UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 - MATHEMATIK

Prof. Dr. Ernst Albrecht

Mathematik für Studierende der Biologie und des Lehramts Chemie (WS 2006/07) Lösungen zu Blatt 15

Aufgabe 1. Wie lautet die allgemeine Lösung der Differenzengleichung

$$x_{n+2} = 5x_{n+1} - 4x_n$$
.

Gibt es Lösungen, die gegen einen Grenzwert $c \in \mathbb{R}$ konvergieren?

Lösung: Die zu der angegebenen Differenzengleichung gehörige charakteristische Gleichung

$$\lambda^2 = 5\lambda - 4$$

hat die Lösungen $\lambda_1 = 1$ und $\lambda_2 = 4$. Die Lösungsgesamtheit der Differenzengleichung ist also nach Satz 2.4 der Vorlesung gegeben durch:

$$\mathbb{L} = \{ (\alpha + \beta 4^n)_{n=0}^{\infty} ; \alpha, \beta \in \mathbb{R} \}$$

Aufgabe 2. Untersuchen Sie die unendlichen Reihen

(a) $\sum_{n=0}^{\infty} \frac{1}{n!} (\ln(2007))^n$, (b) $\sum_{n=1}^{\infty} \frac{\pi^n}{n^{2007}}$

auf Konvergenz und geben Sie im Konvergenzfall ihren Grenzwert an.

Lösung: (a) Nach Beispiel 1.24 der Vorlesung ist die Reihe

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

für alle $x \in \mathbb{R}$ (und sogar für alle $x \in \mathbb{C}$) konvergent, also insbesondere auch für $x = \ln(2007)$. Da der natürliche Logarithmus $\ln: (0, \infty) \to \mathbb{R}$ die Umkehrfunktion zur Exponentialfunktion

$$x \mapsto \exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!},$$
 $(x \in \mathbb{R})$

ist (vergl. das Beispiel nach 2.14 der Vorlesung), folgt

$$\sum_{n=0}^{\infty} \frac{(\ln(2007))^n}{n!} = \exp(\ln(2007)) = 2007.$$

(b) Mit $a_n := \frac{\pi^n}{n^{2007}}$ gilt für alle $n \in \mathbb{N}$ (wegen $\pi > e$):

$$a_n > \frac{e^n}{n^{2007}} \to \infty$$

wegen $\frac{n^{2007}}{e^n} \to 0$ (nach Beispiel 2.6 der Vorlesung). Die Folge $(a_n)_{n=0}^{\infty}$ ist also nicht gegen 0 konvergent. Nach Lemma 1.19 der Vorlesung ist die Reihe also divergent.

Aufgabe 3. Welche der folgenden Funktionen besitzt eine differenzierbare Umkehrfunktion?

(a)
$$x \mapsto \cot(x) = \frac{\cos(x)}{\sin(x)}$$
 auf $(0, \pi)$,

(b)
$$x \mapsto \coth(x) = \frac{\cosh(x)}{\sinh(x)}$$
 auf $(0, \infty)$,

(c)
$$x \mapsto f(x) := x^3 + 3x^2 + 2007$$
 auf \mathbb{R} .

(d)
$$x \mapsto g(x) := x^2 + 2007x$$
 auf $(0, \infty)$.

Berechnen Sie im Existenzfall deren Ableitung

Lösung: (a) Für die Ableitung der Kotangensfunktion gilt auf $(0, \pi)$ nach der Quotientenregel

$$\cot'(x) = \frac{\sin(x)\cos'(x) - \cos(x)\sin'(x)}{\sin(x)^2} = \frac{-\sin(x)^2 - \cos(x)^2}{\sin(x)^2} = \frac{-1}{\sin(x)^2} < 0.$$

Die Kotangensfunktion ist also auf $(0,\pi)$ streng monoton fallend und besitzt daher eine Umkehrfunktion, die wir mit arccot bezeichnen, auf ihrem Bild. Wegen $0 < \sin(x) \to 0$ für $x \to 0$ und für $x \to \pi$ sowie $\cos(x) \to 1$ für $x \to 0$, $\cos(x) \to -1$ für $x \to \pi$ folgt

$$\lim_{x\to 0} \cot(x) = -\infty$$
 und $\lim_{x\to \pi} \cot(x) = +\infty$.

Nach dem Zwischenwertsatz (Satz 2.13 der Vorlesung) muß daher $\cot((0,\pi)) = \mathbb{R}$ gelten. Die Funktion arccot ist somit auf ganz \mathbb{R} definiert. Um mit Hilfe des Satzes 2.25 die Ableitung der Umkehrfunktion angeben zu können, drücken wir analog wie in Beispiel (b) hinter Satz 2.25 der Vorlesung die \cot' mit Hilfe der Kotangensfunktion aus. Es gilt für alle $x \in (0,\pi)$:

$$\cot(x)^2 = \frac{\cos(x)^2}{\sin(x)^2} = \frac{1 - \sin(x)^2}{\sin(x)^2}.$$

Löst man diese Gleichung nach $\sin(x)^2$ auf, so erhält man

$$\sin(x)^2 = (1 + \cot(x)^2)^{-1}.$$

Also folgt nach Satz 2.25 der Vorlesung für alle $y \in \mathbb{R} :$

$$\operatorname{arccot}'(y) = \frac{1}{\cot'(\operatorname{arccot}(y))} = -\sin(\operatorname{arccot}(y))^2 = \frac{-1}{1 + \cot(\operatorname{arccot}(y))^2} = \frac{-1}{1 + y^2}.$$

(b) Für die Ableitung von coth auf $(0, \infty)$ gilt nach der Quotientenregel

$$\coth'(x) = \frac{\sinh(x)\cosh'(x) - \cosh(x)\sinh'(x)}{\sinh(x)^2} = \frac{\sinh(x)^2 - \cosh(x)^2}{\sinh(x)^2} = \frac{-1}{\sinh(x)^2} < 0.$$

Die Kotangensfunktion ist also auf $(0, \infty)$ streng monoton fallend und besitzt daher eine Umkehrfunktion, die wir mit arccoth bezeichnen, auf ihrem Bild. Es ist $0 < \sinh(x) \to 0$ für $x \to 0$ und $\cosh(x) \to 1$ für $x \to 0$ und somit $\lim_{x \to 0} \coth(x) = +\infty$. Nach Aufgabe 3, Blatt 6 der Übungen und den Grenzwertrechenregeln gilt weiter

$$\lim_{x \to \infty} \coth(x) = \lim_{x \to \infty} \frac{1}{\tanh(x)} = 1.$$

Nach dem Zwischenwertsatz (Satz 2.13 der Vorlesung) muß daher $\coth((0,\infty)) = (1,\infty)$ gelten. Die Funktion arccoth ist somit für alle y > 1 definiert. Wie in der Lösung zu (a) drücken wir \coth' mit Hilfe der Kotangensfunktion aus. Es gilt für alle $x \in (0,\infty)$:

$$coth(x)^2 = \frac{\cosh(x)^2}{\sinh(x)^2} = \frac{1 + \sinh(x)^2}{\sinh(x)^2}.$$

Löst man diese Gleichung nach $sinh(x)^2$ auf, so erhält man

$$\sinh(x)^2 = (\coth(x)^2 - 1)^{-1}.$$

Also folgt nach Satz 2.25 der Vorlesung für alle y>1:

$$\operatorname{arccoth}'(y) = \frac{1}{\coth'(\operatorname{arccoth}(y))} = -\sinh(\operatorname{arccoth}(y))^2 = \frac{1}{\coth(\operatorname{arccoth}(y))^2 - 1} = \frac{1}{y^2 - 1}.$$

- (c) Wegen f(0) = 2007 = f(-3) ist f nicht injektiv, kann also keine Umkehrfunktion besitzen.
- (d) Es ist g'(x) = 2x + 2007 > 0 für alle x > 0. Die Funktion g ist also auf $(0, \infty)$ streng monoton wachsend und besitzt daher eine Umkehrfunktion g^{-1} . Wegen $g(x) \to 0$ für $x \to 0$ und $g(x) \to \infty$ für $x \to \infty$ ist (nach dem Zwischenwertsatz) $g((0, \infty)) = (0, \infty)$. $g^{-1}(y)$ kann hier explizit berechnet werden: Aus

$$y = g(g^{-1}(y)) = g^{-1}(y)^2 - 2007g^{-1}(y),$$
 $(y > 0)$

erhält man durch Auflösung der quadratischen Gleichung nach $g^{-1}(y)$ (unter Ausschluß der negativen Lösung):

$$g^{-1}(y) = \frac{2007}{2} + \sqrt{\left(\frac{2007}{2}\right)^2 + y}, \qquad (y > 0).$$

Hieraus berechnet man mit den Rechenregeln für die Differentiation

$$(g^{-1})'(y) = \frac{1}{2\sqrt{\left(\frac{2007}{2}\right)^2 + y}} = \frac{1}{\sqrt{2007^2 + 4y}}, \qquad (y > 0).$$

Aufgabe 4. Bestimmen Sie die Lösung der Anfangswertaufgabe

$$y' = \frac{1+x}{1+y}, y(0) = 1.$$

Lösung: Es handelt sich um eine Differentialgleichung mit getrennten Variablen (mit g(x) = 1 + x und h(y) = 1 + y). Gemäß (4) in 4.2 der Vorlesung gilt für die Lösung der Anfangswertaufgabe:

$$\int_{1}^{y(x)} 1 + y \, dy = \int_{0}^{x} 1 + s \, ds$$

und somit

$$y(x) + \frac{1}{2}y(x)^2 - \frac{3}{2} = x + \frac{x^2}{2}$$
.

Multiplikation mit 2 und anschließende Addition von 1 ergibt

$$(y(x) + 1)^2 - 3 = (x + 1)^2.$$

Auflösen nach y(x) ergibt:

$$y(x) = -1 \pm \sqrt{(x+1)^2 + 3}$$
.

Wegen $y(0) = y_0 = 1 > 0$ sind wir nur an der positiven Lösung

$$y(x) = -1 + \sqrt{(x+1)^2 + 3}$$
, $(x \in \mathbb{R})$

interessiert.

Aufgabe 5. Wie lauten die Lösungen der Differentialgleichung

$$\frac{1}{4}y'' - y' + y = 1?$$

Hinweis: Eine Lösung der Differentialgleichung ist konstant.

Lösung: Es handelt sich um eine inhomogene lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten. Wir berechnen zunächst die Lösungen der zugehörigen homogenen Gleichung

$$\frac{1}{4}y'' - y' + y = 0,$$

was äquivalent ist zu

$$y'' - 4y' + 4y = 0.$$

Die zugehörige charakteristische Gleichung lautet:

$$\lambda^2 - 4\lambda + 4 = 0$$

und hat die doppelte Lösung $\lambda=2$. Nach Satz 4.12 der Vorlesung ist also die Lösungsgesamtheit der homogenen Differentialgleichung gegeben durch

$$\mathbb{L}_h = \left\{ x \mapsto c_1 e^{2x} + c_2 x e^{2x} \, ; \, c_1, c_2 \in \mathbb{R} \right\} \, .$$

Ist y_s eine konstante Lösung der inhomogenen Gleichung so folgt wegen $y_s'' \equiv y_s' \equiv 0$ aus der inhomogenen Gleichung schon $y_s \equiv 1$ und diese konstante Funktion genügt tatsächlich der gegebenen Differentialgleichung. Nach Satz 4.9 der Vorlesung erhalten wir also die folgende Lösungsgesamtheit der gegebenen inhomogenen Differentialgleichung:

$$\mathbb{L} = \left\{ x \mapsto 1 + c_1 e^{2x} + c_2 x e^{2x} \, ; \, c_1, c_2 \in \mathbb{R} \right\} \, .$$

Aufgabe 6. Lösen Sie das folgende lineare Gleichungssystem

$$x_1 + 2x_2 + 3x_3 + x_4 = 2$$

$$x_2 + 2x_3 - x_4 = 1$$

$$2x_3 - 2x_4 = -1$$

$$2x_4 = 2.$$

Lösung: Aus der vierten Gleichung erhalten wir $x_4 = 1$. Setzen wir dies in die dritte Gleichung ein so folgt $x_3 = \frac{1}{2}$. Einsetzen von x_4 und x_3 in die zweite Gleichung ergibt $x_2 = 1$. Durch Einsetzen von x_2 , x_3 und x_4 in die erste Gleichung erhalten wir $x_1 = -\frac{5}{2}$. Das lineare Gleichungssystem ist also eindeutig lösbar mit der Lösung $x_1 = -\frac{5}{2}$, $x_2 = x_4 = 1$, $x_3 = \frac{1}{2}$.

Aufgabe 7. Lösen Sie das folgende lineare Gleichungssystem mit Hilfe der Gauß-Elimination

$$x + y + z = b_1$$

 $2x + 4y + 8z = b_2$
 $3x - 9y + 27z = b_3$.

Für folgende rechte Seiten:

(a)
$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, (b) $\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$.

Geben Sie dabei jeweils genau an, welche Umformungen Sie vornehmen.

Lösung: Wie im Beispiel 5.6 der Vorlesung behandeln wir beide Aufgabenstellungen gemeinsam. Die um die beiden rechten Seiten erweiterte Koeffizientenmatrix lautet:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 3 \\ 2 & 4 & 8 & 2 & 2 \\ 3 & -9 & 27 & 3 & 1 \end{pmatrix}.$$

Subtraktion des doppelten der ersten Zeile von der zweiten Zeile und des dreifachen der ersten Zeile von der dritten Zeile ergibt

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 3 \\ 0 & 2 & 6 & 0 & -4 \\ 0 & -12 & 24 & 0 & -8 \end{pmatrix}.$$

Durch Division der zweiten Zeile durch 2 und anschließende Addition des zwölffachen der neuen zweiten Zeile zur dritten erhalten wir

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 0 & -2 \\ 0 & 0 & 60 & 0 & -32 \end{pmatrix}.$$

Division der Letzten Zeile durch 60 und anschließende Subtraktion des dreifachen der neuen letzten Zeile von der zweiten Zeile und der letzten Zeile von der ersten Zeile ergibt

$$\begin{pmatrix} 1 & 1 & 0 & 1 & \frac{53}{15} \\ 0 & 1 & 0 & 0 & -\frac{2}{5} \\ 0 & 0 & 1 & 0 & -\frac{8}{15} \end{pmatrix}.$$

Subtrahieren wir nun noch die zweite Zeile von der ersten, so ergibt sich

$$\begin{pmatrix} 1 & 0 & 0 & 1 & \frac{59}{15} \\ 0 & 1 & 0 & 0 & -\frac{2}{5} \\ 0 & 0 & 1 & 0 & -\frac{8}{15} \end{pmatrix}.$$

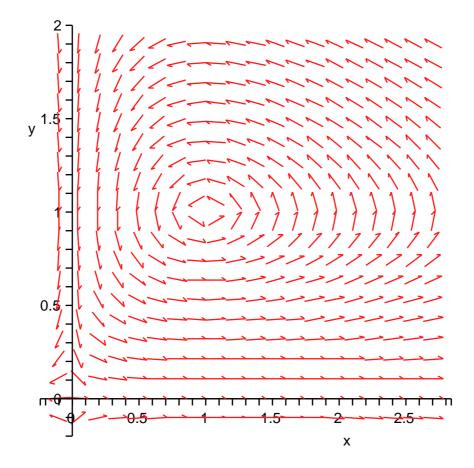
In der vorletzten Spalte steht nun die Lösung zu (a) und in der letzten die zu (b). Die Lösung zu (a) ist also $x=1,\ y=0,\ z=0$ und die zu (b) ist $x=\frac{35}{7},\ y=-\frac{32}{21},\ z=-\frac{10}{21}.$

Es folgen noch die in der Vorlesung vom 14.2. gezeigten Folien zum Lotka-Volterra-Modell. zunächst das Vektorfeld zu dem Differentialgleichungssystem

$$x'(t) = x(t)(1 - y(t))$$

 $y'(t) = 3y(t)(x(t) - 1)$.

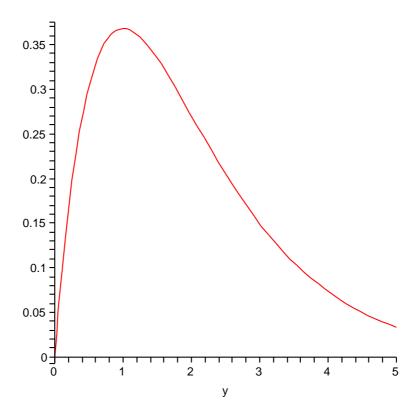
Lotka-Volterra Modell



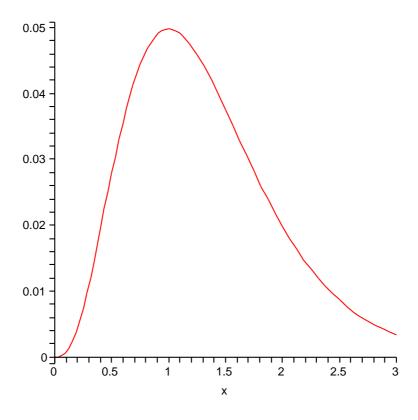
Die implizite Gleichung der Bahn (Kapitel 6, Gleichung (8) der Vorlesung) lautet in diesem Fall

$$f(y)g(x) = y^1 e^{-y} \cdot x^3 e^{-3y} = \gamma$$

wobei der interessante Bereich für γ der Bereich $0 < \gamma < e^{-4}$ ist. Zunächst ein Bild des Graphen von f:



Es folgt der Graph von g:



Für $\gamma=0.009$ erhalten wir folgende Bahnkurve:

