UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Ernst Albrecht Dipl.-Math. Natalie Didas

Übungen zur Vorlesung Lokale Methoden in der Spektraltheorie II

Sommersemester 2009

Blatt 3

Abgabe: Freitag, 15.05.2009, vor der Vorlesung

Sei X ein komplexer Banachraum.

Aufgabe 1

Sei $T \in \mathcal{L}(X)$ und sei $\widetilde{X}_T(F) = \{x \in X \mid \sigma_T(x) \subseteq F\}$ für alle $F \subseteq \mathbb{C}$. Zeigen Sie die folgenden Aussagen:

- (a) $\widetilde{X}_T(F)$ ist ein T-hyperinvarianter Teilraum von X, d. h. für alle Operatoren S, die mit T kommutieren, gilt $S(X_T(F)) \subseteq X_T(F)$.
- (b) Für alle $\lambda \in \mathbb{C} \setminus F$ gilt $(\lambda T)\widetilde{X}_T(F) = \widetilde{X}_T(F)$.
- (c) Gilt für $x \in X$ und $\lambda \in F$: $(\lambda T)x \in \widetilde{X}_T(F)$, so ist $x \in \widetilde{X}_T(F)$.
- (d)* Ist Y ein T-invarianter (d. h. $TY \subseteq Y$) abgeschlossener linearer Unterraum von X mit $\sigma(T|_Y) \subseteq F$, so ist $Y \subseteq \widetilde{X}_T(F)$.

Aufgabe 2

Sei $T \in \mathcal{L}(X)$ so, dass $\sigma(T) = \sigma_1 \cup \sigma_2$ gilt mit abgeschlossenen, disjunkten und nichtleeren Mengen $\sigma_1, \sigma_2 \subset \mathbb{C}$. Seien weiter $\Omega_1, \Omega_2 \subset \mathbb{C}$ offen mit $\sigma_j \subset \Omega_j$ für j = 1, 2 und mit $\Omega_1 \cap \Omega_2 = \emptyset$. Ferner seien $h_j : \Omega_1 \cup \Omega_2 \to \mathbb{C}$ definiert durch $h_j(z) = \chi_{\Omega_j} \mid_{\Omega_1 \cup \Omega_2}$ für j = 1, 2. Zeigen Sie die folgenden Aussagen:

- (a) $X_T(\sigma_1) + X_T(\sigma_2) = X$.
- (b) $X_T(\sigma_i) = \operatorname{ran} h_i(T)$ und $X_T(\sigma_i)$ ist spektral maximal für i = 1, 2.
- (c)* Ist T ein kompakter Operator, so ist T zerlegbar.

Die Übungsblätter finden Sie auch im Netz unter

www.math.uni-sb.de/~ag-albrecht/ss09/spektral/spektral-ueb.html