UNIVERSITÄT DES SAARLANDES Fachrichtung 6.1 - Mathematik Prof. Dr. Frank-Olaf Schreyer Christian Bopp

Exercises Algebraic Geometry

Winterterm 2016/17

The solutions are collected on Tuesday, before the exercise session. All further informations concerning the lecture can be found here: https://www.math.unisb.de/ag/schreyer/index.php/teaching

$\underline{\text{Sheet } 7}$

12.12.2016

Exercise 1.

(a) (4.2.2) [Universal Property of Localization] Let R be a ring, and let $U \subset R$ be a multiplicatively closed subset. Show that if $\phi: R \to S$ is a homomorphism of rings which maps the elements of U to units, there exists a uniquely determined homomorphism $\Phi: R[U^{-1}] \to S$ such that the diagram

commutes.

(b) (4.2.3) [Localization Commutes with Passing to Quotients by Ideals] Let R and U be as above, let $I \subset R$ be an ideal, and let \overline{U} be the image of U in R/I. Then show that the natural map

$$R \to R[U^{-1}] \to R[U^{-1}]/IR[U^{-1}]$$

induces an isomorphism

$$(R/I)[\overline{U}^{-1}] \cong R[U^{-1}]/IR[U^{-1}].$$

Exercise 2.

- (a) (4.2.8) [Localization Commutes with Forming Radicals] If $I \subset R$ is an ideal, then show that $\operatorname{rad}(IR[U^{-1}]) = (\operatorname{rad}I)R[U^{-1}]$. Conclude that the injection $J \mapsto \iota^{-1}(J)$ restricts to a bijection between the set of primary ideals of $R[U^{-1}]$ and the set of primary ideals of R not meeting U.
- (b) Let R be a ring and $f \in R$. Show:

$$R_f = 0 \Leftrightarrow f^n = 0$$
 for some $n \in \mathbb{N}$

Exercise 3 (4.2.22). (1) Find an ideal of $\mathbb{k}[x_1, \ldots, x_n]$ which admits minimal sets of generators differing in their number of elements.

(2) Let $\mathcal{O}_{\mathbb{A}^2,o}$ be the local ring of \mathbb{A}^2 at the origin o = (0,0). For each $n \in \mathbb{N}$, find an ideal of $\mathcal{O}_{\mathbb{A}^2,o}$ which is minimally generated by n elements.

Exercise 4 (4.3.6). The following picture shows plane curves with different types of singularities:

nodetriple pointtacnodecuspsThe curves above are defined by the polynomials below:

 $y^{2} = (1 - x^{2})^{3}, \quad y^{2} = x^{2} - x^{4}, \quad y^{3} - 3x^{2}y = (x^{2} + y^{2})^{2}, \quad y^{2} = x^{4} - x^{6}.$

Which curve corresponds to which polynomial?