of diameter \leq 3

▲□▶▲□▶▲目▶▲目▶ 目 のへの

Space curves

24	-	-	-	-	-	-	-	-	-	a	a			a	
23	-	-	-	-	-	-	-	-	-	Ö	Ö	cm		-17	
22	-	-	-	-	-	-	-	-	-	ŏ	0		q		
21	-	-	-	-	-	-	-	-	-	a			-15		
20	-	-	-	-	-	-	-	-	cm	Ó	cm	a	-12		
19	-	-	-	-	-	-	-	-	0	ci		-13			
18	-	-	-	-	-	-	-	-	q		q	-10			
17	-	-	-	-	-	-	-	-	Ó	cm	-11	-7			
16	-	-	-	-	-	-	-	ci	Ō	q	-8	-4	0?		
15	-	-	-	-	-	-	-	q		-9	-5	-1			
14	-	-	-	-	-	-	-	Ó	q,cm	-6	-2				
13	-	-	-	-	-	-	-	0	-7	-3	CR				
12	-	-	-	-	-	-	cm	q		Se	Sc				
11	-	-	-	-	-	-	0	-5	-1	CR					
11 10	-	-	-	-	-	-	⊖ q,ci	-5	-1 2	6 6	FV				
11 10 9		-	-	-	-	- - Ci	 q,ci -3	-5 1	-1 2 5	6 9	FV				
11 10 9 8		-	-	-	-	- ci q	 3 _0	-5 1 4	-1 2 5 8	6 9	FV				
11 10 9 8 7		-				- ci q -1		-5 1 4 7	-1 2 5 8	6 9	FV				
11 10 9 8 7 6		-			- - - -2	- ci q -1 2		-5 1 4 7 10	-1 2 5 8	6 9	FV				
11 10 9 8 7 6 5				- - - - - -	- - - -2 1	- ci q -1 2 5	○ q,ci -3 0 3 6 9	-5 1 4 7 10	-1 2 5 8	6 9	FV				
11 10 9 8 7 6 5 4				- - - - - 0	- - -2 1 4	- ci q -1 2 5 8		-5 1 4 7 10	-1 2 5 8	6 9	FV				
11 10 9 8 7 6 5 4 3	- - - - - - - -	-		- - - - 0 3	- - -2 1 4 7	- ci q -1 2 5 8 11		-5 1 4 7 10	-1 2 5 8	6 9	FV				
11 10 9 8 7 6 5 4 3 2		-		- - - - 0 3 6	- - -2 1 4 7 10	- ci q -1 2 5 8 11 14	○ q,ci -3 0 3 6 9 12 15 18	-5 1 4 7 10	-1 2 5 8	6 9	FV				
11 10 9 8 7 6 5 4 3 2 1			- - - - - - - - - - - - - - - - - - -	- - - 0 3 6 9	-2 -2 1 4 7 10 13	- ci q -1 2 5 8 11 14	○ q,ci -3 0 3 6 9 12 15 18	-5 1 4 7 10	-1 2 5 8	6 9	FV				
11 10 9 8 7 6 5 4 3 2 1 0		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - 0 3 6 9 12	- -2 1 4 7 10 13 16	- q -1 2 5 8 11 14	○ q,ci -3 0 3 6 9 12 15 18	-5 1 4 7 10	-1 2 5 8	CR 6 9	FV				

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Plane nodal models $\mathcal{N}_{d,g}$

26	1 -	_	_	_	_	_	_	-91	-28	-25	-22		
25		_	-	_	_	_	_	-29	-26	-23	-20		
24	-	-		-	-	-	-	-27	-24	-21	20		
23	-	-	-	-	-			-25	-22	-19			
22	-	-		-	-	-	-	-23	-20	-17			
21	-	-		-	-	-	-24	-21	-18	-15			
20	-	-	-	-	-		-22	-19	-16	-13			
19	-	-		-	-	-	-20	-17	-14	10			
18	-	-	-	-	-	-	-18	-15	-12				
17	-	-	-	-	-		-16	-13	-10				
16	-	-		-	-	-	-14	-11	-8				
15	-	-	-	-	-	-15	-12	-9	-6		0Sc		
14	-	-	-	-	-	-13	-10	-7	, in the second s		000		
13	-	-	-	-	-	-11	-8	-5		1CB			
12	-	-	-	-	-	-9	-6	-3	0Se				
11	-	-	-	-	-	-7	-4	-1	26				
10	-	-	-	-	-8	-5	-2	- i -	20				
9	-	-	-	-	-6	-3	0						
Ř	-	-	-	-	-4	-1	2						
7	_	-	-	-	-2	1	4						
6	-	-	-	-3	ō	3	1.1						
5	-	-	-	-1	2	5							
4	-	-	-	1	4	7							
3	-	-	0	3	6								
2	-	-	2	5	8								
1	-	1	4	7	-								
ò	0	3	6	9									
a/d	2	3	4	5	6	7	8	9	10	11	12	13	
3/ -		-		-	-		-	-	-	-	_	-	

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Models in \mathbb{P}^4 and matrix factorizations; $W_{12,8}^1$ $|\mathcal{K} - D|$ embeds $C \hookrightarrow \mathbb{P}^4$ as a curve of degree deg C = 22 - 8 = 14. Postulation

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

In particular $h^0(\mathbb{P}^4, \mathcal{J}_C(3)) = 4$.

|K - D| embeds $C \hookrightarrow \mathbb{P}^4$ as a curve of degree deg C = 22 - 8 = 14. Postulation

		0	1	2	3
	0	1			•
$\beta(\Gamma_*\mathcal{O}_C) =$	1				
	2	2	14	15	2
	3				2

In particular $h^0(\mathbb{P}^4, \mathcal{J}_C(3)) = 4$. Fix $f \in H^0(\mathbb{P}^4, \mathcal{J}_C(3))$ and consider the cubic solid X = V(f). Resolve $\Gamma_* \mathcal{O}_C$ as an $S_X = S/f$ module:

$$\beta_X(\Gamma_*\mathcal{O}_C) = \begin{bmatrix} 0 & 1 & . & . & . & . & . \\ 1 & . & . & . & . & . \\ 2 & 2 & 13 & 15 & 2 \\ 3 & . & . & 2 & 15 & 15 & 2 \\ 4 & . & . & . & . & 2 & 15 \end{bmatrix}$$

$$\beta_X(\Gamma_*\mathcal{O}_C) = \begin{bmatrix} 0 & 1 & . & . & . & . & . \\ 1 & . & . & . & . & . & . \\ 2 & 2 & 13 & 15 & 2 \\ 3 & . & . & 2 & 15 & 15 & 2 \\ 4 & . & . & . & . & 2 & 15 \end{bmatrix}$$

The sheaf

$$\mathcal{F} = \operatorname{coker}(\mathcal{O}_X^2(-2) \oplus \mathcal{O}_X^{15}(-3) \xleftarrow{\psi} \mathcal{O}_X^{15}(-3) \oplus \mathcal{O}_X^2(-4))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is a rank 7 vector bundle on X.

$$\beta_X(\Gamma_*\mathcal{O}_C) = \begin{bmatrix} 0 & 1 & . & . & . & . & . \\ 1 & . & . & . & . & . & . \\ 2 & 2 & 13 & 15 & 2 \\ 3 & . & . & 2 & 15 & 15 & 2 \\ 4 & . & . & . & . & 2 & 15 \end{bmatrix}$$

The sheaf

$$\mathcal{F} = \operatorname{coker}(\mathcal{O}^2_X(-2) \oplus \mathcal{O}^{15}_X(-3) \xleftarrow{\psi} \mathcal{O}^{15}_X(-3) \oplus \mathcal{O}^2_X(-4))$$

is a rank 7 vector bundle on X.

Theorem (S.-Tanturri)

There is a monad

$$0 \leftarrow \mathcal{O}^2_X(-2) \leftarrow \mathcal{F} \leftarrow \mathcal{O}^2_X(-2) \oplus \mathcal{O}^2_X(-3) \leftarrow 0$$

whose homology is $\mathcal{J}_{C/X}$. For fixed \mathcal{F} there is a $\mathbb{G}(2,5)$ of choices which yield curves C' of desired degree and genus.

Consider a module *N* with Betti numbers

Syzygies of *N* as an S_X -module yield a matrix factorization of desired shape.

	3	4	5
3	15	2	
4	2	15	2
5			15

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Consider a module *N* with Betti numbers

$$\beta(N) = \frac{\begin{vmatrix} 0 & 1 & 2 & 3 & 4 \\ \hline 0 & 1 & . & . & . \\ 1 & . & . & . & . \\ 2 & . & 5 & . & . \\ 3 & . & 2 & 15 & 11 & 2 \end{vmatrix}$$

Syzygies of N as an S_X -module yield a matrix factorization of desired shape.

	3	4	5
3	15	2	
4	2	15	2
5			15

N is the homogeneous coordinate ring S_E of a curve of degree deg E = 13 and (arithmetic) genus $g_E = 10$.

Riemann-Roch for $\mathcal{O}_E(H)$:

$$5-h^1(\mathcal{O}_E(H))=13+1-10\Rightarrow h^1(\mathcal{O}_E(H))=1.$$

Hence

$$\mathcal{O}_E(H) = \omega_E(-(p_1 + \ldots + p_5)).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Riemann-Roch for $\mathcal{O}_E(H)$:

$$5-h^1(\mathcal{O}_E(H))=13+1-10\Rightarrow h^1(\mathcal{O}_E(H))=1.$$

Hence

$$\mathcal{O}_E(H) = \omega_E(-(p_1 + \ldots + p_5)).$$

Geiß applies: $\mathcal{M}_{10,5}$ is unirational, and the same holds for the $W_{12,8}^1$, since this is birational to a $\mathbb{G}(2,5)$ -bundle over $W_{10,5}^0$.

Riemann-Roch for $\mathcal{O}_E(H)$:

$$5-h^1(\mathcal{O}_E(H))=13+1-10\Rightarrow h^1(\mathcal{O}_E(H))=1.$$

Hence

$$\mathcal{O}_{E}(H) = \omega_{E}(-(p_{1} + \ldots + p_{5})).$$

Geiß applies: $\mathcal{M}_{10,5}$ is unirational, and the same holds for the $W_{12,8}^1$, since this is birational to a $\mathbb{G}(2,5)$ -bundle over $W_{10,5}^0$. Easier way to relate *C* and *E*:

$$C \sim_{3^3} E$$
, $27 = 14 + 13 = \deg C + \deg E$
and $g_C - g_E = \frac{1}{2}(C - E).((9 - 5)H = 2)$
 $\Rightarrow g_E = g_C - 2 = 10.$

|K - D| embeds $C \hookrightarrow \mathbb{P}^4$ as a curve of degree 15.

$$eta(\Gamma_*\mathcal{O}_C) = egin{array}{c|c} 0 & 1 & . & . & . \ 1 & . & . & . \ 2 & 3 & 17 & 18 & 3 \ . & . & . & 2 \ \end{array}; \quad h^0(\mathbb{P}^4,\mathcal{J}_C(3)) = 2.$$

▲□▶▲□▶▲□▶▲□▶ □ のへの

 $|\mathcal{K} - \mathcal{D}|$ embeds $\mathcal{C} \hookrightarrow \mathbb{P}^4$ as a curve of degree 15.

|K - D| embeds $C \hookrightarrow \mathbb{P}^4$ as a curve of degree 15.

$$\beta(\Gamma_*\mathcal{O}_C) = \begin{bmatrix} 0 & 1 & . & . & . \\ 1 & . & . & . & . \\ 2 & 3 & 17 & 18 & 3 \\ . & . & . & 2 \end{bmatrix}, \quad h^0(\mathbb{P}^4, \mathcal{J}_C(3)) = 2$$
As an S_X -module:
$$\begin{bmatrix} 0 & 1 & . & . & . & . \\ 1 & . & . & . & 2 \end{bmatrix}, \quad h^0(\mathbb{P}^4, \mathcal{J}_C(3)) = 2$$
As an S_X -module:
$$\begin{bmatrix} 0 & 1 & . & . & . & . \\ . & . & . & 2 \end{bmatrix}, \quad h^0(\mathbb{P}^4, \mathcal{J}_C(3)) = 2$$

$$\beta_X(\Gamma_*\mathcal{O}_C) = \begin{bmatrix} 0 & 1 & . & . & . & . \\ 1 & . & . & . & . & . \\ 3 & 16 & 18 & 3 \\ . & . & . & . & 3 & 18 \end{bmatrix}$$

Monad for $\mathcal{J}_{C/X}$ with a rank 9 bundle \mathcal{F} on X:

$$0 \leftarrow \mathcal{O}_X^3(-2) \leftarrow \mathcal{F} \leftarrow \mathcal{O}_X^3(-2) \oplus \mathcal{O}_X^2(-3) \leftarrow 0,$$

(ロ) (型) (E) (E) (E) (O)()

|K - D| embeds $C \hookrightarrow \mathbb{P}^4$ as a curve of degree 15.

$$\beta(\Gamma_*\mathcal{O}_C) = \frac{\begin{matrix} 0 \\ 1 \\ 2 \\ 3 \end{matrix} \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{matrix} \begin{vmatrix} 1 \\ 2 \\ 3 \end{matrix} \begin{vmatrix} 1 \\ 3 \end{matrix} \begin{vmatrix} 1 \\ 7 \end{matrix} \begin{pmatrix} 1 \\ 8 \\ 3 \end{matrix} \begin{vmatrix} 1 \\ 7 \end{matrix} \begin{pmatrix} 1 \\ 8 \\ 3 \end{matrix} \begin{vmatrix} 1 \\ 7 \end{matrix} \begin{pmatrix} 1 \\ 8 \\ 7 \end{matrix} \begin{pmatrix} 1 \\$$

Monad for $\mathcal{J}_{C/X}$ with a rank 9 bundle \mathcal{F} on X:

$$0 \leftarrow \mathcal{O}_X^3(-2) \leftarrow \mathcal{F} \leftarrow \mathcal{O}_X^3(-2) \oplus \mathcal{O}_X^2(-3) \leftarrow 0,$$

a $\mathbb{G}(2,3) \cong \mathbb{P}^2$ of choices. $\Rightarrow W^1_{13,9}$ is ruled.

|K - D| embeds $C \hookrightarrow \mathbb{P}^4$ as a curve of degree 15.

$$\beta(\Gamma_*\mathcal{O}_C) = \begin{bmatrix} 0 & 1 & . & . & . \\ 1 & . & . & . & . \\ 2 & 3 & 17 & 18 & 3 \\ . & . & . & 2 \end{bmatrix}, \quad h^0(\mathbb{P}^4, \mathcal{J}_C(3)) = 2.$$
As an S_X -module:
$$\begin{bmatrix} 0 & 1 & . & . & . & . \\ 1 & . & . & . & 2 \end{bmatrix}, \quad h^0(\mathbb{P}^4, \mathcal{J}_C(3)) = 2.$$
As an S_X -module:
$$\begin{bmatrix} 0 & 1 & . & . & . & . \\ . & . & . & . & 2 \end{bmatrix}, \quad h^0(\mathbb{P}^4, \mathcal{J}_C(3)) = 2.$$

$$\beta_X(\Gamma_*\mathcal{O}_C) = \begin{bmatrix} 0 & 1 & . & . & . & . \\ 1 & . & . & . & . & . \\ 3 & 16 & 18 & 3 \\ . & . & . & . & 3 & 18 \end{bmatrix}$$

Monad for $\mathcal{J}_{C/X}$ with a rank 9 bundle \mathcal{F} on X:

$$0 \leftarrow \mathcal{O}_X^3(-2) \leftarrow \mathcal{F} \leftarrow \mathcal{O}_X^3(-2) \oplus \mathcal{O}_X^2(-3) \leftarrow 0,$$

a $\mathbb{G}(2,3) \cong \mathbb{P}^2$ of choices. $\Rightarrow W^1_{13,9}$ is ruled. Why non-trivial?

|K - D| embeds $C \hookrightarrow \mathbb{P}^4$ as a curve of degree 15.

Monad for $\mathcal{J}_{C/X}$ with a rank 9 bundle \mathcal{F} on X:

$$0 \leftarrow \mathcal{O}_X^3(-2) \leftarrow \mathcal{F} \leftarrow \mathcal{O}_X^3(-2) \oplus \mathcal{O}_X^2(-3) \leftarrow 0,$$

a $\mathbb{G}(2,3) \cong \mathbb{P}^2$ of choices. $\Rightarrow W^1_{13,9}$ is ruled. Why non-trivial? Start with a 13-nodal rational *C*, general *C'* will be smooth!

45			P	G		Hu	rwit	7 S	che	mes	\mathcal{H}_{a}	\rightarrow	W
40			P	G				- 0			, <i>vg</i>	,u ′	
 36 35			 P P	G G									
34 33 32			P P P	G									
31 30			P	G G									
29			P	G									
27 26 25			P P	G								EH HM	
24 23			P P	G G							EH HM	EH HM	
22			P	G						F	F	F	
21 16 15			P P P	G G G			v						
14 13			P P P	GG	ST	V	ST			EV	FV	FV CKV CKV	
11 10			P P	G	G	CR	5	FV	FV CKV	CKV CKV	CKV CKV	CKV BFV	
9 8 7			P P P	G	G G M	DS M M	M M M	M M M	M M M	M M M	M M M	M M M	
6 1													
g / d	2 3	4	5	6	7	8	9	10	11	12	13	14	
Color codi	na indicate	s where	$= W^1$, is kr	own to	be unira	ational.	uniruleo	or not u	nirational			

lor coding indicates where $W_{g,d}^{I}$ is known to be unirational, uniruled or not unirational

・ロト・(型ト・(主)・(主)・ 主 の(の)