UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 - MATHEMATIK

Prof. Dr. Ernst Albrecht

Übungen zur Vorlesung Funktionentheorie 2 (WS 2008/09) Blatt 11

Aufgabe 1. Zeigen Sie

$$\frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \frac{x^z}{z^2} dz = \begin{cases} 0 & \text{falls } 0 < x < 1\\ \log x & \text{falls } x \ge 1. \end{cases}$$

Aufgabe 2. Zeigen Sie für die hypergeometrische Reihe $F(a_1, \ldots, a_p; b_1, \ldots, b_q; z)$ mit $a_1, \ldots, a_p \in \mathbb{C}$ und $b_1, \ldots, b_q \in \mathbb{C} \setminus (-\mathbb{N}_0)$ gilt:

- (a) Ist $p \leq q$, so ist die Reihe für alle $z \in \mathbb{C}$ absolut konvergent.
- (b) Ist p = q + 1, so ist sie für alle $z \in \mathbb{D}$ absolut konvergent.
- (c) Ist p > q+1 und $a_1, \ldots, a_p \in \mathbb{C} \setminus (-\mathbb{N}_0)$, so ist die Reihe für alle $0 \neq z \in \mathbb{C}$ divergent.

Aufgabe* 3. Zeigen Sie für die hypergeometrische Reihe $F(a_1, \ldots, a_{q+1}; b_1, \ldots, b_q; z)$ mit $a_1, \ldots, a_p \in \mathbb{C}$ und $b_1, \ldots, b_q \in \mathbb{C} \setminus (-\mathbb{N}_0)$ gilt:

(a) Ist

$$\operatorname{Re}\left(\sum_{j=1}^{q} b_j - \sum_{j=1}^{q+1} a_j\right) > 0,$$

so ist die Reihe für alle $z \in \mathbb{T}$ konvergent.

(b) Ist

$$\operatorname{Re}\left(\sum_{j=1}^{q} b_j - \sum_{j=1}^{q+1} a_j\right) \le -1,$$

so ist die Reihe (im nicht abbrechenden Fall) für alle $z \in \mathbb{T}$ divergent.

Abgabetermin: Montag, 26.01.2009, vor der Vorlesung.

Die Übungsblätter finden Sie auch im Netz unter http://www.math.uni-sb.de/~ag/albrecht/ws08_09/ft2/ft2-ueb.html