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@ M = &My a graded S-module.

Theorem (Hilbert’s Syzygy Theorem, 1890)
M has a finite free resolution F

O—M-)Fy—F —F,—...—Fp 10

of length < n+ 1 (= the number of variables), where each
Fi = ®;S(—j)" is a direct sum of free modules generated in
degree j.




1. Introduction

Hilbert polynomial

The polynomial nature of the Hilbert function of M
hM 74— 7, k»—>dimKMk.

was Hilbert’s main application the Syzygy Theorem. Indeed, in
terms of the Betti numbers g;; of the F, we have



1. Introduction

Hilbert polynomial

The polynomial nature of the Hilbert function of M
hM 74— 7, k»—>dimKMk.

was Hilbert’s main application the Syzygy Theorem. Indeed, in
terms of the Betti numbers g;; of the F, we have

n+1 n-+1

(k) = Z(_ﬂ"dimK(H)k=Z(—1>’Zﬁf,f<k_£+n>
j

i=0 i=0



1. Introduction

Hilbert polynomial

The polynomial nature of the Hilbert function of M
hM 74— 7, k»—>dimKMk.

was Hilbert’s main application the Syzygy Theorem. Indeed, in
terms of the Betti numbers g;; of the F, we have

n+1 n-+1

k) = Y1) dime(F)e = Y (1) Sy (27T
i i=0 /
— p,\/(,)(k) for k > 0, j

for the Hilbert polynomial py(t) € Q[f].
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Syzygies und Hilbert series

n+1

hu(k) = Z(—1)i2ﬂi,j<n+: j>
)

i=0

implies also the rationality of the Hilbert series:

) I'7+1 1 i y j
Hu(z) = ;h/\//(k)zk = 2( (;:S(z)nj)uﬁ i )

because
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Geometric interpretation of the Hilbert polynomial

Let A= S/(f;,...f,) be an algebra with the f; homogeneous
polynomials and let X = V(fi,..., f;) C P" be the vanishing loci.
Then:
@ r=degps(t)=dimX =dmA — 1
@ deg X = r!( lead coefficient of pa(t)) = mult(A) = Qa(1),
where Hy(z) = (@) s the coprime rational expression

(1—z)r+
for the Hilbert series. In particular, the numerator in the

formula ]
S (S (=) By)Z
(1 — z)m ’

vanishes at z = 1 to the order ¢ = codim X.

Hu(z) =
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1. Introduction

Geometric interpretation of the Hilbert polynomial

Let A= S/(f;,...f,) be an algebra with the f; homogeneous
polynomials and let X = V(fi,..., f;) C P" be the vanishing loci.
Then:

@ r =degpa(t) =dimX =dimA—1

@ deg X = r!( lead coefficient of pa(t)) = mult(A)

Let F = M be the associated coherent sheaf on P of a graded
module M. Then:

® pu(k) = x(F(k)) = Xo(—1)H(F(k)) for all k.
@ A family of sheaves F; is flat, iff the coefficients of the
Hilbert polynomials are constant as functions of 7.
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Graded Betti numbers

The coefficients of the Hilbert polynomial are the fundamental
numerical invariants of a graded S-module.

The graded Betti numbers (3; ; of a minimal resolution

O—~M—Fy—F ...« Fp 10

are finer numerical invariants!
Minimal means that at each step we choose a minimal
homogeneous generating system. Then

image(Fiy1) C (Xo,- .., Xn)Fi

and
Bi; = dim(F; ® K); = dimg Tor? (M, K);.



2. Betti Tables

Betti Tables

We abbreviate the numerical information of a minimal free
resolution, say

S §(-2)1%  S'6(-3) S3(—4)
S5 — D
S3(—4) S'8(—5) — S19(—6) — S(—8) — 0
in a table
Bi,i+k | i=0 1 2 3 4 5
k=0 | 1 — — — — —
1t | - 10 16 3 — -—
2 | - - 3 16 10 —
3 | - - - = -1

The traditional approach to the study of Betti numbers is the
question, which Betti numbers are possible for a module with
given Hilbert function or Hilbert polynomial.
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~ 10 20 15 4 - — 10 16 9 — -
~ 4 1520 10 - - — 9 16 10 -
e
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2. Betti Tables

Example: Canonical curves of genus 7 [S 1986]

The Betti table of a smooth canonically embedded curve
C c P8 of genus g = 7 is one of the following:

1

4

10

15 20

trigonal

16 3
3 16

4-gonal

10 20 15 4 -—

10

10

1

1

1 - - _
- 10 16 9 — -
— - 9 16 10 -

398
1 - - _
- - — 16 10 -
- - = 1
general case, char(K) # 2
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Boij-Soderberg Cone

Boij and Séderberg [2007] changed the traditional view of Betti
tables.

Let us think of a Betti table 3(M) = (5;;(M)) as an element of
the vector space
P

JEZ
Since (M @ N) = (M) + G(N), it is natural to consider the
rational convex cone spanned by all possible Betti tables.

Boij and Séderberg conjectured a complete description of this
cone.
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3. Boij-Sdderberg Cone

Pure resolution

A pure resolution is the resolution of a CM-module, which has
shape

0 — M — S(—p)* — S(—dy)* — ... S(—ds)* <0
Proposition

The Betti numbers (3; = f3; o, of a pure resolution are determined
by the degree sequence

(do,dh,...,de)

up to a common factor r. Indeed, §; = r[]| i ﬁ

Corollary

The Betti table of a pure resolution spans an extremal ray of the
Boij-Séderberg cone.

v




3. Boij-Sdderberg Cone

Rays of the Boij-Soderberg Cone

Theorem (Eisenbud-S, Boij-S6derberg, 2008)

Existence. For every degree sequence there exists a
CM-module with a pure resolution.

Spanning and Decomposition. Each Betti table is a unique
positive rational linear combination of pure Betti tables in a
unique chain of degree sequences.

Here “chain” refers to the natural partial order on degree
sequences

(do,dy,...,de) <(ep,€1,...,6¢):=c>Ccandd; <egVi<c.
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4. Application

15t Application: Decomposition and Bounds
1 - - - - _

10 16 x - -—
- x 16 10 —°

- - - - =

According to the Theorem, By is a linear combination of

Let By denote the Betti table By =

5 - - - - = 3 - - - - -
- 60 128 90 - - ,, - 20 - — — -—
A=_ _ _ —20—A*——90 128 60 —
- - - - -3 - - - - -5
and By. Clearly, only A can contribute to x in the first row of By.
X 90
—< = <
:>1 128@)( 11.25.
B11:lB 11A 11

45 90 90
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We do not think that By can be realized by an algebra. Only an
integral multiple actually occurs. One can see the same
phenomenon already with pure sequences.
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4. Application

Boij-Soderberg monoid

We do not think that By can be realized by an algebra. Only an
integral multiple actually occurs. One can see the same
phenomenon already with pure sequences.

1 2 — —
— - 2 1

is the smallest integral point on the ray corresponding to the
degree sequence (0, 1,3, 4), but impossible. The multiple

2 4 - —
— - 4 2

is realized.



4. Application

Dependence on the characteristic [Kunte 2008]

The monoid of actual Betti tables depends on the characteristic
of the ground field.

~ 10 16 - - -
~ -~ 16 10 —
- - - - =

occurs for all fields of char(K) # 2, while in char(K) = 2 an
algebra which this Hilbert function has Betti number at least

1 - - - _— _
-~ 10 16 1 — -
— — 1 16 10 -
— -1
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Fan Structure

In a bounded range, say
Bij # 0 only for j with d; < j < d

with bounds d = (d,, ...,d,) < d = (do, ..., dc), every
maximal chain has the same number of elements

b= 37 o(di — dy).
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4. Application

Fan Structure

In a bounded range, say
Bij # 0 only for j with d; < j < d

with bounds d = (d,, ...,d,) < d = (do, ..., dc), every
maximal chain has the same number of elements
b=>3"%,(d;— d;). The rays to pure Betti tables in any maximal
chain are linearly independent. Hence, they span a cone over a
(b —1)-simplex . So the bounded Boij-Sdderberg cones are
equidimensional fans.

Theorem (Erman, 2009)

The Boij-Séderberg monoid of actual Betti tables in a bounded
range is a finitely generated monoid.

The index of actual Betti tables along a ray may be abitrarily
large.



4. Application

2"9: Multiplicity Conjecture [Huneke-Srinivasan, 1998]

Theorem (Eisenbud-S, 08)
Let A= S/l be a CM-algebra. If the resolution

O0—A—S—F«+— ...« F. <0

has nonzero terms 3; ; # 0 only in the range d; < j < d;, then

1 C 1 (o]
E]_:[g-gmull‘ SC—U

with equality on either side iff A has a pure resolution.
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2"9: Multiplicity Conjecture [Huneke-Srinivasan, 1998]

Theorem (Eisenbud-S, 08)
Let A= S/l be a CM-algebra. If the resolution

O0—A—S—F«+— ...« F. <0

has nonzero terms 3; ; # 0 only in the range d; < j < d;, then

1 C 1 (o]
E]_:[g-gmult SC—U

with equality on either side iff A has a pure resolution.

Proof [Boij-S6derberg]. Write the Betti table of A as a convex
combination of pure Betti tables in a chain. O]



4. Application

3" App: Betti numbers over regular local rings

Let R be a regular local ring and M a finitely generated
R-module of projective dimension c. The minimal finite free
resolution of M has shape

0—M—R% —R* — . —R%—0

Theorem (Erman, 09)

The cone of Betti tables of R-modules of projective dimension
= c Is the cone over interior of the simplex spanned by

(1,1,0,...,0), (0,1,1,...0),...,(0,...,0,1,1) € Q°*!
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5. Cohomology of Sheaves

Facet equation

The simplices of the Boij-Séderberg cone correspond to chains
of degree sequence. A facet of a simplex is obtained by
dropping a vertex. The following chain corresponds to a typical
outer facet of the simplicial fan.
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Facet equation

The simplices of the Boij-Séderberg cone correspond to chains
of degree sequence. A facet of a simplex is obtained by
dropping a vertex. The following chain corresponds to a typical
outer facet of the simplicial fan. The equation (53, ) = 0 of this
facet has coefficients, which can be computed recursively.

(1,2,3,4)>(0,2,3,4)>(0,1,3,4)>(0,1,2,4)>(0,1,2,3)>...>(0,1,2,3,6)>(0,1,2,3,5)> ...

3
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B = (5/,]) =1 4 6 4 1 6= (5i,j) = o0 3 -4 3 0
- - - - = 0 0 0 0 5
_ _ — — — 0 0 0 12
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5. Cohomology of Sheaves

Facet equation

The simplices of the Boij-Séderberg cone correspond to chains
of degree sequence. A facet of a simplex is obtained by
dropping a vertex. The following chain corresponds to a typical
outer facet of the simplicial fan. The equation (53, ) = 0 of this
facet has coefficients, which can be computed recursively.

- - - - = A S
— — — — — 5 — 4 —

ﬁ:(ﬁi,j):— - - - = 5—(5i,j):o g —i 3 o3
1 3 3 1 — 0 0 0 0 5
_ _ _ — — 0 0 0

Our key discovery was that such ¢, ;'s are the dimensions of
cohomology groups of certain coherent sheaves.



5. Cohomology of Sheaves

Cohomology Tables

Let £ be a coherent sheaf on P”, for example a vector bundle.
We have the dimensions of the cohomology groups

vij = WP E())).

We identify the cohomology table ~(€) = (v;,) with an element

of
H Qn+1‘

JEZ



5. Cohomology of Sheaves

Supernatural Bundles

A vector bundle & on P" has natural cohomology, if for each
twist k at most one group H'(£(k)) # 0. It is supernatural, if in
addition the Hilbert polynomial

n

xe) =" (- 20
T k=1

has pairwise distinct integral roots z = (z1 > ... > zp).



5. Cohomology of Sheaves

Boij-Soderberg Analog for Vector Bundles

Theorem (E-S, 08)

The cohomology table of an arbitrary vector bundle onP" is a
unique positive rational linear combination of cohomology
tables of supernatural bundles, whose degree sequences form
a unique chain.

Here chain refers to the natural partial order
z=(z<..<zp)>Z=(z<...,<z) & z>Z

on zero sequences.



5. Cohomology of Sheaves

The Pairing

The crucial new concept is the following pairing between Betti
tables of modules and cohomology tables of coherent sheaves.
We define (3, v) for a Betti table 5 = (; x) and a cohomology

table ~ = () by

B =D (=" Bikvj—k
k

i>j
Note that if F; = @yez,O(—k)%x then

(BF). (&) =D (1) ThI(Fee)

i=]



5. Cohomology of Sheaves

Positivity 1

Theorem (E-S, 2008/09)

For F any free resolution of a finitely generated graded
K[xo, - .., Xn]-module M and & any coherent sheaf on P", we
have

(B(F),~(€)) = 0.

Moreover, if M has finite length and H'*" (Ii',- ® &) =0 forall
i >0, then

(B(F),~(€)) = 0.




5. Cohomology of Sheaves

Sketch of Proof. We treat the case where £ is a vector bundle.
In this case we have an exact complex

0—Mo—Fo®E - F@&—...—F,® &0
with Mg = M E. Breaking it up in short exact sequences
0 — My « FR&E& « My — 0

OHM1<—IN:1®5<—M2<—O
0 « My « R®E « Mz « 0
we get the desired functional by taking the alternating sum of

the Euler characteristics of initial parts of the corresponding
long exact sequences in cohomology:
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H(Fo®E) — H(M;) «— 0

H1(/E_1 ®E) «— H'(Mz) «
HO (M) — HY(F©¢f) « H (M) « O

H%Eé®5)<— H2(M3)
Hi(Mo) — H'(Rog) — H'(Ms)
HO(MQ) — HO(F2®5) — HO(M3) — 0

Hence,

(B(F),(€)) = dimcoker (H/(M;1) — HI(Fj® £)) > 0.
j=0

O
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Facet equation 2

The facet equation in the example above is obtained from the
vector bundle £ on P2 <% B3, that is the kernel of a general map
(’)gg(—'l) — (’)gz.
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Facet equation 2

The facet equation in the example above is obtained from the
vector bundle £ on P2 <% B3, that is the kernel of a general map

02 (—1) — O03,. The coefficients of the functional (—, v(¢.£))
are

21 —-12 5

0
12 -5 0 3 —4
5 0 -3 4 -3
0 3 —4 3 0
0 4 -3 0 5
0 3 0 -5 12
0 0 5 —-12 21
0 0 12 —21 32



5. Cohomology of Sheaves

Facet equation 2

The facet equation in the example above is obtained from the
vector bundle £ on P2 <% B3, that is the kernel of a general map
02 (—1) — O03,. The coefficients of the functional (—, v(¢.£))
are

21 —12 5 3

0
12 -5 0 3 —4
5 0 -3 4 -3
0 3 —4 3 0
0 4 -3 0 5
0 3 0 -5 12
0 0 5 —12 21
0 0 12 —21 32

This is not quite the functional we wanted, which had zeros in
places of some of the nonzero values.



5. Cohomology of Sheaves

Positivity 2

We define “truncated” functionals (—, ) . by
BV = Dk Brk¥r—k + 2j<r 2k Bk~
= 2okt Ptk Vr—k = 2jcr Dok Btk —k

+ st (1 )Yk Bk

For F the minimal free resolution of a finitely generated graded

K[xo, - . ., Xn]-module and & any coherent sheaf on P", we have

(B(F);7(€))rs = 0.
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Existence

With these functionals, the proof of both Main Theorems
reduce to proof of the existence of supernatural vector bundles
and CM-modules for arbitrary zero or degree sequences.

Theorem (Eisenbud-S, 08)

@ There exists a CM-module with pure resolution for any
given degree sequence (dy, . .., d;).

© There exists supernatural vector bundle for any given zero
sequence z = (24, ..., 2Zn).

In case char(K) = 0, Eisenbud-Flgystad-Weyman [2007] gave
different construction.
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Supernatural sheaves

A coherent (possibly torsion) sheaf F on P" with supernatural
cohomology has the Hilbert polynomial

with distinct integral roots. It will be convenient to put
Zs11 = Zgyp = ... = —00, and to define a partial order on all
root sequences by z > Z' by

z21>2y,...,2n > Z),.

Let ~# denote the cohomology table of a supernatural sheaf
with root sequence z and degree = sl.
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Boij-Soderberg analog for coherent sheaf

If Z is an infinite set of zero sequences, (q;).c~ a sequence of
numbers, and  is a cohomology table, we write

v = zcz9z7%, to mean that each entry > > q:774
converges to v; 4.

Theorem (Eisenbud-S, 2009)

Let ~(F) be the cohomology table of a coherent sheaf F on P".
There is a unique chain of zero-sequences Z and a unique
expression

Y(F) =) a7

zeZ

where the q, are positive numbers.
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Example

The ideal sheaf 7, of a point in P2 has the following
cohomology table (W'Zy(d — i)

10 6 3 1 2
1T 1 1 1 1

259 14 | o0
123 4 - | di

4 3 -2 10

where we dropped zero entries for the better visibility of the
shape. Then

HZp) = qo,—ky @
k=2

with
2

o) = k—Dk(k+ 1)
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Idea of proof

Look at the supernatural sheaf with largest zero-sequence with
the same upper shape as the given sheaf,

10 6 3 1
11 1 1 1
2 5 9 14

O =N




5. Cohomology of Sheaves

Idea of proof

Look at the supernatural sheaf with largest zero-sequence with
the same upper shape as the given sheaf,

10 6 3 1 2
1 1 1 1 1 1
2 5 9 14 0
in our case (02,
24 15 8 3 2
1 1
3 8 15 24 0
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Idea of proof

Look at the supernatural sheaf with largest zero-sequence with
the same upper shape as the given sheaf,

10 6 3 1
11 1 1 1

O =N

2 59 14 ...

in our case ~v(%—2), and subtract as much as possible,

24 15 8 3 2
1

]
381524 - |0

such that corners stay non-negative:



5. Cohomology of Sheaves

Idea of proof

Look at the supernatural sheaf with largest zero-sequence with
the same upper shape as the given sheaf,

10 6 3 1
11 1 1 1

O =N

2 59 14 ...

in our case ~v(%—2), and subtract as much as possible,
24 15 8 3 2

1

]
381524 - |0

such that corners stay non-negative: v — 37(0=2

—_ |

0 2
1

wIin
—_

—
oI~
o
»
o
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Idea of proof, 2nd step

Now look at
2 1 3 2
1111 2 1
1. £ 46 0

subtract a multiple of 4(%—3):
18 10 4
4 10 18 28

[@REN \V]




5. Cohomology of Sheaves

Idea of proof, 2nd step

Now look at
2 1 4 2
1111 2 1
7
1.2 486 0
subtract a multiple of 4(%—3):
18 10 4 2
2 2 1
4 10 18 28 0
1,.(0,—2 1 ..(0,—3
101
2 6
1 1 1 g % 1

ol
nolco
nolor
ko] =X




5. Cohomology of Sheaves

Idea of proof, 2nd step

Now look at
2 1 4 2
1111 2 1
7
1.7 46 0
subtract a multiple of 4(%—3):
18 10 4 2
2 2 1
4 10 18 28 0
We get v — 3702 — 14(0-3) Continue ... !
11
2 6
1 1 1 g % 1

ol
nolco
nolor
ko] =X
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Idea of proof

1.0,—2) _ 1,.(0,—3) _ 1 .(0,—4
7_§7( )_127( )_307( )

]
o 2

1 1

_.
o
|~

i

—

—
o
—
o

11

Pol—
L
o
o1©
ele
o
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Idea of proof

1.(0,-2) _ 1 _(0,-3)_ 1,_(0,—4
g = 170 108 _ 1 (0-4)

1
+ 2
11 2 I 2 1
10 10 5
119 13 0
2 10 5 5

Proposition (Key claim)
All entries of the table stay non-negative through out this process.
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Idea of proof

1
@ 2
1 1 22 2 1 9 13 1 1
28 28 14 14 28 14 2 17 27 19 0

7 28 28 14

Proposition (Key claim)
All entries of the table stay non-negative through out this process.

Of course, our inequalities help to prove this.
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Outlook

We can look at the Boij-Sdderberg cone of cohomology tables
of coherent sheaves (vector bundles) on an arbitrary ample
polarized (smooth) variety.
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We can look at the Boij-Sdderberg cone of cohomology tables
of coherent sheaves (vector bundles) on an arbitrary ample
polarized (smooth) variety.

If (X,0x(1)) is a very ample polarized variety of dimension d
then its Boij-Séderberg cone of cohomology tables coincides
with the one for (P9, O(1)).




5. Cohomology of Sheaves

Outlook

We can look at the Boij-Sdderberg cone of cohomology tables
of coherent sheaves (vector bundles) on an arbitrary ample
polarized (smooth) variety.

If (X,0x(1)) is a very ample polarized variety of dimension d
then its Boij-Séderberg cone of cohomology tables coincides
with the one for (P9, O(1)).

Necessary and sufficient for this is that X has a sheaf whose
cohomology table lies on the same ray as Op..

The conjecture holds for curves and hypersurfaces. It remains
true under the formation of Segre-products and transversal
intersections.
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Outlook

In another direction one could ask for
@ graded modules over polynomial rings with different
grading, e.g. Z"- graded,

@ arbitrary graded rings,
or

@ cohomology tables of sheaves on varieties with respect to
several polarization, for example vector bundles on P! x P'.

Little is kown in this area and beautiful things wait to be
discovered.
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