UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Ernst Albrecht Dipl.-Math. Natalie Didas

Übungen zur Vorlesung Lokale Methoden in der Spektraltheorie II

Sommersemester 2009

Blatt 8

Abgabe: Freitag, 19.06.2009, vor der Vorlesung

Seien X,Y Banachräume, $S \in \mathcal{L}(X)$ und $T \in \mathcal{L}(Y)$ Wir definieren die Operatoren L(T), R(T) und $C(T,S) \in \mathcal{L}(\mathcal{L}(X,Y))$ durch

$$L(T)A := TA,$$
 $R(S)A := AS$ $C(T,S)A := TA - AS$

für alle $A \in \mathcal{L}(X, Y)$.

Aufgabe 1

Zeigen Sie folgende Aussagen:

(a) Für alle $n \in \mathbb{N}$ und $A \in \mathcal{L}(X, Y)$ gilt:

$$C(T,S)^{n}(A) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} T^{n-k} A S^{k}.$$

(b) Für alle $n \in \mathbb{N}$ und $z \in \mathbb{C}$ gilt:

$$C(T-z, S-z)^n = C(T, S)^n$$
 und $C(z-T, z-S)^n = (-1)^n C(T, S)^n$.

Aufgabe 2

Seien X, Y Banachräume, $N_1 \in \mathcal{L}(X)$ und $N_2 \in \mathcal{L}(Y)$ mit $N_j^k = 0$ für $k > n_j$ und j = 1, 2. Zeigen Sie, dass

$$C(N_2, N_1)^k A = 0$$

für alle $A \in \mathcal{L}(X,Y)$ und hinreichend großes $k > k_0$ aus \mathbb{N} gilt. Geben Sie eine Abschätzung für k_0 an.

Die Übungsblätter finden Sie auch im Netz unter

www.math.uni-sb.de/~ag-albrecht/ss09/spektral/spektral-ueb.html