UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Ernst Albrecht Dipl.-Math. Natalie Marx

Übungen zur Vorlesung Funktionentheorie

Sommersemester 2007

Blatt 6

Abgabe: Dienstag, 29.05.2007 von 9.00 bis 9.10 Uhr in HS 002, Gebäude E1 3 oder bis 9.10 Uhr in den Briefkasten 'FT SS 07' in Gebäude E2 5 (Untergeschoss)

Aufgabe 1 (8 Punkte)

Sei $f: \mathbb{D} \to \mathbb{D}$ eine holomorphe Funktion, so dass f(a) = a, f(b) = b für verschiedene Punkte $a, b \in \mathbb{D}$. Zeigen Sie:

- (a) f ist ein Automorphismus von \mathbb{D} .
- (b) f(z) = z für alle $z \in \mathbb{D}$.

Aufgabe 2 (10 Punkte)

Sei $\Omega \subseteq \mathbb{C}$ offen und sei $L \subset \mathbb{C}$ eine Gerade. Zeigen Sie mit Hilfe des Satzes 3.4 von Morera: Ist f eine auf Ω stetige und auf $\Omega \setminus L$ holomorphe Funktion, so ist f schon auf ganz Ω holomorph.

Aufgabe 3 (10 Punkte)

Sei $\Omega \subseteq \mathbb{C}$ offen und symmetrisch zur reellen Achse, d. h. es gilt $\overline{z} \in \Omega$ für alle $z \in \Omega$. Zeigen Sie, dass für eine auf $\Omega_+ := \{z \in \Omega; \text{ Im } z \geq 0\}$ stetige und auf $\Omega_+^0 := \{z \in \Omega; \text{ Im } z > 0\}$ holomorphe Funktion f durch

$$\tilde{f}(z) := \left\{ \begin{array}{ll} f(z) & \text{für } z \in \Omega_+ \\ \\ \overline{f(\overline{z})} & \text{für } \overline{z} \in \Omega^0_+ \end{array} \right.$$

eine auf ganz Ω holomorphe Funktion $\tilde{f}:\Omega\to\mathbb{C}$ definiert wird.

Aufgabe 4 (4x3=12 Punkte)

Berechnen Sie die Konvergenzradien der folgenden Potenzreihen:

(a)
$$\sum_{n=1}^{\infty} \left(\frac{4-2i}{5+i}\right)^n (z-i)^n$$
.

(b)
$$\sum_{n=2}^{\infty} (in^2 + 2^n)z^{2n}$$
.

Bitte wenden!

(c)
$$\sum_{n=0}^{\infty} (1+i^n)^{\frac{n+1}{2}} z^n$$
.

(d)
$$\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} \frac{1}{k+i} \right) (z+2)^n$$
.

Aufgabe 5* (6 Punkte)

Entwickeln Sie die Funktion

$$f(z) = \frac{1}{z^2 - 5z + 6}$$

in eine Potenzreihe um $z_0=0$ und bestimmen Sie deren Konvergenzradius.

Die Übungsblätter finden Sie auch im Netz unter

www.math.uni-sb.de/~ag-albrecht/ss07/ft/uebungen.html