UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Ernst Albrecht Dipl.-Math. Natalie Marx

Übungen zur Vorlesung Analysis II

Sommersemester 2006

Blatt 10

Abgabe: Mittwoch, 28.06.2006 von 11.00 bis 11.10 Uhr in HS III, Gebäude E2 5 oder bis 11.10 Uhr in den Briefkasten 'Analysis II SS 06' in Gebäude E2 5 (Untergeschoss)

Aufgabe 1 (8 Punkte)

Für $n \in \mathbb{N}$ sei

$$f_n: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{1}{n}\sin(nx).$$

Zeigen Sie, dass die Folge (f_n) gleichmäßig auf \mathbb{R} gegen die Nullfunktion konvergiert, aber die Folge der Ableitungen nicht mal punktweise konvergiert.

Aufgabe 2 (5x2=10 Punkte)

Bestimmen Sie die Konvergenzradien der folgenden Potenzreihen:

(a)
$$\sum_{n=0}^{\infty} \frac{n^n}{n!} z^n.$$

(b)
$$\sum_{n=0}^{\infty} \frac{n^s}{n!} z^n$$
 für $s \in \mathbb{R}$.

(a)
$$\sum_{n=0}^{\infty} \frac{n^n}{n!} z^n.$$
(c)
$$\sum_{n=0}^{\infty} (4n^3 - 3n^4) z^n.$$
(e)
$$\sum_{n=0}^{\infty} {2n \choose n} z^n.$$

(d)
$$\sum_{n=0}^{\infty} \left(\sum_{k=1}^{n} \frac{1}{k} \right) z^{n}.$$

(e)
$$\sum_{n=0}^{\infty} {2n \choose n} z^n$$
.

Aufgabe 3 (6+6=12 Punkte)

Sei $(a_n)_{n\in\mathbb{N}_0}$ eine Folge in \mathbb{K} mit $a_n\neq 0$ für alle $n\in\mathbb{N}_0$, und sei $z_0\in\mathbb{K}$ beliebig. Zeigen Sie:

(a) Für den Konvergenzradius R der Potenzreihe $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ gilt

(1)
$$R \ge \liminf_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$$

(b) Existiert $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right|$, so gilt (1) in Gleichheit.

Aufgabe 4 (10 Punkte)

Sei A eine nichtleere Menge. Mit B(A) bezeichnen wir die Menge aller beschränkten Funktionen $f: A \to \mathbb{K}$. B(A) wird versehen mit der Supremumsmetrik

$$d_{\infty}(f,g) := \sup_{a \in A} |f(a) - g(a)|$$

zu einem metrischen Raum (dies brauchen Sie nicht zu beweisen). Zeigen Sie, dass B(A)vollständig ist.

Bitte wenden!

Aufgabe 5* (3+3=6 Punkte)

Bestimmen Sie die Konvergenzradien der folgenden Potenzreihen:

(a)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right)^{n^2} \left(\frac{n + \log n}{n^2} \right) z^n.$$

(b)
$$\sum_{n=1}^{\infty} \left(1 + \frac{(-1)^n}{\log n} \right)^{n^2} z^n$$
.

Die Übungsblätter finden Sie auch im Netz unter

www.math.uni-sb.de/~ag-albrecht/ss06/ana2/ana2.html