UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 - MATHEMATIK

Prof. Dr. Ernst Albrecht

Übungen zur Vorlesung Topologie (SS 2007) Blatt 5

 $\bf Aufgabe~1.~$ Sei $\mathbb R$ versehen mit der euklidischen Topologie und sei

$$\mathbb{R}/\mathbb{Z} = \{x + \mathbb{Z} : x \in \mathbb{R}\}$$

versehen mit der Quotiententopologie \mathcal{T}_{\sim} bezüglich der durch

$$x \sim y \quad :\iff \quad x - y \in \mathbb{Z} \qquad (x, y \in \mathbb{R})$$

gegebenen Äquivalenzrelation \sim auf \mathbb{R} . Zeigen Sie, daß $(\mathbb{R}/\mathbb{Z}, \mathcal{T}_{\sim})$ homöomorph ist zu der mit der Unterraumtopologie von $(\mathbb{C}, \mathcal{T}_{|\cdot|})$ versehenen Einheitskreislinie \mathbb{T} in \mathbb{C} .

Aufgabe 2. Seien $(X_1, \mathcal{T}_1), (X_2, \mathcal{T}_2)$ zwei topolgogische Räume und sei $X := X_1 \times X_2$ versehen mit der Produkttopologie. Zeigen Sie für alle $A \subseteq X_1, B \subseteq X_2$:

- (a) $int(A \times B) = int(A) \times int(B)$.
- (b) $\overline{A \times B} = \overline{A} \times \overline{B}$.
- (c) $\partial A \times B = (\partial(A) \times \overline{B}) \cup (\overline{A} \times \partial(B)).$

Aufgabe 3. Sei (X, τ) das topologische Produkt einer Familie (X_i, τ_i) $(i \in I)$ von topologischen Räumen. Zeigen Sie:

- (a) (X, τ) ist genau dann separiert, wenn alle (X_i, τ_i) , $i \in I$, separiert sind.
- (b) Ein Netz $(x_{\alpha})_{\alpha \in \mathbb{A}}$ in X ist genau dann konvergent in (X, \mathcal{T}) , wenn für alle $i \in I$ das Netz der i-ten Komponenten $(x_{\alpha,i})_{\alpha \in \mathbb{A}}$ in (X_i, τ_i) konvergent ist.

Aufgabe* 4. Sei $E:=C([0,1],\mathbb{K})$ mit $\mathbb{K}=\mathbb{R}$ oder $\mathbb{K}=\mathbb{C}$ und E' der Raum aller bezüglich der sup-Norm auf E stetigen \mathbb{K} -linearen Abbildungen von E nach \mathbb{K} .

- (a) $\langle E, E' \rangle$ mit $\langle x, f \rangle := f(x)$ für $x \in C([0, 1], \mathbb{K})$ und $f \in E'$ ist ein Dualsystem.
- (b) $\langle E, E \rangle$ mit $\langle f, g \rangle := \int_{0}^{1} f(t)g(t)dt$ für $f, g \in C([0, 1], \mathbb{K})$ ist ein Dualsystem.

Abgabe: Freitag, den 25.05.2007 vor der Vorlesung oder bis 9:15 Uhr in dem Briefkasten (FT SS 07) in Gebäude E2 5 (Untergeschoß).

Die Übungsblätter finden Sie auch im Netz unter

www.math.uni-sb.de/~ag-albrecht/ss07/top/uebungen.html.