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Summary

Fragmentation processes describe phenomena of random splitting, with possibly infinite

activity, according to certain rules that give rise to a close relation of these processes

to branching processes and Lévy processes. In this thesis we study some asymptotic

properties of fragmentation processes. More specifically, we prove certain strong laws

of large numbers for self–similar fragmentations and we deal with the existence and

uniqueness of solutions of the one–sided FKPP travelling wave equation for homogenous

fragmentation processes. In addition to being concerned with standard fragmentation

processes we also consider fragmentation processes with immigration, fragmentations

stopped at a stopping line as well as killed fragmentation processes.
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INTRODUCTION

This PhD thesis is devoted to the study of fragmentation processes and focuses mainly

on themes regarding their asymptotic behaviour.

Fragmentation processes form a relatively new field of research within the theory of

continuous–time stochastic processes and gained more and more popularity in recent

years. By and large, the theory of fragmentation processes was developed within the

last twenty years and much of this development is owed to Jean Bertoin and his former

students in Paris as well as to David J. Aldous and Jim Pitman in Berkeley. The present

exposition is concerned solely with the theoretical aspects of fragmentation processes.

However, these mathematical objects also have applications with regard to real–world

phenomena. The most prominent example of such an application in the literature deals

with the fragmentation of blocks of minerals in the mining industry, and the reader

interested in those aspects of fragmentations is referred to [BM05] as well as [FKM10].

A useful property of fragmentations is that they satisfy the Markov property. Moreover,

the study of fragmentation processes benefits from their close relation to continuous–

time branching random walks and general branching processes as well as from their

intrinsic connection with the theory of Lévy processes. Fragmentation processes are

mathematically challenging as there can be infinite activity in any finite time interval.

That is to say, fragmentation processes are pure jump processes whose jump times

may be dense in [0,∞). In this respect they differ decisively from classical branching

processes. Even though all our results do in particular include the case of a jump

structure where there are only finitely many jumps in any finite time interval, our

focus is clearly on the case where the jump times are dense in [0,∞). The latter case

is more interesting and challenging from a mathematical point of view.
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This thesis is divided into two parts, preceded by an introductory chapter on fragmenta-

tion processes. That chapter aims at giving a fairly general introduction to the subject.

In Part I and Part II we consider two problems which are different in nature and make

use of different concepts and techniques. Both parts can be read independently of each

other, but Chapter 1 is essential for the whole thesis. The first problem is to prove a

strong law of large numbers for certain empirical measures associated with self–similar

fragmentation processes, possibly with immigration. The motivation for this problem

comes from similar strong laws in the literature on branching processes. Our approach

requires us to deal with fragmentation processes stopped at a specific stopping line.

The second problem deals with the FKPP equation in the context of fragmentation

processes. More precisely, our goal is to study the existence and uniqueness of solu-

tions to the one–sided FKPP travelling wave equation in the setting of fragmentation

processes. To this end we develop a theory of killed fragmentation processes.

The topics and techniques of this dissertation are mainly related to mathematical

stochastics and probability theory. In addition, there are various connections with

several fields of mathematical analysis. There is a vast literature providing the neces-

sary background on stochastics and measure theory. In this regard we refer for instance

to [Bil95], [Kal01] and [Sch06] as well as [Kle08]. Concerning probabilistic aspects we

also profited from [Dur91] and [Bre92]. In the present thesis we make extensive use

of the theory of Lévy processes and in particular of subordinators. With regard to

these processes our exposition is strongly influenced by [Ber96] and [Kyp06]. For a

comprehensive treatise on fragmentation processes we refer to the monograph [Ber06]

that covers many aspects in much more detail than our compilation in Chapter 1.

Let us now briefly describe the content of this dissertation.

Chapter 1 introduces the main concepts that are used in the subsequent chapters. That

is to say, the first chapter prepares the ground for the more specialised considerations

in Part I and Part II. More precisely, Chapter 1 introduces various kinds of self–similar

fragmentation processes. Furthermore, the main concepts related to these classes of

stochastic processes are developed. Our compilation in Chapter 1 is based on research

papers by various authors. In this chapter we introduce three classes of fragmentation

processes. We start by defining Lévy processes and related concepts that are of avail for

our considerations later on. Subsequently, we introduce mass fragmentation processes.

These are fragmentation processes where all the information about the fragments is

given by their sizes. Then we introduce partition–valued fragmentation processes. The

blocks of those fragmentations are subsets of N. This class of fragmentation processes

has the advantage over mass fragmentations that it has an intrinsic genealogical struc-
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ture. Such a structure is also enjoyed by the third class of fragmentations that we

consider, namely interval fragmentation processes. The blocks of interval fragmenta-

tions are open intervals in (0, 1). A very useful fact, cf. Theorem 3 (ii) in [Ber01],

is that there exists an intrinsic subordinator, that is a nondecreasing Lévy process,

associated with the latter two classes of fragmentation processes. This subordinator is

the object of Section 1.7. Moreover, self–similar fragmentation processes turn out to be

time changed homogenous fragmentation processes, and the aforementioned subordi-

nator is the Lévy process in the Lamperti representation, cf. [Lam72], of these positive

self–similar Markov processes. Berestycki [Ber02a] and Bertoin [Ber02b] established

one–to–one correspondences between any two of the classes of fragmentations consid-

ered here. Hence, we can always choose the class of fragmentations that is particularly

useful in a specific situation. Similarly to the theory of branching processes there is an

intrinsic additive martingale for fragmentation processes. This martingale is consid-

ered in Section 1.8. We conclude the introductory chapter by introducing the so–called

tagged fragment as well as the spine decomposition. The latter is a popular tool for

dealing with branching– and fragmentation processes.

Part I, which comprises Chapters 2 – 4, is devoted to strong laws of large numbers that

are based on fragmentation processes. In particular, we extend in various aspects some

results of [Ner81] and [Olo96] as well as [BM05].

Chapter 2 introduces stopping lines, which are extensions of the well known concept

of stopping times. The main purpose of this chapter is to consider fragmentation

processes stopped at a specific example of a stopping line. This specific stopping line

at t consists of the first times at which the blocks of the fragmentation process have

mass less than e−t. The blocks of the stopped fragmentation do not fragment any

further after the stopping line. That is, the blocks of this stopped process at t evolve

as in the normal fragmentation until their size jumps to a value less than e−t, and

after this jump time this block remains unchanged. In particular this means that the

stopped process at t consists of blocks with size less than e−t. Stopped fragmentation

processes are essential for the considerations in Chapter 3 and Chapter 4. Section 2.4

deals with an intrinsic additive martingale in the context of stopped fragmentations.

In Section 2.5 we consider a so–called many–to–one identity, which allows us to restrict

our considerations to the behaviour of the tagged fragment in order to obtain some

information about the behaviour of the whole fragmentation process.

In Chapter 3 we consider an empirical measure ρt defined via the stopped fragmenta-

tion processes introduced in Chapter 2, and we consider the integral of bounded and

measurable functions with respect to this measure. Our main theorem establishes a
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strong law of large numbers for this integral. In order to state this result more pre-

cisely, let p∗ be the so–called Malthusian parameter, let (λt,n)n∈N,t∈R+
0
be the stopped

fragmentation process and let f : R → R+
0 be a bounded and measurable function.

Under certain assumptions we show the almost sure convergence of

∫

[0,1]
f dρt =

∑

n∈N

λ1+p
∗

t,n f
(

etλt,n
)

, (1)

as t→ ∞, to some limit that can be written as the product of a deterministic constant

depending of f and the almost sure martingale limit Λ(p∗) := limt→∞ Λt(p
∗). As a

corollary we obtain the L p–convergence for some p > 1 of the integral in (1). Our

method to prove the above result is to show that the conditional expectation of the

right–hand side of (1), conditional on the natural filtration at t, is asymptotically a

good approximation for that random variable itself and also for the proposed limiting

random variable. This allows us to first prove the desired result along log–lattice

times, that is for the integral in (1) considered at a discrete set of times, for homogenous

fragmentations. By approximation arguments we then extend this to convergence along

the real numbers. The extension to self–similar fragmentation processes follows from

a time–change of the homogenous fragmentation. The relation of our main result to

related results in the setting of Crump–Mode–Jagers processes are discussed in the final

section of this chapter. Chapter 3 is based on the publication [HKK10] with Simon C.

Harris and Andreas E. Kyprianou.

In Chapter 4 we extend the strong law of large numbers obtained in Chapter 3 to

the situation of fragmentation processes with immigration. Fragmentation processes

with immigration are more difficult to handle than standard fragmentation processes

as there may be an infinite amount of immigrating particles. Our main result in this

chapter basically boils down to showing that under certain assumptions

∑

k∈N

v
1+p∗k
k

∑

n∈N

[

λ
(k)
t,n

]1+p∗k
f (k)

(

etλ
(k)
t,n

)

(2)

converges to some limit P–a.s. as t → ∞. Here (vj)j∈J is a summable decreasingly

ordered sequence of nonnegative real numbers and the λ(k) are independent stopped

mass fragmentation processes, each f (k) is a bounded and measurable function and

p∗k is the Malthusian parameter associated with the respective fragmentation process.

Although the series in (2) is some sort of an average of the integrals in (1), the result

does not follow easily from Chapter 3 as in general neither the Dominated Convergence

Theorem nor the Monotone Convergence Theorem is applicable to interchange the limit
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with the series in (2). Our approach relies on a martingale that appears in this setting

with immigration.

Part II, consisting of Chapter 5 and Chapter 6, deals with the FKPP travelling wave

equation in the setting of fragmentation processes. In order to obtain existence and

uniqueness results for one–sided solutions of this integro–differential equation in Chap-

ter 6 we consider killed fragmentation processes in Chapter 5.

Chapter 5 introduces a new class of fragmentation processes, namely those including a

particular kind of killing. More precisely, a block is killed at the moment of its creation

t ∈ R+
0 if the size of this block at time t is less than e−(x+ct), where c > 0 and x ∈ R+

0 .

We say that the killed fragmentation process becomes extinct if there is a finite time ζx

after which all its blocks are killed. The main results of this chapter are concerned with

some additive and multiplicative martingales that appear in the setting of such killed

fragmentations. Here we are interested in the extinction probability P(ζx < ∞) as a

function of x. Our goal is to derive various useful properties of this function and for this

purpose we shall be concerned with the asymptotic behaviour of killed fragmentation

processes. To begin with, we show that there exists some cp̄ such that for all c > cp̄ the

map x 7→ P(ζx < ∞) is continuous and strictly monotonically decreasing on R+
0 . The

next theorem deals with a multiplicative stochastic process (Zx,ft )t∈R+
0
. This result says

the following: If c > cp̄, then there exists a unique monotone function f : R+
0 → [0, 1],

given by x 7→ P(ζx < ∞), that satisfies limx→∞ f(x) = 0 and for which Zx,f is an F–

martingale for any x ∈ R+
0 . We also establish the martingale property of some additive

stochastic process. Moreover, if c > cp̄ then almost surely the corresponding martingale

limit is strictly positive if and only if the killed fragmentation process becomes extinct.

The last main result of Chapter 5 is concerned with the asymptotic speed of the largest

fragment in the killed fragmentation. We show that in the setting with killing the

asymptotic speed of the largest fragment, conditional on nonextinction, concurs with

the one in the non–killed fragmentation process. Our methods of proof in this chapter

are based on considering an intrinsic spectrally negative Lévy process that inherits the

killing from the fragmentation process. Thus, we shall make extensive use of the theory

of Lévy process.

Chapter 6 deals with the one–sided FKPP travelling wave equation in the setting of

fragmentation processes. In the context of fragmentation processes the FKPP travelling

wave equation is the following integro–differential equation:

cf ′(x) +

∫

S1

(

∏

n∈N

f(x+ ln(sn))− f(x)

)

ν(ds) = 0, (3)
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for certain c > 0 and all x ∈ R+
0 , with boundary condition

lim
x→∞

f(x) = 0. (4)

Here S1 consists of all decreasingly ordered sequences (sn)n∈N in [0, 1] that sum up to

a value less than or equal to 1 and ν is the so–called dislocation measure, that is it is

a measure on S1 that describes the jump structure of the fragmentation process. The

probabilistic interpretation of this equation is similar to the interpretation of the classi-

cal FKPP travelling wave equation with regard to dyadic branching Brownian motion,

see Section 6.2. In what follows we briefly describe the main results of Chapter 6. We

show that for c > cp̄, where cp̄ is the positive constant introduced in Chapter 5, the

following holds true. If f belongs to a certain class of monotone and continuous func-

tions, then for x ∈ R+
0 the process (Zx,ft )t∈R+

0
, defined in Chapter 5, is a martingale

under P if and only if f solves (3). Moreover, any such function necessarily satisfies

f ∈ C1(R+). This result is then used to prove the existence–and uniqueness result for

travelling waves in the context of fragmentations. The latter says that if c > cp̄, then

P(ζ(·) < ∞) is the unique FKPP travelling wave with wave speed c, that is it solves

the integro–differential equation (3) and satisfies the boundary condition (4). On the

other hand, if c ≤ cp̄, then there is no travelling wave at wave speed c. The approach

in Chapter 6 is based on the results of Chapter 5.
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PRELIMINARIES

Here we provide some general notation that is used without further

mention troughout this dissertation.

Throughout this thesis let (Ω,F ,P) be some probability space.

We set N := {1, 2, . . .} and denote by Q and R the set of rational and real numbers

respectively. Let us further adopt R+ := (0,∞) as well as R+
0 := [0,∞).

As usual, a∧ b and a∨ b denote the minimum and maximum of a, b ∈ R. Similarly, for

the union and intersection of sets we use the symbols ∪ and ∩ respectively. For any sets

A and B we adopt A \ B := {x ∈ A : x 6∈ B}. The symbol △ denotes the symmetric

difference between two sets A and B. That is to say, A△B = [A ∪B] \ [A ∩B].

Let us further define some important measures that are used at various instances in

our exposition. We denote the Lebesgue measure by dx. Moreover, δx is the Dirac

measure at x and we use the symbol ♯ for the counting measure on N.

For any measure µ and every p ≥ 1 we denote by L p(µ) the space of (equivalence

classes of) all p–integrable functions with respect to µ. As for the norms on these

L p–spaces we denote for each p ≥ 1 the L p–norm by ‖ · ‖p, that is

‖f‖pp =
∫

fpdµ

for all f ∈ L p(µ). Further, we use Cn(E1, E2), n ∈ N, to denote the space of n–

times continuously differentiable functions from a topological space E1 to a topological

space E2 as well as C(E1, E2) for the space of continuous functions, and Cb(E1, E2)

for the space of bounded and continuous functions from E1 to E2. In this spirit we

use RCLL(E1, E2) to denote the space of right–continuous functions from E1 to E2
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with left–hand limits. For any f : E1 → E2 and every A ⊆ E1 we denoet by f |A the

restriction of f to A.

For any stochastic process (Xt)t∈R+
0

and every random time τ we denote by Xτ the

random variable defined by Xτ (ω) = Xτ(ω)(ω) for all ω ∈ Ω.

Let us emphasise that notions such as positivity and increasingness etc. are always

used in the strict sense. In addition, we adopt the conventions that the empty product

equals 1 as well as inf ∅ := ∞. We use the abbreviations DCT and MCT for the Dom-

inated Convergence Theorem and the Monotone Convergence Theorem respectively.

The indicator function is denoted by 1.
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CHAPTER 1

FRAGMENTATION PROCESSES

Here we give a brief introduction to the theory of fragmentation pro-

cesses and related concepts. Our intention is to provide the basic

notions that are used throughout the thesis.

1.1 Introductory remarks

This chapter is devoted to the compilation of a couple of important definitions and

results on fragmentation processes and Lévy processes that are used at various places

in this dissertation. We stress that both Part I and Part II of the present thesis rely

on the concepts developed in the present chapter.

We emphasise that our presentation in this introductory chapter is based on various

research papers by several authors. The selection of results on fragmentation processes

provided here is neither exhaustive nor do we provide proofs of most statements. In

this regard let us mention that for the material covered in the present chapter we

give references to the papers from where the respective results are taken. Hence, the

interested reader can look up all the results in their original setting. Most results as

well as additional background information can also be found in [Ber06].

The present chapter aims at introducing the various classes of fragmentation processes

that we use in this dissertation and to show how they are related to each other. Fur-

thermore, we present some general results and properties of fragmentation processes

that are of avail in the subsequent more problem–specific chapters. In this respect

let us point out that our choice which material to present here does on the one hand

reflect our point of view regarding the important underlying issues of the theory on

3



fragmentation processes and on the other hand it is motivated by the definitions and

results needed for our considerations in Part I and Part II of this thesis.

1.2 Lévy processes

It may seem unusual to begin a chapter aiming at introducing fragmentation processes

with a section on Lévy processes. However, let us point out that there are strong in-

trinsic connections of these two classes and we shall frequently exploit the close relation

between fragmentations and Lévy processes in the present dissertation. It turns out

that later on we shall resort to several notions and results related to Lévy processes

and for this reason we start off with a brief compilation on various concepts regarding

the theory of Lévy processes. Our exposition in this section is predominantly based

on [Kyp06], but there are many other excellent monographs on Lévy processes such as

[Ber96], [Sat99] and [App09] to name but three of them.

1.2.1 Basic notions

In this section we compile the fundamental definitions that are used for our considera-

tions of Lévy processes.

Definition 1.1 A Lévy process is a Markov process that has stationary and indepen-

dent increments and whose paths are almost surely right–continuous with left–hand

limits.

Note that any Lévy process (X(t))t∈R+
0
satisfies X(0) = 0 P–almost surely.

Lévy processes can be characterised by three entities describing the drift, the diffusion

component and the jump structure respectively. More precisely, let us give the following

definition based on the Lévy–Khintchine formula (see e.g. Theorem 1.3 in [Kyp06]) that

is one of the fundamental results in the theory of Lévy processes.

Definition 1.2 It follows from the Lévy–Khintchine formula that the law of any R–

valued Lévy process X is characterised by the so–called characteristic triple (a, σ, LX),

where a ∈ R describes the deterministic drift part of the Lévy process, σ determines the

diffusion component of the Lévy process and LX is a measure concentrated on R \ {0}
that satisfies

∫

R

(1 ∧ x2)LX(dx) <∞

4



and characterises the jump structure of X. We call the measure LX the Lévy measure

of X.

A very important subclass of Lévy processes are subordinators as given by the following

definition:

Definition 1.3 A subordinator is a Lévy process with nondecreasing trajectories.

In particular, the diffusion component is not present in a subordinator, that is the σ in

the characteristic triple introduced in Definition 1.2 equals 0. Moreover, we have the

following lemma:

Lemma 1.4 (Lemma 2.4 in [Kyp06]) A Lévy process X with characteristic triple

(a, σ, LX ) is a subordinator if and only if the drift d = −(a+
∫

(0,1) xLX(dx)) is positive,

σ = 0 and LX(−∞, 0) = 0 as well as
∫

(0,∞)(1 ∧ x)LX(dx) <∞.

A subordinator that plays a crucial role in the theory of fragmentation processes will

be introduced in Section 1.7.

1.2.2 Spectrally negative Lévy processes

The reader who merely wants to become familiar with fragmentation processes may

postpone or skip reading this section as it covers a more specialised topic that is only

needed in Part II of this thesis. However, it is related to the above–defined concepts,

and thus we decided to include this section here.

In Chapter 5 and Chapter 6 we shall make use of the well–developed theory of the

following class of Lévy processes with one–sided jumps:

Definition 1.5 A spectrally negative Lévy process is a Lévy process that has no up-

wards jumps and whose paths are not monotone.

Let us point out that in Chapter 5 we shall use a subordinator, see Definition 1.3, that

appears frequently in the literature on fragmentations to define a spectrally negative

Lévy process that will be be of avail for our considerations in Part II of the present

dissertation. Let us further mention that a similar spectrally negative Lévy process,

defined via the aforementioned subordinator, was considered in [Kre08] and [KR09].

For the time being, let X be a spectrally negative Lévy process of bounded variation,

that is without any diffusion component. Then X is necessarily an increasing deter-
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ministic linear function minus a subordinator, that is X(t) = ct− Y (t) for any t ∈ R+
0 ,

where c > 0 is a constant and Y is a pure jump subordinator.

Set

τ+x := inf{t ∈ R+
0 : X(t) > x}

as well as

τ−x := inf{t ∈ R+
0 : X(t) < −x}

for all x ∈ R. Note that τ+x and τ−x are stopping times, since X is right–continuous.

Definition 1.6 (cf. Theorem 8.1 in [Kyp06]) Let X be a spectrally negative Lévy

process with Laplace exponent ΦX . We call scale function of X the unique monotoni-

cally increasing functionWX : R → R+
0 that is continuous on R+

0 , equal to 0 on (−∞, 0)

and whose Laplace transform satisfies

∫

(0,∞)
e−βxWX(x) dx =

1

ΦX(β)
.

The following result on spectrally negative Lévy processes, taken from [Kyp06], will be

used repeatedly in Chapter 5:

Theorem 1.7 (Theorem 8.1 in [Kyp06]) Let X be a spectrally negative Lévy pro-

cess with scale function WX . Further, let Φ′
X denote the derivative of the Laplace

exponent ΦX . Then we have

Px(τ
−
0 <∞) =







1− Φ′
X(0+)WX(x), Φ′

X(0+) > 0

1, Φ′
X(0+) ≤ 0.

(1.1)

for every x ∈ R+
0 . Moreover,

Px
(

τ−0 > τ+y
)

=
WX(x)

WX(y)
(1.2)

holds true for all x, y ∈ R+
0 with y ≥ x.

Let X be a spectrally negative Lévy process with scale function WX . Notice that (1.2)

implies in particular that for X the point 0 is irregular for (−∞, 0), that is

P0(τ
−
0 = 0) = 0. (1.3)

Indeed, by means of the continuity of WX on R+
0 there exists for every ǫ > 0 some
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δ > 0 such that
WX(0)

WX(δ)
≥ 1− ǫ.

Since τ+δ > 0 P–a.s., this yields that

P(τ−0 > 0) ≥ P
(

τ−0 > τ+δ
)

=
WX(0)

WX(δ)
≥ 1− ǫ.

Letting ǫ ↓ 0 this shows that (1.3) holds true. In view of the shift invariance of

Lévy processes the irregularity established in (1.3) immediately implies that for X any

x ∈ R+
0 is irregular for (−∞, x). Furthermore, (1.2) yields that

lim
x→∞

Px
(

τ−0 > τ+x+h
)

= lim
x→∞

WX(x)

WX(x+ h)
= 1, (1.4)

where for the last equality we have used that WX is monotone and bounded and thus

has a limit as its argument tends to infinity. Since limx→∞ τ+x = ∞ P–a.s., (1.4) results

in

lim
x→∞

Px(τ
−
0 <∞) = 0,

and thus we obtain as a consequence of (1.1) that

lim
x→∞

WX(x) =
1

ψ′
p(0+)

(1.5)

if ψ′
p(0+) > 0. Moreover, in [Kyp06] it is shown that if X is of bounded variation, then

there is a positive lower bound, as given by the following lemma, on the scale function

of X.

Lemma 1.8 (Lemma 8.6 in [Kyp06]) Let X be a spectrally negative Lévy process

of bounded variation with drift d ∈ R+ and scale function WX . Then we have that

inf
x∈R+

0

WX(x) =WX(0) = d−1.

1.3 Introduction to fragmentation processes

Fragmentation processes as considered in the present exposition are continuous–time

Markov processes and are closely related to Lévy processes. In some sense Lévy pro-

cesses can be seen as the continuous–time analogue of random walks and in a similar

fashion fragmentation processes extend fragmentation chains to the continuous–time

setting. Some of the mathematical roots of fragmentation processes lay with older
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families of spatial branching processes such as branching random walks and Crump–

Mode–Jagers processes (also known as general branching processes). Such stochastic

processes exemplify the phenomena of random splitting according to systematic rules

and they may be seen as modelling the growth of special types of multi–particle systems.

The simplest example of a fragmentation process is the stick–breaking process, see

Figure 1-1. More precisely, let us consider a stick of unit size and say that after an

exponentially distributed time with some parameter α ∈ R+ the stick breaks into two

pieces of length β and 1−β respectively, for some random β : Ω → R+
0 . Then each of the

resulting smaller sticks independently repeats the procedure and the process continues

ad infinitum. The stochastic process λ = (λ(t))t∈R+
0
, consisting at each time t ∈ R+

0

of the decreasingly ordered set of the lengths (λn(t))n∈N of the sub–sticks present at

time t, constitutes a so–called mass fragmentation process. In general such processes

can have a much more complicated structure. Firstly, the splitting does not need to be

binary, that is the stick could break into a random, possibly infinite, number of pieces.

Secondly, the time between two splittings does not need to be exponentially distributed

with a finite parameter as the splitting times may be dense in R+
0 . We give a rigorous

definition of such a process in the following section.

0

0

1

0.3 1

0 0.3 0.9 1

0 0.2 0.3 0.9 1
)

. . .

. . .

time

− ln(size)

. . .

λ(0) = (1, 0, . . .)

t1t2 t3

. . .

. . .

0

λ(t1) = (0.7, 0.3, 0, . . .)

λ(t2) = (0.6, 0.3, 0.1, 0, . . .)

λ(t3) = (0.6, 0.2, 0.1, 0.1, 0, . . .

Figure 1-1: Stick–breaking process (λ(t))t∈R
+
0
with jump times (tn)n∈N.

1.4 Mass fragmentation processes

Consider an infinite–dimensional vector space S1 of nonincreasing sequences in [0, 1]

given by

S1 :=

{

s := (sn)n∈N :
∑

n∈N

sn ≤ 1, 0 ≤ sj ≤ si ≤ 1∀ i ≤ j

}

.

For any sequence (xn)n∈N of nonnegative real numbers we denote by (xn)
↓
n∈N the de-

creasing reordering of (xn)n∈N, that is (xn)
↓
n∈N ∈ S1 if and only if

∑

n∈N xn ≤ 1. We

consider S1 to be endowed with the uniform distance. That is to say, we work with the
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metric space (S1, ρS1), where the metric ρS1 on S1 is given by

ρS1(s,u) = sup
n∈N

|sn − un|

for all s,u ∈ S1. In what follows we consider continuity in probability of an S1–

valued stochastic process with respect to the metric ρS1 . That is to say, an S1–valued

stochastic process (λ(t))t∈R+
0
is continuous in probability if and only if for all ǫ > 0 and

any u ∈ R+
0 we have

P (ρS1(λ(s), λ(u)) > ǫ) → 0

as s→ u.

Let us now give our first definition of fragmentation processes.

Definition 1.9 We call an S1–valued Markov process λ := (λ(t))t∈R+
0
, continuous in

probability, a self–similar (standard) mass fragmentation process with index α ∈ R if

(i) λ(0) = (1, 0, . . .).

(ii) For any s ∈ R+
0 , given that λ(s) = (sn)n∈N, the process ((λ(s + t))t∈R+

0
has the

same distribution as the process obtained by taking for any t ∈ R+
0 the components

of snλ
(n)(sαnt) for all n ∈ N, where the λ(n) are i.i.d. copies of λ, and ranking the

resulting sequence in the decreasing order to obtain an element of S1.

If α = 0 then the process is called homogenous.

In the above definition property (i) says that mass fragmentation processes start with

exactly one fragment and this fragment has size 1. Property (ii) is called fragmenta-

tion property and is the analogue of the branching property in the theory of Markov

branching processes. Observe that property (ii) says that for any s, t ∈ R+
0 , given that

λ(s) = (sn)n∈N we have

λ(s+ t)
d
=
(

snλ
(n)
k (sαnt)

)↓

k,n∈N
,

where the λ(n) are i.i.d. copies of λ. Here
d
= means equality in distribution.

Note that the stick–breaking process in Figure 1-1 is an example of a homogenous mass

fragmentation process. See Figure 1-2 for an illustration of a more sophisticated mass

fragmentation process. Let us mention that an even more complicated example of a

fragmentation process is depicted in Figure 5-1(a) in Chapter 5. However, in order to
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get a feeling for fragmentation processes we illustrate a relatively simple example in

Figure 1-2.
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Figure 1-2: Realisation of a standard (mass) fragmentation process with finite dislocation
measure. In this illustration the term size refers to the values λn(t).

Let (Px)x∈R+ denote the probabilities under which λ is rescaled such that

Px(λ1(0) = x) = 1. (1.6)

Further, let Ex denote the expectation with respect to Px and set E := E1.

Similarly to the characterisation of Lévy processes in terms of the characteristic triple,

cf. Definition 1.2, the following theorem, in the self–similar setting due to [Ber02b],

provides us with a characterisation of self–similar standard mass fragmentation process

in terms of a jump measure, a continuous drift and the index of self similarity. In this

respect we also refer to Theorem 2 in [Ber01] as well as Corollary 3.1 in [Ber02a] for

the homogenous case.

Theorem 1.10 (Theorem 3 (ii) in [Ber02b]) The distribution of any self–similar

standard mass fragmentation process as given by Definition 1.9 is determined by

• a nonnegative rate of erosion,

• a measure ν 6≡ 0 on S1 that satisfies

ν({(1, 0, . . .)}) = 0 and

∫

S1

(1− s1)ν(ds) <∞, (1.7)
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• the index of self–similarity α ∈ R.

Let us mention that in [Ber01] and [Ber02b] Bertoin considered partition–valued frag-

mentation processes, a class of fragmentations with which we deal in the next section.

However, it follows from a bijective correspondence between that class and the class

of mass fragmentations that Theorem 1.10 can be stated for mass fragmentation pro-

cesses. The above–mentioned bijective correspondence will be explained in more detail

in Section 1.6.

Erosion means a continuous loss of mass, thus adding a continuous drift to the jumps

of the fragmentation process. We emphasise that this phenomenon is not considered

in the present thesis. That is to say, throughout this dissertation we assume without

further mention the following hypothesis:

Hypothesis 1.1 There is no erosion. That is, the erosion rate is zero.

Hypothesis 1.1 says that we consider fragmentation processes which change state only

by a jump. Let us mention that in the literature on fragmentation processes erosion is

usually not considered, and thus Hypothesis 1.1 does not pose an unusual restriction.

Definition 1.11 The measure ν defined by (1.7) will be referred to as S1–dislocation

measure. Further, we call the dislocation measure ν, resp. the fragmentation process,

conservative if ν(
∑

n∈N sn < 1) = 0 and dissipative otherwise.

Throughout this dissertation we impose the following additional condition on ν:

Hypothesis 1.2 For all a ∈ [0, 1] we have

ν({(a, 0, . . .)}) = 0.

Hypothesis 1.2 ensures that the measure ν only charges those jumps of the fragmenta-

tion process, where a particle dislocates into at least two particles. The less restrictive

assumption in (1.7) has the same meaning in the conservative case, which is often

considered in the literature. Our slightly different requirement on ν stems from the

consideration of the dissipative case, in which it would be possible that even a homoge-

nous fragmentation process that satisfies (1.7) dies out in finite time. We remark that

the sequence (a, 0, . . .) corresponds to the particle dislocating into exactly one particle

with less mass, so rather than a proper dislocation this would form a discrete version

of erosion.
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Remark 1.12 The dislocation measure ν specifies the rate at which blocks split. More

precisely, a block of mass x dislocates into a mass partition x · s ∈ S1, where s ∈ S1, at

rate ν(ds). Note that in the literature, cf. [Ber01], the measure ν is sometimes called

Lévy measure. The motivation for that alternative name is that for mass fragmentation

processes the measure ν plays the same role as the Lévy measure, see Definition 1.2, does

for Lévy processes. Indeed, both measures are the jump measures of their respective

processes in that both describe entirely the jump structure of a fragmentation process

and a Lévy process respectively. In fact, that similar measures appear for both types of

processes is not surprising as there is a very close relationship between fragmentation

processes and Lévy processes. In Section 1.7 we will see that this similarity between

the two classes of processes gives rise to an underlying Lévy process, more precisly

a subordinator, which is used prevalently in this thesis and also in the literature on

fragmentations. In the second part of this thesis we make extensive use of a spectrally

negative Lévy process defined via a fragmentation process, which enables us to exploit

the well–developed theory of spectrally negative Lévy processes. ♦

An important tool for dealing with homogenous fragmentation processes is their Pois-

sonian structure as given by the following theorem.

Theorem 1.13 (Section 3.1 in [Ber02a]) For any homogenous mass fragmentation

process λ there exists an S1×N–valued Poisson point process (∆(t), k(t))t∈R+
0
with char-

acteristic measure ν ⊗ ♯, where ♯ is the counting measure on N, such that λ changes

state at all times t ∈ R+
0 for which an atom (∆(t), k(t)) occurs in (S1\{(1, 0, · · · )})×N.

At such a time t ∈ R+
0 the sequence λ(t) is obtained from λ(t−) by replacing its k(t)–th

term, λk(t)(t−) ∈ [0, 1], with the sequence λk(t)(t−) ·∆(t) ∈ S1 and ranking the resulting

sequence of all terms in decreasing order.

Conversely, the above construction in terms of a Poisson point process for some S1–

dislocation measure ν results in a homogenous mass fragmentation process.

Remark 1.14 The mathematical approach to tackle problems involving self–similar

fragmentation processes partly depends on whether the dislocation measure is finite

or infinite. If ν is finite, then a block of size x remains unchanged for an exponential

period of time with parameter ν(S1) ∈ R+. That is, in the homogenous case there is

finite activity over finite time intervals in the underlying Poisson point process. By

taking the negative logarithm of fragment sizes a fragmentation process with finite

dislocation measure is closely related to continuous–time branching random walks and

Crump–Mode–Jagers processes. If on the other hand ν(S1) = ∞, then the jump times
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are dense in R+
0 and there is a countably infinite number of dislocations over any finite

time horizon. Note that the denseness of the jump times does in particular imply

that there is no first dislocation of the process and the infimum over all jump times

is 0, although there is no dislocation at time 0. Fragmentation processes with an

infinite dislocation measure are more interesting, both from a theoretical point of view

and for applications as for instance in the mining industry. Moreover, in comparison

to fragmentation processes with finite dislocation measure those processes are also

mathematically more challenging. ♦

This thesis is primarily concerned with the situation of an infinite dislocation measure,

but all our results hold true also in the finite activity case. Note that the illustration

in Figure 1-2, as all illustrations in this thesis, only depicts a fragmentation process

with finite dislocation measure, because a realisation of a fragmentation process with

an infinite dislocation measure is much more difficult to visualise.

1.5 Fragmentation processes with a genealogical structure

One disadvantage of mass fragmentation processes is the lack of a genealogical struc-

ture. That is, in a mass fragmentation process it is difficult to define the notion of

“ancestor” or “parent” of a given block. In this section we introduce two classes of

fragmentation processes which avoid this problem and which are thus more applicable

in many situations.

We shall assume without further mention that the analogues of Hypothesis 1.1 and Hy-

pothesis 1.2 are also satisfied for the classes of processes that we are going to introduce

in this section.

1.5.1 Partition–valued fragmentation processes

We denote by P the set of ordered partitions π := (πn)n∈N of N, ordered such that

inf π1 ≤ inf πj for all i ≤ j ∈ N, with the convention inf ∅ = ∞. A partition of N is a

sequence of blocks πn ⊆ N such that
⋃

n∈N πn = N and πi ∩ πj = ∅ for all i 6= j. We

equip P with the metric ρP on P defined as follows, cf. Section 2 of [Ber01]. For any

two partitions π1, π2 of N we set

ρP(π1, π2) = 2−N(π1,π2),
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where N(π1, π2) := sup({n ∈ N : π1|{1,...,n} = π2|{1,...,n}}). Note that π|{1,...,n} denotes

the restriction of a partition π ∈ P to the subset {1, . . . , n} ⊆ N. We remark that the

metric space (P, ρP ) is compact.

The following definition provides us with a notion of “size” for the blocks of partitions

in P. This notion of asymptotic frequencies will be considered as the size of blocks in

the context of partition–valued fragmentation processes as defined below.

Definition 1.15 Let π ∈ P and n ∈ N. Then we call

|πn| := lim sup
k→∞

card(πn ∩ {1, . . . , k})
k

∈ [0, 1] (1.8)

asymptotic frequency of the block πn.

Let us adopt |π| := (|πn|)n∈N as well as |π|↓ := (|πn|)↓n∈N for any π ∈ P.

Our second definition of fragmentation processes reads as follows:

Definition 1.16 We call a P–valued Markov process Π := (Π(t))t∈R+
0 ∪{∞}, continuous

in probability, a self–similar (standard) P–fragmentation process with index α ∈ R if

(i) Π(0) = (N, ∅, . . .).

(ii) For any s ∈ R+
0 , given that Π(s) = (πn)n∈N, the process ((Π(s + t))t∈R+

0
has

the same distribution as the process obtained by taking for any t ∈ R+
0 the

components of πn ∩ Π(n)(|πn|αt) for all n ∈ N, where the Π(n) are i.i.d. copies of

Π, and ordering the resulting sequence such that it is an element of P.

If α = 0 then the process is called homogenous. Further, we adopt Π(∞) := ({n})n∈N.

In particular, a P–fragmentation process starts with the trivial partition of N, that is

it starts with exactly one non–empty block that contains all natural numbers. As in

the case of mass fragmentation processes, we call Property (ii) fragmentation property.

The continuity in probability in Definition 1.16 is meant with respect to the metric ρP .

For any π ∈ P let Pπ denote the probability under which Π is conditioned to start with

the partition π, that is

Pπ(Π(0) = π) = 1.

In order to describe an interpretation of partition–valued fragmentation processes in

terms of a Poisson point process, cf. Theorem 1.13 in the context of mass fragmentation

processes, we first need to construct a dislocation measure on P. For this purpose we
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shall resort to Kingman’s paint–box as given by the following definition, cf. Chapter 2

in [Ber06].

Definition 1.17 Let ϑ be an interval representation of some s ∈ S, that is ϑ is an open

subset of (0, 1) such that the ranked sequence of the lengths of its interval components

is given by s. Let (Un)n∈N be an i.i.d. sequence of uniform random variables on [0, 1].

We call Kingman’s paint–box based on s the random partition1 πs of N induced by the

following equivalence relation

i
πs

∼ j ⇐⇒ (Ui and Uj belong to the same interval component of ϑ) or (i = j).

Note that the alternative on the right–hand side is necessary, because the Lebesgue

measure of ϑ may be less than one, and if Ui does not belong to ϑ for some i ∈ N, then

{i} is a singleton of πs.

The name “paint–box” stems from the following alternative description of the equiv-

alence relation πs described in Definition 1.17. Let us interpret the unit interval as

a paint–box in which a different colour is assigned to each interval component of ϑ.

Every integer i then receives the colour of the interval to which the random variable

Ui belongs, and i does not receive any colour if Ui is not in ϑ. The equivalence classes

are then given by the sets of indices with the same colour, where we adopt that indices

with no colour form singletons.

Definition 1.18 A random partition is call exchangeable if it is invariant under finite

permutations.

Remark 1.19 It is shown in [Ber06, Lemma 2.7] that Kingman’s paint–box based

on some s ∈ S1 is independent of the choice of the interval representation of s and

that it is an exchangeable random partition, cf. Definition 1.18. Moreover, in [Ber06,

Proposition 2.8] Bertoin shows that P–a.s. all blocks of Kingman’s paint–box π satisfy

|πn| = lim
k→∞

card(πn ∩ {1, . . . , k})
k

, (1.9)

where |πn| is the asymptotic frequency, see Definition 1.15, of the block πn. ♦

Definition 1.20 For any S1–dislocation measure ν we call P–dislocation measure the

1For an introduction to the theory of random partitions and related concepts as considered here,
we refer to Section 2.3 in [Ber06].
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measure µν on P defined by

µν(dπ) =

∫

S1

̺s(dπ)ν(ds) (1.10)

for each π ∈ P, where ̺s is the distribution of Kingman’s paint–box based on s.

The dislocation measure µν determines the distribution of the jumps of a partition–

valued fragmentation process. We remark that the motivation for Definition 1.20 stems

from Kingman’s theory of random partitions, see Section 2.3.2 in [Ber06] and in par-

ticular [Ber06, Theorem 2.1] therein.

Similarly to the case of homogenous mass fragmentation processes, cf. Theorem 1.13,

we have the following representation of homogenous P–fragmentation process via Pois-

son point processes.

Theorem 1.21 (Section 3.2 in [Ber01]) For any homogenous P–fragmentation Π

there exist an S1–dislocation measure ν and a P × N–valued Poisson point process

(π(t), k(t))t∈R+
0

with characteristic measure µν ⊗ ♯ such that Π changes state at all

times t ∈ R+
0 for which an atom (π(t), k(t)) occurs in (P \ (N, ∅, . . .)) × N. At such a

time t ∈ R+
0 the sequence Π(t) is obtained from Π(t−) by replacing its k(t)–th term,

Πk(t)(t−) ⊆ N, with the sequence Πk(t)(t−) ∩ π(t) ∈ P and reordering the terms such

that the resulting partition of N is an element of P.

It follows from (1.9) that for any P–fragmentation process Π and every n ∈ N and

t ∈ R+
0 the asymptotic frequency of Πn(t) satisfies

|Πn(t)| = lim
k→∞

card(Πn(t) ∩ {1, . . . , k})
k

(1.11)

P–almost surely. The following theorem, due to Bertoin, states that for homogenous

partition–valued fragmentations an even stronger property holds true.

Theorem 1.22 (Theorem 3 (i) in [Ber01]) Homogenous partition–valued fragmen-

tation processes are nice. That is to say, the asymptotic frequencies of any homogenous

P–fragmentation process Π satisfy (1.11) P–a.s. for every n ∈ N and all t ∈ R+
0 simul-

taneously.

Definition 1.23 We denote the random jump times of Π by (ti)i∈I , where I is a

countably infinite index set. For any t ∈ R+
0 ∪ {∞} let Bn(t) denote the block in Π(t)

which contains the element n ∈ N and consider the process Bn := (Bn(t))t∈R+
0 ∪{∞}.
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Notice that Bn(∞) = {n} for every n ∈ N. Let us define In ⊆ I such that the jump

times of the process Bn are (ti)i∈In . In particular, note that I1 = {i ∈ I : k(ti) = 1}.

We shall make use of the fact, due to [Ber02b], that any self–similar P–fragmentation

process is a time–changed homogenous P–fragmentation process. More precisely, let

α ∈ R and define

T (α)
n (t) := inf

{

s ∈ R+
0 :

∫

(0,s)
|Bn(u)|−αdu > t

}

.

Let Π(α)(t) be the random partition of N with the property that i, j ∈ N are in the

same block of Π(α) if and only if they are in the same block of Π(T (α)(t)). Bertoin

proved the following result:

Theorem 1.24 (Theorem 3 (i) in [Ber02b]) If the process Π is a self–similar P–

fragmentation with index β ∈ R, then (Π(α)(t))t∈R+
0

is a self–similar P–fragmentation

process with index α+ β.

Let s = (sn)n∈N ∈ S1 and let ρs be Kingman’s paint–box based on s, see Definition 1.17.

In addition, let πs be a random partition with distribution ρs. Proposition 2.8 in [Ber06]

shows that P(|πs|↓ = s) = 1. Moreover, P(|πs1| = sn) = sn for all n ∈ N. The latter

means that the [0, 1]–valued random variable |πs1| is a size–biased sample of s P–almost

surely. Let µν be given by (1.10). Resorting to Tonelli’s theorem we then infer that

∫

P
g(|π|↓)f(|π1|)µν(dπ) =

∫

S1

g(s)

∫

P
f(|π1|)ρs(dπ)ν(ds)

=

∫

S1

g(s)
∑

n∈N

snf(sn)ν(ds) (1.12)

holds for all nonnegative test functions f : [0, 1] → R+
0 with f(0) = 0 and g : S1 → R+

0 .

1.5.2 Interval fragmentation processes

A third kind of fragmentation processes that appears in the literature are so–called in-

terval fragmentations. This kind of fragmentation processes was introduced by Bertoin

[Ber02b] and was also considered by Basdevant [Bas06]. Our definition follows the lines

of [Ber02b].

In order to define interval fragmentations we first need to define some more notation.

The state space of the process will be the usual topology T(0,1) on (0, 1). That is, T(0,1)
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is the topology consisting of all unions of open intervals in (0, 1). Further, for any

U ∈ T(0,1) define a function χU : [0, 1] → [0, 1] by

χU(x) = inf
y∈U∁

|x− y|

for every x ∈ [0, 1], where U ∁ := [0, 1] \ U . We endow T(0,1) with the metric ρT(0,1)
defined by

ρT(0,1)(U, V ) = sup
x∈[0,1]

|χU (x)− χV (x)|

for any U, V ∈ T(0,1). Observe that (T(0,1), ρT(0,1)) is a compact metric space. Further,

note that for all U, V ∈ T(0,1) the distance ρT(0,1)(U, V ) coincides with the Hausdorff

distance between U ∁ and V ∁. Moreover, consider two sequences (an)n∈N and (bn)n∈N

in [0, 1] as well as a, b ∈ [0, 1]. Then

lim
n→∞

ρT(0,1)((an, bn), (a, b)) = 0 ⇐⇒ lim
n→∞

max{|a− an|, |b− bn|} = 0

and

lim
n→∞

ρT(0,1)((an, bn), ∅) = 0 ⇐⇒ lim
n→∞

|an − bn| = 0.

For further information regarding the metric space (T(0,1), ρT(0,1)) we refer the reader

to Section 2 in [Ber02b]. Let T0,1 be the topology induced by ρT(0,1) . We consider

the measurable space (T(0,1),B0,1), where B0,1 denotes the Borel–σ–algebra generated

by T0,1, that is B0,1 := σ(T0,1). Let (pt)t∈R+
0

be a set of probability measures on

(T(0,1),B0,1) such that the mapping t 7→ pt is continuous. Further, let α ∈ R and

let a, b ∈ [0, 1] with a < b. We denote by (T(a,b),Ta,b) the topological subspace of

(T(0,1),T0,1) and we set Ba,b := σ(Ta,b). In addition, consider the map ga,b : T(0,1) →
T(a,b) by

ga,b(U) = {a+ x(b− a) : x ∈ U}.

for each U ∈ T(0,1).
For any t ∈ R+

0 let us define a Markov kernel p
(α)
t : T(0,1) × B0,1 → [0, 1] as follows:

Definition 1.25 Set p
(α)
t (∅, ·) := δ∅, where δ∅ denotes the Dirac point mass at ∅. For

any non–empty interval (a, b) ∈ T(0,1) set

p
(α)
t ((a, b), A) := ps(g

−1
a,b (A))

for every t ∈ R+
0 A ∈ Ba,b, where s := t(b−a)α. Note that g−1

a,b (U) denotes the preimage

of U under the function ga,b. For any A ∈ B0,1 \ Ba,b we set p
(α)
t ((a, b), A) := 0.
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Now let U ∈ T(0,1) and consider two sequences (an)n∈N and (bn)n∈N in [0, 1] such that

U =
⋃

n∈N(an, bn). Further, let (Xn)n∈N be a sequence of independent random variables

Xn with distribution p
(α)
t ((an, bn), ·). Then define p

(α)
t (U, ·) to be the distribution of

⋃

n∈NXn.

We can now define interval fragmentation processes.

Definition 1.26 We call a T(0,1)–valued Markov process I := (I(t))t∈R+
0
, continuous in

probability, a self–similar (standard) interval fragmentation process with index α ∈ R

if

(i) I(0) = (0, 1).

(ii) I(t) ⊆ I(s) for all s, t ∈ R+
0 with s ≤ t.

(iii) Denote the distribution of I(t), t ∈ R+
0 , by pt. Then the transition semigroup of

I is determined by the Markov kernels (p
(α)
t )t∈R+

0
provided by Definition 1.25.

If α = 0 then the process is called homogenous.

Let us mention that the continuity in probability in Definition 1.26 is meant with respect

to the metric ρT(0,1) . We further remark that similarly to the case of mass fragmentation

processes, cf. Theorem 1.13, and P–fragmentation processes, see Theorem 1.21, also

homogenous interval fragmentation processes without erosion can be constructed via

Poisson point processes.

1.6 Bijections between different classes of fragmentation

processes

According to Proposition 2.6 in [Ber02a] the S1–valued process consisting of the re-

ordered sequences of the asymptotic frequencies of a self–similar P–fragmentation pro-

cess with index α ∈ R and P–dislocation measure µν constitutes a self–similar mass frag-

mentation process with index α and S1–dislocation measure ν. Moreover, in [Ber02a,

Proposition 2.6] Berestycki also shows that the converse holds in the sense that for

any self–similar mass fragmentation process λ with index α ∈ R and S1–dislocation

measure ν there exists some self–similar P–fragmentation process with index α and

P–dislocation measure µν , whose asymptotic frequencies form a process having the

same distribution as λ. That is, there exists a bijection between mass fragmentation

processes and P–fragmentation processes. Moreover, Section 3.2 in [Ber02b] shows that
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there is also a bijection between interval fragmentation processes and P–fragmentation

processes. Consequently, we have the following theorem:

Theorem 1.27 ([Ber02a], [Ber02b]) The three classes of fragmentations that we

introduced in the previous sections are mutually in a one–to–one correspondence with

each other.

Therefore, without loss of generality we can always choose the representation that is

most useful in a specific situation. In this regard, we remark that Figure 1-2 is an

illustration of any kind of fragmentation processes as it is just concerned with the sizes

of the blocks which always constitute a mass fragmentation process. Note that by size

of a block we mean the asymptotic frequency for P–fragmentation processes and the

lengths of the interval components of open sets for interval fragmentations.

Remark 1.28 It is shown in [Ber02a, Proposition 2.3] that self–similar standard mass

fragmentation processes are Feller processes2. Moreover, the Feller property was es-

tablished for self–similar P–fragmentation processes in [Ber06, Lemma 3.13] and for

self–similar interval fragmentation processes in [Ber02b, Lemma 4]. Hence, by Kin-

ney’s regularity theorem, see [Kal01, Theorem 17.15], these processes have a version

which is almost surely right–continuous with limits from the left. We implicitly al-

ways assume that we are dealing with such a version when considering fragmentation

processes. Consequently, in view of [Chu82, Theorem 1 in Section 2.3] or [Kal01, The-

orem 17.17], self–similar fragmentation processes satisfy the strong Markov property.

Note that here we have used that the state spaces of the fragmentation processes are

in particular locally compact Polish spaces, so that the above–mentioned results in

[Chu82] and [Kal01] are applicable. ♦

Throughout this thesis we consider a self–similar standard P–fragmentation process

Π = (Π(t))t∈R+
0

without erosion. In addition, let λ = (λ(t))t∈R+
0
:= (|Π(t)|↓)t∈R+

0
and

I := (I(t))t∈R+
0
be the corresponding mass fragmentation process and interval fragmen-

tation process respectively, given by the aforementioned bijections, see Theorem 1.27,

between these classes of fragmentation processes.

1.7 Subordinators associated with fragmentations

This section is devoted to a specific subordinator, that is a nondecreasing Lévy process,

which appears in the context of fragmentation processes. This subordinator plays a

2For a definition of the Feller property for Markov processes see e.g. Section 2.2 in [Chu82].
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t0

Φ(p)

p∗p

Figure 1-3: Graph of the Laplace exponent Φ in the dissipative case with p < 0, Φ(p) > −∞
and Φ′(p) <∞. Note that in this illustration there exists a p∗ ∈ (p, 0) with Φ(p∗) = 0.

crucial role in our work.

Definition 1.29 Let F := (Ft)t∈R+
0
denote the filtration generated by the process Π

and note that λ is adapted to F . In addition, let G := (Gt)t∈R+
0
be the sub–filtration

generated by λ and let F 1 := (F 1
t )t∈R+

0
denote the filtration generated by (Π1(t))t∈R+

0
.

Set

p := inf

{

p ∈ R :

∫

S1

∣

∣

∣

∣

∣

1−
∑

n∈N

s1+pn

∣

∣

∣

∣

∣

ν(ds) <∞
}

∈ (−1, 0]. (1.13)

It is well known that the function Φ : (p,∞) → R, defined by

Φ(p) =

∫

S1

(

1−
∑

n∈N

s1+pn

)

ν(ds) (1.14)

for every (p,∞), is monotonically increasing and concave. If p = 0 in the conservative

case, then we set Φ(p) := 0.

A typical graph of Φ is depicted in Figure 1-3. Note that this graph corresponds to the

dissipative case. In the conservative case we always have that Φ passes through the

origin, that is Φ(0) = 0. Notice that the following three different possibilities for the

behaviour of Φ at p can occur:

• Φ(p) > −∞ and Φ′(p+) <∞,

• Φ(p) > −∞ and Φ′(p+) = ∞,

• Φ(p) = −∞ and Φ′(p+) = ∞.

The illustration in Figure 1-3 depicts the first case.
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Definition 1.30 (cf. Lemma 1 in [Ber03]) Let p̄ be the unique solution to

(1 + p)Φ′(p) = Φ(p) (1.15)

on (p,∞), where Φ′ denotes the derivative of Φ.

Set

ζ := inf{t ∈ R+
0 : |Π1(t)| = 0}

and note that ζ is an exponentially distributed random variable with parameter Φ(0).

The importance of the function Φ, defined in (1.14), for fragmentation processes be-

comes clear in the following theorem that was proven in [Ber01] (see also Theorem 3.2

in [Ber06] in this regard).

Theorem 1.31 (Theorem 3 (ii) in [Ber01]) The process ξ := (ξ(t))t∈R+
0
, defined

by

ξ(t) := − ln |Π1(t)|1{t>ζ} = − ln |Π1(t)|1{|Π1(t)|>0}

for any t ∈ R+
0 , is a killed subordinator with killing time ζ, Laplace exponent Φ and

Lévy measure Lξ given by

Lξ(dx) = e−x
∑

n∈N

ν(− ln(sn) ∈ dx)

for all x ∈ (0,∞).

In particular, this theorem says that the subordinator ξ is killed at rate Φ(0) ∈ R+
0 ,

with zero killing rate corresponding to the survival of ξ, and that

Φ(p) = −1

t
ln
(

E

(

e−pξ(t)
))

= −1

t
ln
(

E
(

|Π1(t)|p1{t<ζ}

))

for every p ∈ (p,∞).

The killed subordinator ξ is an important tool in the theory of fragmentation processes

and appears frequently in the literature on this subject. Moreover, resorting to this

subordinator we shall construct a spectrally negative Lévy process, see Definition 1.5,

in Chapter 5 that will enable us to make use of the results compiled in Section 1.2.2.

Let us further point out that Theorem 1.24 shows that ξ is the Lévy process in the

Lamperti representation, cf. [Lam72], of the positive self–similar Markov process Π.

Remark 1.32 We remark that by exchangeability of Π, cf. Definition 1.18, we also
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have that

ξn := (ξn(t))t∈R+
0
:=
(

− ln(|Bn(t)|)1{|Bn(t)|>0}

)

t∈R+
0

as well as

ξU := (ξU (t))t∈R+
0
:=
(

− ln(|IU (t)|)1{|BU (t)|>0}

)

t∈R+
0

are killed subordinators with Laplace exponent Φ for every n ∈ N and any uniformly

distributed random variable U on [0, 1]. Notice that ξ = ξ1, since Π1(t) = B1(t) for all

t ∈ R+
0 . ♦

1.8 The intrinsic additive martingale for fragmentation

processes

Throughout this section we assume that α = 0, that is we consider a homogenous

fragmentation process.

Let us start by considering the process (eΦ(p)t|Bn(t)|p1{|Bn(t)>0|})t∈R+
0
for n ∈ N. Recall

that

eΦ(p)t|Bn(t)|p1{|Bn(t)>0|} = eΦ(p)t−pξn(t)

for all n ∈ N and t ∈ R+
0 . This process with n = 1 was considered for instance in

[BR03] and there it was used that it is a martingale with respect to the filtration F .

Let us briefly show that for any n ∈ N this process is indeed an F–martingale. To

this end, let s, t ∈ R+
0 and observe that the independent and identically distributed

increments of the subordinator ξn yield that

E

(

eΦ(p)(t+s)−pξn(t+s)
∣

∣

∣
Ft

)

= eΦ(p)t−pξn(t)eΦ(p)sE

(

e−pξn(s)
)

= eΦ(p)t−pξn(t),

where the final equality follows from Φ being the Laplace exponent of the killed sub-

ordinator ξn, see Theorem 1.31.

Later on we shall make use of another F–martingale that in contrast to the above

process is also G –adapted. This martingale is given by the following lemma:

Lemma 1.33 The stochastic process M(p) := (Mt(p))t∈R+
0
, defined by

Mt(p) := eΦ(p)t
∑

n∈N

λ1+pn (t)
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for all t ∈ R+
0 and p ∈ (p,∞), is a martingale with respect to the filtration F .

The martingale property of the process M(p) is well known, but since the proof is

rather short we decided to present it here.

Proof Note first that for every Borel–measuable A ⊆ [0, 1] we have

P(|B1(t)| ∈ A) =
∑

n∈N

P(|Πn(t)| ∈ A)P(B1(t) = Πn(t))

for all t ∈ R+
0 . Since

P(B1(t) = Πn(t)) = |Πn(t)|,

it follows that

E

(

∑

n∈N

|Πn(t)|1+p
)

= E (|B1(t)|p) = E (|Π1(t)|p) = e−Φ(p)t, (1.16)

where the final equality results from (etΦ(t)|Π1(t)|p1{t<ζ})t∈R+
0
being a unit–mean mar-

tingale as mentioned above. Hence, we deduce from the fragmentation property that

E(Mt+s(p)|Ft) = E

(

eΦ(p)(t+s)
∑

n∈N

|Πn(t+ s)|1+p
∣

∣

∣

∣

∣

Ft

)

= eΦ(p)t
∑

n∈N

|Πn(t)|1+pE
(

eΦ(p)s
∑

k∈N

|Πk(s)|1+p
)

= eΦ(p)t
∑

n∈N

|Πn(t)|1+p

=Mt(p),

which shows that M(p) is a martingale. �

Let us mention that the martingale M(p) appears frequently in the literature on frag-

mentation processes, see for example [Ber03], [BR03], [BM05], [HKK10] as well as

[BHK10], and is often called intrinsic additive martingale. Moreover, similar additive

martingales are also considered in the literature on branching processes, see for instance

[Ner81] with regard to our considerations in Part I of this thesis and [Kyp04] with re-

gard to Part II. In fact, M(p) is the analogue of Biggins’ classical additive martingale

for branching random walks, see e.g. [Big92].

Remark 1.34 By the martingale convergence theorem the nonnegative martingale

24



M(p) has a P–a.s. limit M∞(p) for every p > p. In [BR03, Theorem 1] (cf. also

Theorem 4 in [BR05] for the conservative case) it is shown that Mt(p) → M∞(p) in

L 1(P) as t → ∞ for any p ∈ (p, p̄). Moreover, there it is also shown that M∞(p) = 0

P–a.s for all p ≥ p̄. In [Ber03, Theorem 2] Bertoin showed that M∞(p) > 0 P–a.s. if ν

is conservative. ♦

Using the ideas of the proof of Theorem 2 in [Ber03] and adapting them to the dissipa-

tive case we obtain the corresponding results, to those in Remark 1.34, for dissipative

fragmentation processes. The following lemma establishes the almost sure positivity of

M∞(p) for p ∈ (p, p̄). We remark that the uniform integrability of M(p) follows from

the forthcoming Proposition 3.5 in Chapter 3.

Lemma 1.35 Let p ∈ (p, p̄). Then we have that M∞(p) > 0 P–almost surely.

Proof Let t ∈ R+. Resorting to the fragmentation property of Π, we infer that

P (M∞(p) = 0|Ft) =
∏

n∈N

Pλn(t)(M∞(p) = 0)

P–almost surely. Note that λ1(t) > 0 P–almost surely. Taking expectations we thus

deduce that

P (M∞(p) = 0) = E

(

∏

n∈N

Pλn(t)(M∞(p) = 0)

)

(1.17)

The homogeneity of Π yields that

Px(M∞(p) = 0) = P(xM∞(p) = 0) = P(M∞(p) = 0)

for all x > 0. Note that P0(M∞(p) = 0) = 1. Hence, (1.17) results in

P (M∞(p) = 0) = E

(

P(M∞(p) = 0)card({n∈N:λn(t)>0})
)

,

that is

E

(

P (M∞(p) = 0)− P(M∞(p) = 0)card({n∈N:λn(t)>0})
)

= 0. (1.18)

Since, by Hypothesis 1.2, card({n ∈ N : λn(t) > 0}) > 1 P–a.s., we have that

P (M∞(p) = 0)− P(M∞(p) = 0)card({n∈N:λn(t)>0}) ≥ 0

P–a.s., and thus we infer from (1.18) that

P (M∞(p) = 0) = P(M∞(p) = 0)card({n∈N:λn(t)>0})
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P–almost surely. Since card({n ∈ N : λn(t) > 0}) > 1 P–a.s., this implies that

P(M∞(p) = 0) ∈ {0, 1}.

However, the uniform integrability ofM(p) thus yields that P(M∞(p) = 0) = 0, because

E(M∞(p)) = E(M0(p)) = 1 > 0.

�

1.9 Spine decomposition

The spine approach that we develop in this section is a tool that was successfully used

with regard to various stochastic processes that possess a branching or fragmentation

structure. For a detailed introduction to the spine method in the setting of branching

diffusions we refer the reader to [HH09]. In the context of fragmentation processes we

refer to [BR03] and [BR05].

In the present section we introduce a change of measure that is of avail for both Part I

and Part II of this thesis. As in the previous section we consider a homogenous frag-

mentation process.

Definition 1.36 (cf. Section 3.3 in [BR05]) We define for each p ∈ (p,∞) a prob-

ability measure P(p) on F∞ :=
⋃

t∈R+
0

Ft by

dP(p)

dP

∣

∣

∣

∣

∣

Ft

= eΦ(p)t−pξ(t) (1.19)

for all t ∈ R+
0 .

The change of measure in Definition 1.36 is a so–called Esscher transform, cf. Sec-

tion 3.3 in [Kyp06]. For any p ∈ (p,∞) let E(p) denote the expectation under P(p).

Theorem 3.9 in [Kyp06] shows that under the measure P(p) the process ξ is a subordi-

nator with Laplace exponent Φp given by

Φp(a) = Φ(p+ a)− Φ(p)

for every a ∈ R+
0 . Moreover, considering projections onto the sub–filtration G results
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in
dP(p)

dP

∣

∣

∣

∣

∣

Gt

=Mt(p) (1.20)

for any p ∈ (p,∞) and t ∈ R+
0 . Indeed, (1.20) holds true because we have

E

(

eΦ(p)t−pξ(t)
∣

∣

∣
Gt

)

= eΦ(p)tE ( |B1(t)|p|Gt)
(∗)
= eΦ(p)tE

(

∑

n∈N

|Πn(t)|1+p
∣

∣

∣

∣

∣

Gt

)

=Mt(p)

for all p ∈ (p,∞) and t ∈ R+
0 , where (∗) follows analogously to the first equality in

(1.16).

Remark 1.37 We remark that in view of Lemma 1.35 we have that restricted to the

σ–algebra G∞ :=
⋃

t∈R+
0

Gt the measures P(p) and P are equivalent for any p ∈ (p, p̄).

Moreover, since M(p) is a uniformly integrable unit–mean martingale, we infer that

P(p) is a probability measure on G∞. ♦

A similar change of measure has fruitfully been applied for branching processes in

[LPP95] and [Lyo97]. In the light of these papers Bertoin and Rouault (cf. [BR03]

and [BR05]) showed that under P(p) the process Π has the same distribution as the

decreasingly ordered asymptotic frequencies of a P–valued fragmentation process with a

distinguished nested sequence of fragments. In the literature this sequence, from which

all the other fragments descend, is often called the “spine” of the process. Bertoin

and Rouault call the blocks in this distinguished sequence “tagged fragment” as one

can imagine giving at each time of dislocation a tag to a uniformly chosen (among all

fragments that exist at that time) fragment. This motivates the following definition:

Definition 1.38 We call the stochastic process (Π1(t))t∈R+
0
the spine of Π and for any

t ∈ R+
0 we call Π1(t) = B1(t), that is the block containing the element 1 at time t, the

tagged fragment.

Note that by means of the exchangeability of Π, see Remark 1.19, we could also assume

that the spine is |Bn(t)| for any n ∈ N or |BU (t)| for any uniformly distributed random

variable U on [0, 1].

The evolution of Π under P(p) differs from the evolution of Π under P exactly at the

behaviour of the spine, and all fragments that come off the spine evolve according to

the behaviour of Π. More precisely, the evolution of Π under P(p) can be described by

a Poisson point process on P ×N with the following characteristic measure:

(µ(p) ⊗ ♯)|P×{1} + (µ⊗ ♯)|P×N\{1},
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where the measure µ(p) on P is given by

µ(p)(dπ) = |π1|pµ(dπ) (1.21)

for all π ∈ P. Hence, we have the following spine decomposition:

|Π(t)| = (|Π1(t)|, 0, . . .) +
∑

i∈I1:ti≤t

∑

j∈N\{1}

∣

∣Πi,j(t− ti)
∣

∣ (1.22)

P(p)–a.s., where the Πi,j are independent and satisfy

P(p)
(

|Πi,j(u)| ∈ ·
∣

∣F
1
ti

)

= P (x|Π(u)| ∈ ·)

with x = |Π1(ti−) ∩ πj(ti)|. Moreover, the behaviour of the block Π1 under P(p) is

determined by a Poisson point process with characteristic measure µ
(p)
ν .
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Part I

Limit theorems for fragmentation

processes
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CHAPTER 2

STOPPED FRAGMENTATION PROCESSES

This chapter is devoted to the study of a different class of fragmen-

tations, namely those that are stopped at first passage below a given

value. We derive results with regard to these processes that will be of

avail in the subsequent chapters.

2.1 Introduction

In the present chapter we consider stopping lines as a generalisation of the more com-

mon concept of stopping times. In the context of branching processes the concept of

stopping lines was considered by various authors and in the setting of fragmentation

processes it was introduced by Bertoin. The main purpose of our exposition in this

chapter is to introduce fragmentation processes stopped at a specific example of such

a stopping line. The concept of stopped fragmentation processes as considered in the

present chapter plays a crucial role in Chapter 3 and Chapter 4. In this regard the

present chapter aims at providing the necessary tools to which we shall resort predomi-

nantly in Chapter 3. The results in Section 2.4 deal with an intrinsic additive martingale

for stopped fragmentations that is defined in a similar fashion to the intrinsic additive

martingale for standard fragmentation processes as considered in Section 1.8. In Sec-

tion 2.5 we shall derive a so–called many–to–one identity which allows us to reduce the

consideration of the possibly infinitely many fragments in the fragmentation process at

a given time or stopping line to the consideration of the behaviour of the spine of Π

that was defined in Definition 1.38.

Throughout this chapter we consider a homogenous fragmentation process Π such that

Hypothesis 1.1 and Hypothesis 1.2 hold. Further, let Bn, n ∈ N, and λ be defined as

on page 16 and on page 20 respectively.
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2.2 Stopping lines

Recall the filtration F 1 defined in Definition 1.29 and note that F 1
t = σ(B1(t)) for all

t ∈ R+
0 . With this in mind we define for any n ∈ N \ {1} a filtration Fn := (Fn

t )t∈R+
0

by Fn
t := σ(Bn(t)) for each t ∈ R+

0 . A very useful concept for our considerations is

the notion of stopping lines, cf. Definition 3.4 in [Ber06].

Definition 2.1 A sequence (Ln)n∈N of R+
0 ∪ {∞}–valued random variables is called

stopping line if

(i) Ln is an Fn–stopping time for every n ∈ N.

(ii) Ln = Lk for all n ∈ N and k ∈ Bn(Ln).

Stopping lines were first considered in the theory of branching processes, see for example

[Nev87], [Jag89] and [Cha91].

The fragmentation property of Π extends to the situation where the deterministic times

s, t ∈ R+
0 are replaced by stopping lines and is then called extended fragmentation

property. More precisely, for any stopping line L := (Ln)n∈N set

FL := σ({Π(L ∧ t) : t ∈ R+
0 }) = σ

(

⋃

n∈N

F
n
Ln

)

.

Further, note that Π(L) ∈ P consists of all the blocks {Bn(Ln)) : n ∈ N}. The extended
fragmentation property then says that the conditional distribution, given FL, of the
process (Π(L+ t))t∈R+

0
equals Pπ(Πt ∈ ·), where π = Π(L).

The extended fragmentation property for fragmentation processes was established by

Bertoin for P–valued fragmentations in Lemma 3.14 in [Ber06] and for interval fragmen-

tation processes (with the appropriate changes in Definition 2.1 and with an analogous

definition of the extended fragmentation property) in Theorem 1 in [Ber02b].

We are mainly interested in a specific example of a stopping line, namely in the first

passage times, defined by

υt,n := inf
{

s ∈ R+
0 : |Bn(s)| < e−t

}

(2.1)

for any t ∈ R+
0 , when the asymptotic frequency of the block containing n ∈ N enters

the interval (0, e−t). Observe that (υt,n)n∈N does indeed define a stopping line for any
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t ∈ R+
0 . In particular,

Bn(υt,n) ∩Bk(υt,k) ∈ {∅, Bn(υt,n)}

for all k, n ∈ N.

2.3 Stopped fragmentations

This section is devoted to introducing fragmentation processes stopped at the stopping

line (υt,n)n∈N that was defined in (2.1).

Our approach is to construct a stopped process (Πt,n)n∈N,t∈R+
0
by describing the evolu-

tion of (Bt,n)t∈R+
0
, the block in the stopped process that contains n ∈ N. To this end,

let n ∈ N as well as t ∈ R+
0 and set

Bt,n(s) := Bn(s ∧ υt,n)

for any s ∈ R+
0 . The evolution s 7→ Bt,k(s) of distinct blocks is independent and

happens according to the above description. Hence, at a given time s ∈ R+
0 only those

blocks Bt,k(s), k ∈ N, still dislocate that are of size bigger than e−t. This procedure

describes (Bt,k(s))s,t∈R+
0
for every k ∈ N. We then define a process (Πt,n)n∈N,t∈R+

0
by

setting

κ1,s := 1 as well as κn,s := inf

{

N \
(

n−1
⋃

k=1

Bt,k(s)

)}

for any n ∈ N \ {1} and defining

Πt,n(s) := Bt,κn,s(s)

for all n ∈ N and s, t ∈ R+
0 . Notice that Πt,n(s) ∈ P for all s ∈ R+

0 . As with the

non–stopped fragmentations it will be convenient to consider the S1–valued processes

of the decreasingly ordered asymptotic frequencies, and consequently we adopt

λt,n(s) := |(Πt,k(s))k∈N|↓n

for every n ∈ N and s, t ∈ R+
0 . Moreover, we will be interested in these stopped

processes at the time at which they are stopped. In this regard, we set

Bt,n := Bt,n(υt,n) = lim
s→∞

Bt,n(s)
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as well as

Πt,n := lim
s→∞

Πt,n(s) and λt,n := |(Πt,k)k∈N|↓n

for all n ∈ N and t ∈ R+
0 . Note that the above limit exists as for sufficiently large

s ∈ R+
0 the map s 7→ Πt,n(s) is constant. Let us now define the stopped fragmentation

process, see Figure 2-1, with which we shall be concerned in Chapter 3 and Chapter 4.

Definition 2.2 The S1–valued stochastic process λS := (λt)t∈R+
0
defined by

λt := (λt,n)n∈N

for all t ∈ R+
0 is called stopped fragmentation process.
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(a) Illustration of υt,n.
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(b) Illustration of λS.

Figure 2-1: Illustration (a) depicts the stopping line υt,n given by the first passage of the block
sizes below e−t and (b) illustrates the stopped fragmentation process λS , stopped at υt,n. The
black dots indicate the blocks at the stopping line υt,n, since their sizes are smaller than e−t

and they result from the dislocation of blocks with size greater than or equal to e−t.

Let us denote by H := (Ht)t∈R+
0

the filtration generated by the stopped P–valued

process (Πt)t∈R+
0
, given by Πt = (Πt,n)n∈N for all t ∈ R+

0 , that is

Ht = σ({Πs,n : n ∈ N, s ∈ [0, t]}) (2.2)
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for any t ∈ R+
0 . Furthermore, we shall make use of

σt,n := υt,lt,n (2.3)

for any n ∈ N and t ∈ R+
0 , where lt,n ∈ N is chosen such that λt,n = |Bt,lt,n |. That is

to say, σt,n is the time at which λt,n is stopped. In addition, for any n ∈ N and t ∈ R+
0

set

σt := sup
n∈N

σt,n = inf
{

s ∈ R+
0 : λ1(s) < e−t

}

. (2.4)

2.4 The intrinsic additive martingale for stopped frag-

mentation processes

Recall the intrinsic additive martingale M(p), p ∈ (p,∞), that we considered in Sec-

tion 1.8. In the present section we introduce an intrinsic additive martingale for stopped

fragmentation processes. To this end, consider the processes Λ(p) := (Λt(p))t∈R+
0
,

p ∈ (p,∞), given by

Λt(p) :=
∑

n∈N

λ1+pt,n e
Φ(p)σt,n

for any t ∈ R+
0 . The following lemma shows that Λ(p) is a martingale with respect to

the filtration H that was defined in (2.2).

Lemma 2.3 Assume that Π is homogenous. Then the process Λ(p) is a nonnegative,

uniformly integrable H –martingale for any p ∈ (p, p̄).

Proof Fix an arbitrary p ∈ (p, p̄). For the time being, let s, t ∈ R+
0 and let At(s)

denote the set of indices of fragments in λ(s) whose size is greater than or equal to e−t.

Further, let Dt(s) denote the set of indices of fragments in (λt,n)n∈N which belong to

λ(u) for some u ≤ s, that is which are either elements of λ(u) or have descendants in

λ(u). Note that E(Mu(p)) = 1 for all u ∈ R+
0 . Resorting to the extended fragmentation

property we thus obtain that

E (Ms(p)|Ht) = eΦ(p)s
∑

n∈At(s)

λ1+pn (s) +
∑

n∈Dt(s)

eΦ(p)σt,nλ1+pt,n E

(

M (n)
∣

∣

∣
Ht

)

= eΦ(p)s
∑

n∈At(s)

λ1+pn (s) +
∑

n∈Dt(s)

eΦ(p)σt,nλ1+pt,n (2.5)
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P–a.s., where conditional on Ht the M
(n) are independent and satisfy

E

(

M (n)
∣

∣

∣
Ht

)

= f(s− σt,n) = 1

with f(u) = E (Mu(p)) = 1 for any u ∈ R+
0 .

An argument along the lines of the proof of Corollary 1.4 in [Ber06] yields that

lim
t→∞

− ln(λ1(t))

t
= Φ′(p̄) (2.6)

P–almost surely. Since t 7→ λ1(t) is right–continuous and σt is its inverse, we infer that

lim
t→∞

σt
t

=
1

Φ′(p̄)
(2.7)

P–almost surely.

Let t ∈ R+
0 . In view of (2.7) we have lims→∞At(s) = ∅ and lims→∞Dt(s) = N P–almost

surely. Consequently, (2.5) implies that

lim
s→∞

E (Ms(p)|Ht) =
∑

n∈N

eΦ(p)σt,nλ1+pt,n = Λt(p) (2.8)

P–almost surely. Observe that

E (|E (Ms(p)|Ht)− E (M∞(p)|Ht)|) ≤ E (|Ms(p)−M∞(p)|) → 0

as s → ∞, since M∞(p) is the L 1(P)–limit of M(p). Hence, E(M∞(p)|Ht) is the

L 1(P)–limit of (E(Ms(p)|Ht))s∈R+
0
as s→ ∞, and thus it follows from (2.8) that

Λt(p) = E(M∞(p)|Ht).

Therefore, Λ(p) is a closed martingale, which proves the assertion. �

Let p ∈ (p, p̄) and set

Λ∞(p) := lim sup
t→∞

Λt(p). (2.9)

In view of the previous lemma we have Λ∞(p) = limt→∞ Λt(p) P–a.s. if Π is homoge-

nous. That is to say, for homogenous fragmentation processes the random variable

Λ∞(p) is the P–a.s. limit of the nonnegative martingale Λ(p). The following lemma is

an analogue of Lemma 1.35 in that it shows that Λ∞(p) > 0 P–almost surely.
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Lemma 2.4 Assume that Π is homogenous. Then we have

Λ∞(p) > 0

P–a.s. for every p ∈ (p, p̄).

Proof Resorting to the extended fragmentation property and the tower property of

conditional expectations we obtain for any s ∈ R+
0 that

P

(

lim
t→∞

∑

n∈N

λ1+pt,n e
Φ(p)σt,n = 0

)

= E





∏

i∈N

Pλs,i



 lim
t→∞

∑

j∈N

λ1+pt,j e
Φ(p)σt,j = 0





∣

∣

∣

∣

∣

∣

Hs





= E





∏

i∈N

P



 lim
t→∞

∑

j∈N

λ
(i)
j e

Φ(p)σ
(i)
j = 0

∣

∣

∣

∣

∣

∣

Hs









= E







∏

i∈N

P



 lim
t→∞

∑

j∈N

λ1+pu,j e
Φ(p)σu,j = 0





∣

∣

∣

∣

∣

∣

u=t+ln(λs,i)







holds P–a.s., where conditional on Hs the λ
(i)
j are independent and satisfy

P

(

λ
(i)
j ∈ ·

∣

∣

∣
Hs

)

= P

(

λ1+pu,j ∈ ·
)∣

∣

∣

u=t+ln(λs,i)

and, given Hs, also the σ
(i)
j are independent and satisfy

P

(

σ
(i)
j ∈ ·

∣

∣

∣Hs

)

= P (σu,j ∈ ·)|u=t+ln(λs,i)

P–almost surely. Consequently, we deduce that

P (Λ∞(p) = 0) =
∏

i∈N

P (Λ∞(p) = 0) . (2.10)

Since Λ∞(p) is the L 1(P)–limit of Λ(p) and E(Λt(p)) = 1 for all t ∈ R+
0 , cf. Lemma 2.3,

we infer that P (Λ∞(p) = 0) < 1. By (2.10) this implies that P (Λ∞(p) = 0) = 0. �

Remark 2.5 Assume there exists some p∗ ∈ [p, 0] such that Φ(p∗) = 0. Further, recall

that according to Theorem 1.24 every self–similar fragmentation process is a time–

changed homogenous one. Moreover, observe that M(p∗) is just concerned with the

sizes of the blocks of Π but does not involve any time component. Therefore, a time

change of Π does not affect M(p∗). Consequently, the statements of Lemma 2.3 and
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Lemma 2.4 also hold for p = p∗ if Π is self–similar with index of self–similarity α 6= 0.

In the light of (2.9) we thus have in particular that Λ∞(p∗) = limt→∞ Λt(p
∗) holds true

P–a.s. also in the self–similar setting.

A similar reasoning based on Theorem 1.24 will allow us to obtain the main results in

Chapter 3 and Chapter 4 for self–similar fragmentation processes after proving these

results in the homogenous setting. ♦

2.5 Many–to–one identities

In this section we develop a result that enables us to reduce the study of many fragments

to that of a single fragment, viz the tagged fragment. For this reason this kind of result

may be referred to as many–to–one identity. Such an identity first appeared in the

literature on branching processes, see e.g. [BD75], [HW96] and [Har00]. For a version

of a many–to–one identity in the context of fragmentation chains we refer to Lemma 5.1

in [HK08].

Recall that Bn(t), t ∈ R+
0 , denotes the block in Π(t) which contains the element n ∈ N.

Furthermore, recall the stopped processes (Bt,n(s))s∈R+
0

and Bt,n that we defined in

Section 2.2.

The many–to–one identity in our setting reads as follows:

Lemma 2.6 We have

E

(

∑

n∈N

|Bu,n(t)|f({|Bu,n(s)| : s ≤ t})1{n=min(Bu,n(t))}

)

= E (f({|Bu,1(s)| : s ≤ t}))

for every t, u ∈ R+
0 ∪{∞} and f : RCLL([0, t], [0, 1]) → R, where Bu,n(∞) is interpreted

as Bu,n and where we adopt B∞,n(s) := Bn(s) for every s ∈ R+
0 .

Note that the indicator function that appears on the left–hand side above is needed in

order to avoid counting a block multiple times. Using the indicator function ensures

that to each block corresponds exactly one summand, namely the one associated with

the least element of that block.

The identity provided by Lemma 2.6 will be used in different contexts in Chapter 3 and

Chapter 5. Therefore, in Lemma 2.6 we give a fairly general version of a many–to–one

identity in the context of fragmentation processes.

Proof Recall that in Section 1.6 we mentioned that for the P–fragmentation process
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Π there exists a corresponding interval fragmentation I. Notice that the same holds

true also for stopped fragmentations. Hence, for any y ∈ (0, 1) and s ∈ R+
0 let Iu,y(s)

be the interval at time s in the interval representation of (Πu,n(s))n∈N, u ∈ R+
0 ∪ {∞},

that contains y, where we adopt Π∞,n(s) := Πn(s). Further, fix t ∈ R+
0 as well as

u ∈ R+
0 ∪ {∞} and let f : RCLL([0, t], [0, 1]) → R. Then we have

E

(

∑

n∈N

|Bu,n(t)|f({|Bu,n(s)| : s ≤ t})1{n=min(Bu,n(t))}

)

= E

(

∫

(0,1)
f({|Iu,y(s)| : s ≤ t}) dy

)

= E (f({|Iu,U (s)| : s ≤ t})) ,

where U : Ω → (0, 1) is a uniformly distributed random variable that is independent of

Π. By means of the exchangeability of Π the process (− ln(|Iu,U (t)|))t∈R+
0
has the same

distribution under P as the stopped subordinator (− ln(|Bu,1(t)|))t∈R+
0
, cf. Remark 1.32,

and thus we have proven the assertion. �

Recall from (2.1) that

υt,1 = inf
{

s ∈ R+
0 : |B1(s)| < e−t

}

= inf{s ∈ R+
0 : ξ(s) > t}.

for all t ∈ R+
0 . The following special case of a many–to–one identity, that follows easily

from the identity in Lemma 2.6, will be used in Chapter 3.

Corollary 2.7 Let f : [0, 1] → R+
0 be a measurable function. Then

E

(

∑

n∈N

λ1+p
∗

t,n f (λt,n)

)

= E(p∗)
(

f
(

e−ξ(υt,1)
))

.

Proof By means of Lemma 2.6 we have

E

(

∑

n∈N

λ1+p
∗

t,n f (λt,n)

)

= E

(

∑

n∈N

λt,n

[

λp
∗

t,nf (λt,n)
]

)

= E

(

|Bt,1|p
∗

f (|Bt,1|)
)

= E(p∗)
(

f
(

e−ξ(υt,1)
))

.

�
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2.6 Concluding remarks

Mass fragmentation processes with a finite dislocation measure are akin to Crump–

Mode–Jagers processes, where birth times correspond to the negative logarithm of the

fragment sizes. In this respect we remark that in the context of Crump–Mode–Jagers

processes the analogue of the stopped fragmentation process λS , see Definition 2.2,

is often called coming generation. We refer to [Ner81] where this concept, in the

setting of Crump–Mode–Jagers processes, was used in a context closely related to our

considerations in Chapter 3.

Stopped fragmentation processes as introduced in this chapter are the main objects of

our considerations in the following two chapters. Furthermore, they were also studied

in a different context in [BM05]. More precisely, in [BM05] Bertoin and Mart́ınez

considered the energy that is needed to reduce a block of unit mass to fragments whose

masses are smaller than a given value. Their result can be applied to the crushing of

blocks of mineral in the mining industry. Hence, such stopped fragmentation processes

are also interesting from a more applied point of view.

40



CHAPTER 3

STRONG LAW OF LARGE NUMBERS FOR

FRAGMENTATION PROCESSES

For self–similar fragmentation processes we show the almost sure con-

vergence of an empirical measure associated with the stopping line

corresponding to the first fragments of size smaller than η ∈ (0, 1].

3.1 Introduction

In the spirit of a classical result for Crump–Mode–Jagers processes, cf. [Ner81, Theo-

rem 5.4], we present a strong law of large numbers for self–similar fragmentation pro-

cesses. In a more restrictive setting the limit theorem in question was also considered

in [BM05, Corollary 2] with regard to L 2–convergence. Here we are mainly interested

in almost sure convergence. For an approach to deal with almost sure convergence in

the case of a finite dislocation measure see [BM05, Corollary 1] in conjunction with

[BM05, Remark 1 (b)]. Our goal in this chapter is to obtain the corresponding conver-

gence result if the dislocation measure is infinite. In this regard we mention that all

our results comprise the case of a finite dislocation measure, but more importantly we

extend the aforementioned limit theorem to fragmentation processes with an infinite

dislocation measure. Let us point out that such an extension is not straightforward.

Indeed, we refer to Theorem 2 in [BM05] where a different limit theorem, in the sense

of L 1–convergence, is extended from the finite to the infinite activity setting. There

Bertoin and Mart́ınez make use of having shown the result for a finite dislocation mea-

sure and subsequently they use a discretisation method to infer the corresponding result

for an infinite dislocation measure. Such a discretisation technique does not work for

the problem under consideration in the present chapter and we do not resort to results
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that are already known in the finite activity case.

3.2 Set–up

In this chapter we consider a standard self–similar P–fragmentation process Π that

satisfies Hypothesis 1.1 as well as Hypothesis 1.2. More specifically, we shall be mainly

concerned with the corresponding stopped fragmentation process λS, see Definition 2.2,

obtained by stopping the blocks of Π at first passage below size e−t for any t ∈ R+
0 .

Let p and Φ be given by (1.13) and (1.14) respectively.

Definition 3.1 If there exists a p∗ ∈ [p, 0] satisfying Φ(p∗) = 0, then we call p∗

Malthusian parameter.

Recall from Definition 1.11 that we say the fragmentation process is dissipative if

ν
(
∑

n∈N sn < 1
)

> 0. The following Hypothesis 3.1, commonly referred to as Malthu-

sian hypothesis, provides us with the existence of a Malthusian parameter in the dissi-

pative case.

Hypothesis 3.1 If ν is dissipative, then there exists a p∗ ∈ (p, 0) such that Φ(p∗) = 0.

If ν is conservative, that is if ν
(
∑

n∈N sn < 1
)

= 0, then Φ(0) = 0, and thus we set

p∗ := 0 in that case. Recall the definition of p̄ in (1.15) and notice that it follows from

Lemma 1 in [Ber03] that p ≥ p̄ if and only if (1 + p)Φ′(p) ≤ Φ(p). Since Φ′(p) > 0 for

all p ∈ (p,∞), we therefore have p∗ < p̄. Moreover, observe that Hypothesis 3.1 implies

that p < 0 and thus Φ′(0+) < ∞ in the dissipative case. However, in the conservative

case it is possible that p = 0, in which case the expectation of the subordinator ξ may

be infinite. In order to guarantee that ξ has finite expectation in the conservative case,

we need the following hypothesis:

Hypothesis 3.2 If p = 0, then

Φ′(0+) =

∫

S1

(

∑

n∈N

sn ln
(

s−1
n

)

)

ν(ds) <∞.

In what follows, assume that Hypothesis 3.1 and Hypothesis 3.2 hold.

In order to state the main result of this chapter let us first introduce some notation.

Let B+ denote the space of all bounded and measurable functions f : R+
0 → R+

0 with
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f |[1,∞) ≡ 0. In addition, set 1 :≡ 1[1,∞). Moreover, for any t ∈ R+
0 consider the random

measure ρt on [0, 1] defined by

ρt :=
∑

n∈N

λ1+p
∗

t,n δetλt,n ,

where δx is the Dirac measure at x ∈ [0, 1]. Our main result is concerned with the

integral of test functions in B+ against the above–defined measure ρt. In this regard

we define

〈ρt, f〉 :=
∫

[0,1]
f dρt =

∑

n∈N

λ1+p
∗

t,n f
(

etλt,n
)

(3.1)

for any t ∈ R+
0 and f ∈ B+. Notice that the time–parameter of the process (〈ρt, f〉)t∈R+

0

corresponds to the size rather than to the time of the fragmentation process Π. Define

a measure ρ on [0, 1] as follows:

ρ(dt) =
1

Φ′(p∗)

(

∫

S1

∑

n∈N

1{sn<t}s
1+p∗
n ν(ds)

)

dt

t
,

where in the case p∗ = p = 0 we adopt Φ′(p∗) = Φ′(0+). In the present chapter we are

interested in the asymptotic behaviour of 〈ρt, ·〉 as t tends to infinity. More precisely,

our objective is to show that asymptotically as t→ ∞ the random function t 7→ 〈ρt, ·〉
behaves P–a.s. like the limit Λ∞(p∗) of the nonnegative martingale (Λt(p

∗))t∈R+
0
, up to

a multiplicative function 〈ρ, ·〉 on B+ given by

〈ρ, f〉 =
∫

(0,1)
fdρ =

1

Φ′(p∗)

∫

(0,1)
f(t)

(

∫

S1

∑

n∈N

1{sn<t}s
1+p∗
n ν(ds)

)

dt

t

for all f ∈ B+.

3.3 Strong law of large numbers for fragmentation pro-

cesses

Recall that we assume that Π satisfies Hypothesis 1.1 and Hypothesis 1.2. Our main

result in this chapter is the following strong law of large numbers for self–similar frag-

mentation processes:

Theorem 3.2 For any self–similar fragmentation process satisfying Hypothesis 3.1
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and Hypothesis 3.2 we have

lim
t→∞

〈ρt, f〉 = 〈ρ, f〉Λ∞(p∗) (3.2)

P–a.s. for any f ∈ B+.

Theorem 3.2 follows a series of strong laws of large numbers that were obtained for

different classes of branching processes. Related classical strong laws were considered

in [AH76] and [AH77] for spatial branching processes. Nerman [Ner81] proved a more

general strong law of large numbers in the context of Crump–Mode–Jagers processes.

More recently, strong laws of large numbers in the spirit of Theorem 3.2 were obtained in

[CS07], [CRW08] and [EHK10] for branching diffusions and in [EW06] as well as [Eng09]

in the setting of superdiffusions. For related results, in the sense of L 2–convergence, in

the context of conservative fragmentation processes we refer to [BM05, Corollary 2] as

well as [HK08], where the latter is concerned with conservative fragmentation chains.

It turns out that the DCT is applicable in order to get the corresponding result to

Theorem 3.2 also in the sense of L p–convergence for some p > 1.

Corollary 3.3 For any self–similar fragmentation process satisfying Hypothesis 3.1

and Hypothesis 3.2 we have

lim
t→∞

〈ρt, f〉 = 〈ρ, f〉Λ∞(p∗)

in L p(P) for any f ∈ B+ and all p ∈ [1, (1 + p̄)(1 + p∗)−1].

3.4 Preliminary considerations

Recall the change of measure in (1.19) for p∗, that is

dP(p∗)

dP

∣

∣

∣

∣

∣

Ft

= e−p
∗ξ(t).

Moreover, Theorem 3.9 in [Kyp06] also tells us that L
(p∗)
ξ (dt) = e−p

∗tLξ(dt) for all

t ∈ R+, where Lξ and L
(p∗)
ξ are the Lévy measures associated with ξ under P and

P(p∗) respectively. According to Theorem 1.31 the Lévy measure L
(p∗)
ξ is related to the
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dislocation measure ν in the following way:

L
(p∗)
ξ (dx) = e−(1+p∗)x

∑

n∈N

ν(− ln(sn) ∈ dx) (3.3)

for all x ∈ R+.

Lemma 3.4 Assume that Hypothesis 3.1 and Hypothesis 3.2 are satisfied. Then the

limit limt→∞ E(〈ρt, f〉) exists and satisfies

lim
t→∞

E(〈ρt, f〉) = 〈ρ, f〉

for all f ∈ B+.

Proof Notice that

E(p∗)(ξ(1)) = Φ′(p∗) <∞

and recall from (2.1) that

υt,1 = inf
{

s ∈ R+
0 : |B1(s)| < e−t

}

= inf{s ∈ R+ : ξ(s) > t}.

for all t ∈ R+
0 . By means of Theorem 1 in [BHS99] we thus infer that

lim
t→∞

P(p∗)(ξ(υt,1)− t ∈ dx) =
1

Φ′(p∗)
L
(p∗)
ξ ((x,∞)) dx. (3.4)

Observe that with the substitution z := e−y we infer from (3.3) that

L
(p∗)
ξ ((x,∞)) =

∫

(x,∞)
L
(p∗)
ξ (dy)

=

∫

(x,∞)
e−(1+p∗)y

∑

n∈N

ν(− ln(sn) ∈ dy) (3.5)

=

∫

(0,e−x)
z(1+p

∗)
∑

n∈N

ν(sn ∈ dz)

Since Corollary 2.7 shows that E(〈ρt, f〉) = E(p∗)f
(

e−(ξ(υt,1)−t)
)

, the assertions of the

lemma follow from the following calculation:

lim
t→∞

E(p∗)f
(

e−(ξ(υt,1)−t)
)

=

∫

R
+
0

f
(

e−x
)

lim
t→∞

P(p∗)(ξ(υt,1)− t ∈ dx)

=
1

Φ′(p∗)

∫

R
+
0

f
(

e−x
)

L
(p∗)
ξ ((x,∞))dx
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=
1

Φ′(p∗)

∫

R+
0

f
(

e−x
)

∑

n∈N

∫

(0,e−x)
z(1+p

∗)ν(sn ∈ dz)dx

=
1

Φ′(p∗)

∫

R
+
0

f
(

e−x
)

∑

n∈N

∫

S1

s(1+p
∗)

n 1{sn<e−x}ν(ds)dx

=
1

Φ′(p∗)

∫

(0,1)
f (u)

∑

n∈N

∫

S1

s(1+p
∗)

n 1{sn<u}ν(ds)
du

u

= 〈ρ, f〉

for every f ∈ B+. Note that in the above chain of equalities we applied the DCT

for the first equality and the second equality follows from (3.4). The third equality

is a consequence of (3.5) and for the penultimate equality we used the substitution

u := e−x. �

3.5 Proof of the strong law of large numbers for fragmen-

tation processes

The goal of this section is to prove Theorem 3.2. Our method of proof is based on

several auxiliary results that we shall develop below. Some of these auxiliary results are

concerned with E(〈ρst, f〉|Ht), that is with the conditional expectation of the random

variable under consideration in Theorem 3.2. Indeed, it turns out that asymptotically

we can obtain good approximations of this conditional expectation with respect to both

the left– and right–hand side of (3.2). These approximations then enable us to tackle

the proof of Theorem 3.2.

In the present section we initially assume that Π is homogenous. For that matter,

let us point out that all the following auxiliary results are obtained in the setting of

homogenous fragmentation processes. The generalisation to self–similar mass fragmen-

tation processes with index of self–similarity α 6= 0 will be made once we have proven

Theorem 3.2 in the homogenous setting.

Let us start with the following proposition that provides us with L p–boundedness of

the martingale Λ(p), see Section 2.4, for some p > 1.

Proposition 3.5 Let p̃ ∈ (p, 0). Then

sup
t∈R+

0

Λt(p̃) ∈ L
p(P)

holds for all p ∈ [1, (1 + p̄)(1 + p̃)−1].
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Proof The first part of the proof follows the lines of the proof of Theorem 2 in [Ber03].

However, the crucial argument in the proof of Theorem 2 in [Ber03] requires that the

dislocation measure is conservative, and thus we have to develop a different argument

in order to cater for the dissipative case.

Let p ∈ (1, 2). According to [Lép76] we have supt∈R+
0
E ([Mt(p̃)]

p) <∞ if

Vp(p̃) :=
∑

t≥0

|Mt(p̃)−Mt−(p̃)|p ∈ L
1(P), (3.6)

where the above sum is taken over all t ∈ (ti)i∈I , that is over all jump times of Π. For

any such t ∈ R+
0 we have that

|Mt(p̃)−Mt−(p̃)| = eΦ(p̃)tλ1+p̃k(t)

∣

∣

∣

∣

∣

1−
∑

n∈N

∆1+p̃
n (t)

∣

∣

∣

∣

∣

.

By the compensation formula for Poisson point processes we have

E (Vp(p̃)) = c(p̃, p)

∫

R
+
0

epΦ(p̃)tE

(

∑

n∈N

λp(1+p̃)n (t)

)

dt, (3.7)

where

c(p̃, p) :=

∫

S1

∣

∣

∣

∣

∣

1−
∑

n∈N

s1+p̃n

∣

∣

∣

∣

∣

p

ν(ds).

In order to apply the criterion (3.6) let us first show that c(p̃, p) <∞ for suitable p > 1.

To this end, note that Jensen’s inequality yields that

(u+ v)p ≤ 2p−1(up + vp)

for all u, v ∈ R+
0 . Hence, we have

∣

∣

∣

∣

∣

1−
∑

n∈N

s1+p̃n

∣

∣

∣

∣

∣

p

≤



|1− s1|+
∑

n∈N\{1}

s1+p̃n





p

≤ 2p−1 |1− s1|p + 2p−1





∑

n∈N\{1}

s1+p̃n





p

Moreover, another application of Jensen’s inequality yields that





∑

n∈N\{1}

s1+p̃n





p

=





∑

n∈N\{1}

sns
p̃
n





p

≤





∑

n∈N\{1}

sn





p−1
∑

n∈N\{1}

s1+pp̃n ≤
∑

n∈N\{1}

s1+pp̃n .
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Consequently,

c(p̃, p) =

∫

S1

∣

∣

∣

∣

∣

1−
∑

n∈N

s1+p̃n

∣

∣

∣

∣

∣

p

ν(ds) ≤
∫

S1



2p−1 |1− s1|p + 2p−1
∑

n∈N\{1}

s1+pp̃n



 ν(ds),

and thus it follows in view of (1.7) that

c(p̃, p) <∞ (3.8)

holds if
∫

S1

∑

n∈N\{1}

s1+pp̃n ν(ds) <∞. (3.9)

Let us now show that (3.9) holds true. To this end, observe first that

∑

n∈N\{1}

s1+pp̃n =
∑

n∈N\{1}

s1+pp̃n + s1 − s1 + 1− 1

≤
∑

n∈N\{1}

s1+pp̃n + s1+pp̃1 − s1 + 1− 1

≤
∣

∣

∣

∣

∣

∑

n∈N

s1+pp̃n − 1

∣

∣

∣

∣

∣

+ |1− s1| .

Hence, (1.7) and the definition of p imply that (3.9), and thus (3.8), holds true if

pp̃ ∈ (p, p̃). As a consequence we deduce that

[p ∈ (1, p/p̃)] =⇒ [c(p̃, p) <∞] . (3.10)

In order to deal with the integral in (3.7) notice that p < p̃ < 0 < p̄ implies that

1 + p̃

p̃
<

1 + p̄

p
,

and thus for all p ≤ (1 + p̄)(1 + p̃)−1 we have

p <
p

p̃
. (3.11)

Let p ∈ (1, (1 + p̄)(1 + p̃)−1] and observe that

p̃ < p(1 + p̃)− 1 ≤ p̄. (3.12)
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Since p 7→ Φ(p)/(1 + p) is monotonically increasing on (p, p̄), cf. Lemma 1 in [Ber03],

we infer from (3.12) that
Φ(p̃)

1 + p̃
<

Φ(p(1 + p̃)− 1)

p(1 + p̃)
,

and consequently

pΦ(p̃) < Φ(p(1 + p̃)− 1). (3.13)

Note that M(p) being a unit–mean martingale for any p ∈ (p,∞), cf. Section 1.8,

implies that E(Mt(p(1 + p̃)− 1)) for all t ∈ R+
0 . Therefore,

E

(

∑

n∈N

λp(1+p̃)n (t)

)

= e−Φ(p(1+p̃)−1)t.

for any t ∈ R+
0 , and hence (3.13) results in

∫

R
+
0

epΦ(p̃)tE

(

∑

n∈N

λp(1+p̃)n (t)

)

dt =

∫

R
+
0

e(pΦ(p̃)−Φ(p(1+p̃)−1))t dt ∈ (0,∞).

In view of (3.7), (3.10) and (3.11), we thus deduce that E(Vp(p̃)) < ∞. Consequently,

the criterion (3.6) is satisfied and therefore we have

lim
t→∞

E ([Mt(p̃)]
p) ≤ sup

t∈R+
0

E ([Mt(p̃)]
p) <∞.

Now Doob’s maximal inequality, in conjunction with the MCT, yields that

E

([

sup
t∈R+

0

Mt(p̃)

]p)

= lim
s→∞

E

([

sup
t∈[0,s]

Mt(p̃)

]p)

≤
(

p

p− 1

)p

lim
s→∞

E ([Ms(p̃)]
p) <∞.

Resorting to Jensen’s inequality for conditional expectations we then infer that

sup
t∈R+

0

E ([Λt(p̃)]
p) = sup

t∈R+
0

E ([E (M∞(p̃)|Ht)]
p)

≤ sup
t∈R+

0

E (E (Mp
∞(p̃)|Ht))

= E (Mp
∞(p̃)) ,

and another application of Doob’s maximal inequality thus results in

E

([

sup
t∈R+

0

Λt(p̃)

]p)

≤
(

p

p− 1

)p

lim
t→∞

E ([Λt(p̃)]
p) ≤

(

p

p− 1

)p

E (Mp
∞(p̃)) <∞.

49



�

Notice that Proposition 3.5 implies that

E

(

sup
t∈R+

0

〈ρt, f〉p
)

<∞ (3.14)

for all p ∈ [1, (1 + p̄)(1 + p∗)−1].

Let us now establish an auxiliary result that will enable us to obtain a good asymptotic

approximation, in an almost sure sense, of the right–hand side in (3.2) by the condi-

tional expectation E(〈ρst, f〉|Ht). For this purpose, recall the definitions of σt,n and σt

in (2.3) and (2.4) respectively. Furthermore, for any t ∈ R+
0 and s > 1 set

Jt,s :=
{

n ∈ N : λt,n ≥ e−st
}

as well as J ∁
t,s :=

{

n ∈ N : λt,n < e−st
}

.

Lemma 3.6 Assume that Hypothesis 3.1 and Hypothesis 3.2 are satisfied. Then there

exists an s0 ∈ (1,∞) such that

lim
t→∞

∑

n∈J ∁
t,s

λ1+p
∗

t,n f
(

etλt,n
)

= 0

P–a.s. for all s ≥ s0.

Proof We first prove the assertion in the conservative case (Part I), making use of

Hypothesis 3.2, and then we use a different approach, which is based on Hypothesis 3.1,

to prove the assertion in the dissipative case (Part II). Note that due the boundedness

of f is suffices to consider the case f |[0,1] ≡ 1.

Part I Assume that ν is conservative, that is p∗ = 0. In addition, fix some s > 1.

Consider the corresponding interval fragmentation process I and, motivated by the

notation introduced in Section 1.7, let us define a stochastic process ξu := (ξu(t))t∈R+
0
,

u ∈ [0, 1], by

ξu(t) = − ln(|Iu(t)|)

for any t ∈ R+
0 . As in Section 1.7, we have that ξu, u ∈ (0, 1), is a subordinator with

Laplace exponent Φ. Further, for any u ∈ [0, 1) and t ∈ [0, 1) set

υt,u := inf{r ∈ R+
0 : |Iu(r)| < e−t} = inf{r ∈ R+

0 : ξu(r) > t}.
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Then we have
∑

n∈J ∁
t,s

λ1+p
∗

t,n =

∫

[0,1]
1{|Iu(υt,u)|<e−st} du.

Moreover,
{

|Iu(υt,u)| < e−st
}

=

{

ξu(υt,u)− t

t
> s− 1

}

.

According to Hypothesis 3.2 the subordinator ξu has finite mean, and thus the classical

theory of subordinators, cf. [Ber99], yields that

lim
t→∞

ξu(υt,u)− t

t
= 0

P–almost surely. Hence, the DCT implies the assertion in the conservative case.

Part II Assume that ν is dissipative and, in view of Hypothesis 3.1, let p ∈ (p, p∗).

Observe that
∑

n∈J ∁
t,s

λ1+p
∗

t,n ≤ e−(p∗−p)st−Φ(p)σt
∑

n∈N

λ1+pt,n e
Φ(p)σt,n (3.15)

holds true P–a.s. for any t ∈ R+
0 and all s ∈ (1,∞). Recall that in (2.7) we showed

that

lim
t→∞

σt
t

=
1

Φ′(p̄)

P–almost surely. Hence, it follows from (3.15) that

∑

n∈J ∁
t,s

λ1+p
∗

t,n ≤ exp
(

−
[

(p∗ − p)s+Φ(p)Φ′(p̄)−1
]

t
)

∑

n∈N

λ1+pt,n e
Φ(p)σt,n (3.16)

holds P–a.s. for every t ∈ R+
0 and s ∈ (1,∞). Moreover, (p∗ − p)s + Φ(p)Φ′(p̄)−1 > 0

for any

s > s0 :=
Φ(p)

(p∗ − p)Φ′(p̄)
.

Hence, we infer from (3.16) and the martingale property of Λ(p), cf. Lemma 2.3, that

lim sup
t→∞

∑

n∈J ∁
t,s

λ1+p
∗

t,n

≤ lim
t→∞

exp
(

−
[

(p∗ − p)s+Φ(p)Φ′(p̄)−1
]

t
)

Λ∞(p)

= 0

P–a.s. for all s > s0. �
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Recall the filtration H = (Ht)t∈R+
0
given by (2.2).

Lemma 3.7 Assume that Hypothesis 3.1 and Hypothesis 3.2 are satisfied. Then there

exists some s0 ∈ (1,∞) such that

lim
t→∞

E(〈ρst, f〉|Ht) = 〈ρ, f〉Λ∞(p∗)

P–a.s. for all s ≥ s0.

Proof For any t ∈ R+
0 and s ∈ (1,∞) the extended fragmentation property yields

that

E(〈ρ2st, f〉|Ht)

=
∑

n∈Jt,s

λ1+p
∗

t,n E

(

∑

k∈N

λ
(k)
t,s f

(

e2stλt,nλ
(k)
t,s

)

∣

∣

∣

∣

∣

Ht

)

(3.17)

+
∑

n∈Jt,2s\Jt,s

λ1+p
∗

t,n E

(

∑

k∈N

λ
(k)
t,s f

(

e2stλt,nλ
(k)
t,s

)

∣

∣

∣

∣

∣

Ht

)

+
∑

n∈J ∁
t,2s

λ1+p
∗

t,n f
(

etλt,n
)

P–a.s., where conditional on Ht the λ
(k)
t,s are independent and satisfy

E

(

λ
(k)
t,s ∈ ·

∣

∣

∣Ht

)

= E

(

λ1+p
∗

u,k ∈ ·
)∣

∣

∣

u=2st+ln(λt,n)

P–almost surely. Observe that

e2stλt,nλ
(k)
t,s = e2st+ln(λt,n)λ

(k)
t,s ,

and thus

E

(

λ
(k)
t,s f

(

e2stλt,nλ
(k)
t,s

)∣

∣

∣
Ht

)

= E

(

λ1+p
∗

u,k f (euλu,k)
)∣

∣

∣

u=2st+ln(λt,n)
.

P–a.s. for all k ∈ N. Therefore, (3.17) results in

E(〈ρ2st, f〉|Ht)

=
∑

n∈Jt,s

λ1+p
∗

t,n E (〈ρu, f〉)|u=2st+ln(λt,n)
(3.18)

+
∑

n∈Jt,2s\Jt,s

λ1+p
∗

t,n E (〈ρu, f〉)|u=2st+ln(λt,n)
+

∑

n∈J ∁
t,2s

λ1+p
∗

t,n f
(

etλt,n
)
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P–almost surely. Let us first consider the first summand on the right–hand side of

(3.18). Note that 2st + ln(λt,n) ≥ st for all n ∈ Jt,s, s ∈ (1,∞) and t ∈ R+
0 . Hence,

Lemma 3.4 implies that

E (〈ρu, f〉)|u=2st+ln(λt,n)
→ 〈ρ, f〉

as t → ∞ for every s ∈ (1,∞) and this convergence is uniform in n ∈ Jt,s. We thus

deduce from Lemma 3.6 that there exists some s∗ ∈ (1,∞) such that

lim
t→∞

∑

n∈Jt,s

λ1+p
∗

t,n E (〈ρu, f〉)|u=2st+ln(λt,n)
= 〈ρ, f〉 lim

t→∞

∑

n∈Jt,s

λ1+p
∗

t,n

= 〈ρ, f〉Λ∞(p∗) (3.19)

holds true P–a.s. for any s ≥ s∗. Moreover, according to Lemma 3.6 there exists some

s∗∗ ∈ (1,∞) such that

lim
t→∞

∑

n∈Jt,2s\Jt,s

λ1+p
∗

t,n E (〈ρu, f〉)|u=2st+ln(λt,n)
≤ ‖f‖∞ lim

t→∞

∑

n∈J ∁
t,s

λ1+p
∗

t,n = 0 (3.20)

P–a.s. for all s ≥ s∗∗, where we have used that

E (〈ρu, f〉)|u=2st+ln(λt,n)
≤ ‖f‖∞ E (Λu(p

∗))|u=2st+ln(λt,n)
= ‖f‖∞.

for all n ∈ N and t ∈ R+
0 . By resorting to Lemma 3.6 once again we infer that there

exists an s∗∗∗ ∈ (1,∞) such that

lim
t→∞

∑

n∈J ∁
t,2s

λ1+p
∗

t,n f
(

etλt,n
)

= 0 (3.21)

P–a.s. for each s ≥ s∗∗∗. Setting s0 := s∗ ∨ s∗∗ ∨ s∗∗∗ we conclude by means of (3.18),

(3.19), (3.20) and (3.21) that

lim
t→∞

E(〈ρst, f〉|Ht) = 〈ρ, f〉Λ∞(p∗)

holds P–a.s. for all s ≥ s0. �

The previous lemma shows that asymptotically, in the sense of almost sure convergence,

E(〈ρst, f〉|Ht) is a good approximation of 〈ρ, f〉Λ∞(p∗). If we could also show that

almost surely E(〈ρst, f〉|Ht) is asymptotically a good approximation of 〈ρst, f〉, then
the triangle inequality would prove Theorem 3.2. It turns out that we are not able to
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show this directly. However, what we can actually show is the following proposition

which provides us with L p–convergence, for some p > 1, rather than the desired almost

sure convergence. Moreover, it shows that the rate of convergence is exponentially fast

and it turns out that this is enough for our purpose.

Proposition 3.8 Assume that Hypothesis 3.1 is satisfied. Then there exist some con-

stants κ, γ > 0 and p > 1 such that

‖〈ρst, f〉 − E(〈ρst, f〉|Ht)‖p ≤ κe−γt (3.22)

holds for all t ∈ R+
0 and s > 1.

Proof As in [Big92, Lemma 1] an application of Fatou’s lemma (for conditional ex-

pectations) results in

E

(∣

∣

∣

∣

∣

∑

n∈N

Zn

∣

∣

∣

∣

∣

p ∣
∣

∣

∣

∣

Ht

)

≤ 2p
∑

n∈N

E ( |Zn|p |Ht) (3.23)

holds for any p ∈ [1, 2] and for all sequences (Zn)n∈N of independent random variables

with E(Zn|Ht) = 0. Moreover, according to Jensen’s inequality we have

|u+ v|p ≤ 2p−1(|u|p + |v|p) (3.24)

for all u, v ∈ R and every p ≥ 1.

Let t ∈ R+
0 as well as s > 1. By means of the extended fragmentation property we have

〈ρst, f〉 − E(〈ρst, f〉|Ht) =
∑

n∈Jt,s

λ1+p
∗

t,n

(

〈ρ(n), f〉 − E(〈ρ(n), f〉|Ht)
)

+
∑

n∈J ∁
t,s

λ1+p
∗

t,n f
(

etλt,n
)

− E







∑

n∈J ∁
t,s

λ1+p
∗

t,n f
(

etλt,n
)

∣

∣

∣

∣

∣

∣

∣

Ht







=
∑

n∈Jt,s

λ1+p
∗

t,n

(

〈ρ(n), f〉 − E

(

〈ρ(n), f〉
∣

∣

∣Ht

))

, (3.25)

where conditional on Ht the 〈ρ(n), f〉 are independent and satisfy

P

(

〈ρ(n), f〉 ∈ ·
∣

∣

∣Ht

)

= P (〈ρu, f〉 ∈ ·)|u=st+ln(λt,n)
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P–almost surely. Since

E

(

1{n∈Jt,s}λ
1+p∗

t,n

(

〈ρ(n), f〉 − E

(

〈ρ(n), f〉
∣

∣

∣
Ht

))∣

∣

∣
Ht

)

= 1{n∈Jt,s}λ
1+p∗

t,n E

(

〈ρ(n), f〉 − E

(

〈ρ(n), f〉
∣

∣

∣Ht

)∣

∣

∣Ht

)

= 0,

we can apply (3.23) in order to deduce from (3.25) that

E ( |〈ρst, f〉 − E (〈ρst, f〉|Ht)|p |Ht)

≤ 2p
∑

n∈Jt,s

λ
p(1+p∗)
t,n E

(∣

∣

∣〈ρ(n), f〉 − E

(

〈ρ(n), f〉
∣

∣

∣Ht

)∣

∣

∣

p ∣
∣

∣Ht

)

≤ 22p−1
∑

n∈Jt,s

λ
p(1+p∗)
t,n E

(

〈ρ(n), f〉p + E

(

〈ρ(n), f〉
∣

∣

∣Ht

)p∣
∣

∣Ht

)

(3.26)

≤ 22p−1
∑

n∈Jt,s

λ
p(1+p∗)
t,n E

(

〈ρ(n), f〉p + E

(

〈ρ(n), f〉p
∣

∣

∣Ht

)∣

∣

∣Ht

)

= 22p
∑

n∈Jt,s

λ
p(1+p∗)
t,n E

(

〈ρ(n), f〉p
∣

∣

∣Ht

)

holds true for any p ∈ [1, 2], where the 〈ρ(n), f〉 are the same random variables that

appear in (3.25). Notice that the first estimate in (3.26) results from (3.23) and (3.25),

and the second estimate holds by means of (3.24). The third estimate is a consequence

of Jensen’s inequality for conditional expectations.

By taking the expectation on both sides in (3.26) we obtain

E (|〈ρst, f〉 − E (〈ρst, f〉|Ht)|p) ≤ 22pE





∑

n∈Jt,s

λ
p(1+p∗)
t,n E (〈ρu, f〉p)|u=st+ln(λt,n)





≤ 22p sup
u∈R+

0

E (〈ρu, f〉p)E





∑

n∈Jt,s

λ
p(1+p∗)
t,n



 . (3.27)

Further, note that

E





∑

n∈Jt,s

λ
p(1+p∗)
t,n



 ≤ e−(p−1)(1+p∗)tE (Λt(p
∗)) = e−(p−1)(1+p∗)t, (3.28)
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since Λ(p∗) is a unit–mean martingale. In view of (3.14) let p > 1 be such that

K := E

(

sup
u∈R+

0

〈ρu, f〉p
)

<∞.

Then we infer from (3.27) and (3.28) that

E (|〈ρst, f〉 − E (〈ρst, f〉|Ht)|p) ≤ 22pKe−(p−1)(1+p∗)t.

�

We are now in a position to prove Theorem 3.2. Let us emphasise that all the above

results were obtained under the assumption that Π is homogenous.

Proof of Theorem 3.2

The proof is divided into three parts. In the first part we establish the convergence

along log–lattice times for homogenous fragmentation processes. The second part is

devoted to extend that convergence from log–lattice times to convergence along the

real numbers, still in the setting of homogenous fragmentations. Finally, in the third

part we show that the result is also true for self–similar fragmentation processes with

index of self–similarity α 6= 0.

Part I As above we assume that Π is a homogenous fragmentation process.

Let f ∈ B+ and in view of Proposition 3.8 let γ, κ > 0 as well as p > 1 be such that

(3.22) holds for any s > 1. It then follows from the Chebyshev–Markov inequality that

∑

n∈N

P(|〈ρsδn, f〉 − E(〈ρsδn,X〉|Hδn)| > ε) ≤ 1

εp

∑

n∈N

‖〈ρsδn, f〉 − E(〈ρsδn, f〉|Hδn)‖pp

≤ κp

εp

∑

n∈N

e−pγδn

<∞

holds for every δ, ε > 0. Thus, we infer from the Borel–Cantelli lemma that

lim
n→∞

|〈ρsδn, f〉 − E(〈ρsδn, f〉|Hδn)| = 0 (3.29)

holds P–a.s. for all δ > 0 and s > 1. In view of the triangle inequality, we thus deduce

from (3.29) and Lemma 3.7 that there exists some s0 ∈ (1,∞) such that

|〈ρsδ′n, f〉 − 〈ρ, f〉Λ∞(p∗)|
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≤ |〈ρsδ′n, f〉 − E (〈ρsδ′n, f〉|Hδ′n)|+ |E ( 〈ρsδ′n, f〉|Hδ′n)− 〈ρ, f〉Λ∞(p∗)|

holds true P–a.s. for all n ∈ N, δ′ > 0 and any s ≥ s0. Let δ > 0. Setting δ′ := s−1δ in

the above estimate we deduce that

lim
n→∞

〈ρδn, f〉 = 〈ρ, f〉Λ∞(p∗) (3.30)

P–almost surely.

Part II Let us now extend (3.30) to convergence along the real numbers. To this end,

observe that for any δ > 0 and all t ∈ R+
0 we have

〈ρt, f〉 ≥
∑

k∈J ∁

nδ, t
nδ

λ1+p
∗

nδ,k f
(

etλnδ,k
)

=
∑

k∈N

λ1+p
∗

nδ,k f
(

etλnδ,k
)

(3.31)

=
∑

k∈N

λ1+p
∗

nδ,k f
(

e(t−nδ)enδλnδ,k

)

,

where n ∈ N is chosen such that t ∈ (nδ, (n + 1)δ). Note that the penultimate equal-

ity results from f ≡ 0 on [1,∞). For the time being, let us assume that f ∈ B+

is continuous and has compact support, that is, by the Heine–Cantor theorem, f is

uniformly continuous. Therefore, for any ǫ > 0 there exists some δǫ > 0 such that

f(se(t−nδ)) ≥ f(s) − ǫ P–a.s. for all δ ≤ δǫ, s ∈ supp(f), t ∈ R+
0 and n ∈ N with

t ∈ (nδ, (n + 1)δ). Hence, under the above–mentioned assumptions on f we deduce

from (3.31) that

〈ρt, f〉 ≥ 〈ρnδ, f〉 − ǫ〈ρnδ,1〉

holds for every δ ≤ δǫ and all t ∈ R+
0 and n ∈ N with t ∈ (nδ, (n+ 1)δ). Consequently,

we infer from (3.30) that

lim inf
t→∞

〈ρt, f〉 ≥ lim inf
n→∞

(〈ρnδ, f〉 − ǫ〈ρnδ,1〉) = (〈ρ, f〉 − ǫ)Λ∞(p∗)

P–a.s. for all δ ≤ δǫ. Letting ǫ→ 0 we obtain

lim inf
t→∞

〈ρt, f〉 ≥ 〈ρ, f〉Λ∞(p∗) (3.32)

P–a.s. for any continuous f ∈ B+ with compact support.

Now assume that f ∈ B+ is continuous and let (fk)k∈N ⊆ B+ be a sequence of con-

tinuous and compactly supported functions such that fk ↑ f pointwise. Then we infer
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from (3.32) that

lim inf
t→∞

〈ρt, f〉 ≥ lim
k→∞

lim inf
t→∞

〈ρt, fk〉 ≥ lim
k→∞

〈ρ, fk〉Λ∞(p∗) = 〈ρ, f〉Λ∞(p∗) (3.33)

P–a.s., where the final equality follows from the MCT and the continuity of 〈ρ, ·〉.
Let A ⊆ R+

0 be some open set. Then there exists an increasing sequence (fk)k∈N ⊆ B+

of continuous functions such that fk ↑ 1A pointwise. Following the reasoning of (3.33)

we obtain

lim inf
t→∞

〈ρt,1A〉 ≥ 〈ρ,1A〉Λ∞(p∗) (3.34)

P–almost surely. In view of 〈ρt,1〉 = Λt(p
∗) it follows from (3.34) that

lim sup
t→∞

〈ρt,1A〉 ≤ lim
t→∞

Λt(p
∗)− lim inf

t→∞
〈ρt,1− 1A〉

≤ (1− 〈ρ,1− 1A〉)Λ∞(p∗) (3.35)

= 〈ρ,1A〉Λ∞(p∗),

P–a.s., where we have used the linearity of 〈ρ, ·〉 and the fact that 〈ρ,1〉 = 1.

Next let A ⊆ R+
0 be some arbitrary set and let (Ak)k∈N be a sequence of open sets with

Ak ↓ A as k → ∞. By means of (3.35) we then have

lim sup
t→∞

〈ρt,1A〉 ≤ lim
k→∞

lim sup
t→∞

〈ρt,1Ak
〉 ≤ lim

k→∞
〈ρ,1Ak

〉Λ∞(p∗) = 〈ρ,1A〉Λ∞(p∗)

P–almost surely. Similarly to the argument in (3.35) we thus deduce that

lim inf
t→∞

〈ρt,1A〉 ≥ lim
t→∞

Λt(p
∗)− lim sup

t→∞
〈ρt,1− 1A〉

≥ (1− 〈ρ,1− 1A〉)Λ∞(p∗) (3.36)

= 〈ρ,1A〉Λ∞(p∗)

P–almost surely.

In view of the well–known measure theoretical fact that every nonnegative measurable

function can be approximated from below by an increasing sequence of nonnegative step

functions, drop any additional assumptions on f ∈ B+ and let (fk)k∈N be a sequence

of nonnegative linear combinations of indicator functions such that fk ↑ f as k → ∞.

Resorting to (3.36) we then infer analogously to (3.33) that

lim inf
t→∞

〈ρt, f〉 ≥ 〈ρ, f〉Λ∞(p∗) (3.37)
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P–almost surely. Consequently, the same reasoning as in (3.35) results in

lim sup
t→∞

〈ρt, f〉 ≤ ‖f‖∞ lim
t→∞

Λt(p
∗)− lim inf

t→∞
〈ρt, ‖f‖∞ − f〉

≤ (‖f‖∞ − 〈ρ, ‖f‖∞ − f〉)Λ∞(p∗)

= 〈ρ, f〉Λ∞(p∗)

P–almost surely. Combining this estimate with (3.37) we conclude that

lim
t→∞

〈ρt, f〉 = 〈ρ, f〉Λ∞(p∗) (3.38)

P–almost surely.

Part III So far we have assumed that the fragmentation process Π is homogenous. It

remains to show the assertion for self–similar fragmentation processes with index α 6= 0.

Recall that Theorem 1.24 shows that any self–similar fragmentation process is a time–

changed homogenous fragmentation process. Furthermore, observe that the definition

of 〈ρt, ·〉 is only concerned with stopping lines associated with fragment sizes and with

the size of the blocks at these times. The times themselves do not influence the values

of 〈ρt, ·〉. In other words, a time–change of Π does not affect the stopped process λS

and thus it does not change 〈ρt, ·〉 as this depends on Π only via λt, cf. Definition 2.2.

In view of (3.38) this proves Theorem 3.2. �

In the light of Theorem 3.2 and (3.14) the proof of Corollary 3.3 is a straightforward

application of the DCT.

Proof of Corollary 3.3 Resorting to Theorem 3.2 and (3.14) we infer from the DCT

that

〈ρt, f〉 → 〈ρ, f〉Λ∞(p∗)

in L p(P) for any f ∈ B+ and all p ∈ [1, (1 + p̄)(1 + p∗)−1]. �

3.6 Concluding remarks

As mentioned earlier, in the literature there are several strong laws of large numbers, for

various classes of branching processes, that are similar in spirit to Theorem 3.2. Here we

are going to provide some more detail in this regard. In [Ner81, Theorem 5.4] Nerman

obtained strong and weak laws of large numbers, in the setting of Crump–Mode–Jagers

processes, that do not directly look like the convergence in Theorem 3.2. The connection

with our result can be seen in the case of a finite dislocation measure. Indeed, exploiting
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the fact that Crump–Mode–Jagers processes can be seen as fragmentation processes

with finite dislocation measure [Ner81, Theorem 5.4] essentially proves Theorem 3.2

in the situation of a finite activity fragmentation. In [BM05, Corollary 1] Bertoin

and Mart́ınez made this claim rigorous for obtaining L 1–convergence, but the same

approach works for almost sure convergence, cf. [BM05, Remark 1 (b)]. Moreover,

in [BM05, Corollary 2] they considered the problem for fragmentation processes with

infinite dislocation measure, where Nerman’s results are not applicable. More precisely,

in [BM05, Corollary 2] Bertoin and Mart́ınez proved L 2–convergence for conservative

fragmentation processes. Note that in Theorem 3.2 we show almost sure convergence

in the dissipative setting.

In [HK08] the convergence result of Theorem 3.2 is considered from a different point

of view. In fact, motivated by an application to mathematical statistics Hoffmann and

Krell use the convergence of the integral with respect to the empirical measure ρt in

order to estimate the Lévy measure of the subordinator ξU , where U is a uniformly

distributed random variable on [0, 1], cf. Remark 1.32. More specifically, in [HK08,

Theorem 3.1] they prove L 2–convergence of the object under consideration in Theo-

rem 3.2 for conservative fragmentation chains. In their setting [HK08, Theorem 3.1]

extends [BM05, Corollary 2], under some additional assumptions, in that it not only

shows convergence but also establishes the rate of convergence.
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CHAPTER 4

STRONG LAW OF LARGE NUMBERS FOR

FRAGMENTATIONS WITH IMMIGRATION

In this chapter we extend Theorem 3.2, to the setting of fragmentation

processes with immigration.

4.1 Fragmentation processes with immigration

Set

S :=

{

s := (sn)n∈N :
∑

n∈N

sn <∞, 0 ≤ sj ≤ si <∞∀ i ≤ j

}

.

On S we define the binary operator + as the decreasingly ordered concatenation of two

sequences in S. The corresponding iterated operator is denoted by
∑

.

Definition 4.1 Let u := (un)n∈N : Ω → S. Then we call self–similar mass fragmenta-

tion process starting from u with index αu := (αn)n∈N, αn ∈ R, the S–valued Markov

process λu := (λu(t))t∈R+
0
, defined by

λu(t) :=
∑

n∈N

unλ
(n)(uαn

n t)

for all t ∈ R+
0 , where the λ

(n) are independent self–similar standard mass fragmentation

processes with index αn as given by Definition 1.9, where we assume that the λ(n) are

also independent of u.

Now we can define fragmentation processes with immigration.
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Definition 4.2 Let u : Ω → S and consider a random measure N on S ⊗ R+
0 with

atoms (s(ti), ti)i∈I , where the index set I is at most countably infinite. Furthermore,

consider some sequences (αn)n∈N and (αi,j)i∈I,j∈N in R. For i ∈ I let λu := (λu(t))t∈R+
0

and λs(ti) := (λs(ti)(t))t∈R+
0
be given by

λu(t) =
∑

n∈N

unλ
(n) (uαn

n t) as well as λs(ti)(t) =
∑

j∈N

s(ti)jλ
(i,j)

(

s(ti)
αi,j

j t
)

,

where the λ(n) and λs(ti) are independent self–similar standard mass fragmentation

processes with index αn and αi,j respectively. Note that λu and λs(ti), i ∈ I, are

self–similar mass fragmentation processes starting from u and s(ti) respectively, and

assume that conditionally on u and (s(ti), ti)i∈I these processes are independent. Then

we call the S–valued process λI := (λI(t))t∈R+
0
, defined by

λI(t) := λu(t) +
∑

i∈I:ti≤t

λs(ti)(t− ti)

for all t ∈ R+
0 , a self–similar mass fragmentation process with immigration starting

from u.

4.2 Set–up

For all i ∈ I and j, n ∈ N let Π(n) and Π(i,j) be independent self–similar standard

P–fragmentation processes rescaled such that |Π(n)
1 (0)| = un and |Π(i,j)

1 (0)| = s(ti)j P–

almost surely. Further, we assume that the evolution of Π(n) [resp. Π(i,j)] is independent

of the starting value un [resp. s(ti)j ]. In view of the previous chapter we assume that

Π(n) and Π(i,j) satisfy Hypothesis 1.1 and Hypothesis 1.2 as well as Hypothesis 3.1 and

Hypothesis 3.2. We denote the Malthusian parameter associated with Π(n) [resp. Π(i,j)]

by p∗n [resp. p∗i,j]. In addition, let λ(n) [resp. λ(i,j)] be the mass fragmentation obtained

from the asymptotic frequencies of Π(n) [resp. Π(i,j)], cf. Section 1.6, and let λI be the

the corresponding fragmentation process with immigration, see Definition 4.2.

Definition 4.3 Bearing in mind the above set–up we call stopped fragmentation pro-

cess with immigration the S–valued stochastic process (λIt )t∈R+
0
defined by

λIt :=
(

λIt,m
)

m∈N
=
∑

n∈N

λ
(n)
t +

∑

i∈I

∑

j∈N

λ
(i,j)
t .
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For any i, j, n set λ̃(n) := u−1
n λ(n) as well as λ̃(i,j) := s(ti)

−1
j λ(i, j) and observe that

λ
(n)
t = λ̃

(n)
t+ln(un)

and λ
(i,j)
t = λ̃

(i,j)
t+ln(s(ti)j)

. (4.1)

In the context of fragmentation processes with immigration, the objects considered in

Chapter 3 have analogous notions that we now introduce. Recall that we denote the

space of all bounded and measurable function f : R → R+
0 with f |[1,∞) ≡ 0 by B+.

Let f (n), f (i,j) ∈ B+ for all i ∈ I and j, n ∈ N, and let f I := (fk)k∈N be a sequence

in B+ such that for every n ∈ N there exists some k ∈ N such that fk = f (n) and

for any i ∈ I and j ∈ N there is a k ∈ N such that fk = f (i,j). In addition, let

η : R+
0 × N → N ∪ (I × N) be a random function that assigns to each (t,m) ∈ R+

0 × N

the index n ∈ N or (i, j) ∈ I × N such that λIt,m corresponds to λ
(n)
t,k or λ

(i,j)
t,k for some

k ∈ N. In the setting with immigration the analogue of 〈ρt, ·〉, which was introduced

in (3.1) in the context of standard fragmentation processes, is defined as follows:

〈ρIt , f I〉 :=
∑

m∈N

[

λIt,m
]1+p∗

η(t,m) f (η(t,m))
(

etλIt,m
)

.

By means of (4.1) we then have

〈ρIt , f I〉 =
∑

k∈N





∑

n∈N

[

λ
(n)
t,k

]1+p∗n
f (n)

(

etλ
(n)
t,k

)

+
∑

i∈I

∑

j∈N

[

λ
(i,j)
t,k

]1+p∗i,j
f (i,j)

(

etλ
(i,j)
t,k

)





=
∑

n∈N

u1+p
∗
n

n 〈ρnt , f (n)〉+
∑

i∈I

∑

j∈N

s(ti)
1+p∗i,j
j

〈

ρi,jt , f
(i,j)
〉

, (4.2)

where

〈ρnt , f (n)〉 =
∑

k∈N

[

λ̃
(n)
t+ln(un),k

]1+p∗n
f (n)

(

et+ln(un)λ̃
(n)
t+ln(un),k

)

(4.3)

as well as

〈ρi,jt , f (i,j)〉 =
∑

k∈N

[

λ̃
(i,j)
t+ln(s(ti)j),k

]1+p∗i,j
f (i,j)

(

et+ln(s(ti)j)λ̃
(i,j)
t+ln(s(ti)j),k

)

.

for any t ∈ R+
0 . Furthermore, set

ΛI∞(f I) :=
∑

n∈N

u1+p
∗
n

n 〈ρn, f (n)〉Λ(n)
∞ (p∗n) +

∑

i∈I

∑

j∈N

s(ti)
1+p∗i,j
j 〈ρi,j, f (i,j)〉Λ(i,j)

∞ (p∗i,j),
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where

〈ρn, f (n)〉 := lim
t→∞

E(〈ρnt , f (n)〉) and 〈ρi,j, f (i,j)〉 := lim
t→∞

E(〈ρi,jt , f (i,j)〉)

as well as

Λ(n)
∞ (p∗n) := lim

t→∞
〈ρnt ,1〉 and Λ(i,j)

∞ (p∗i,j) := lim
t→∞

〈ρi,jt ,1〉

for all i ∈ I and j, n ∈ N.

4.3 Strong law of large numbers for fragmentation pro-

cesses with immigration

Here we resort to the set–up established in the previous section. For the main result

of this chapter we need the following condition:

∑

n∈N

u1+p
∗
n

n ∈ L
1(P) and

∑

i∈I

∑

j∈N

s(ti)
1+p∗i,j
j ∈ L

1(P) (4.4)

P–almost surely.

Similar to Crump–Mode–Jagers processes (cf. [Olo96]), it is possible to lift the strong

law for fragmentation processes in Theorem 3.2 up to fragmentation processes with

immigration. More precisely, our main result in this chapter is the following theorem:

Theorem 4.4 Assume that for each n ∈ N and (i, j) ∈ I × N the processes λ(n) and

λ(i,j) satisfy Hypothesis 3.1 and Hypothesis 3.2. If in addition (4.4) holds, then

lim
t→∞

〈ρIt , f I〉 = ΛI∞(f I) (4.5)

P–a.s. for all f (n), f (i,j) ∈ B+
1 := {f ∈ B+ : ‖f‖∞ ≤ 1}.

In view of Theorem 3.2 this says that the limit of the series in (4.2) as t → ∞ is the

same as taking the limit inside the series. Note that this is not an obvious result, since

in general neither the DCT nor the MCT is applicable in this situation.
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4.4 Proof of the strong law of large numbers for fragmen-

tations with immigration

In order to tackle the proof of Theorem 4.4 we first need to develop some auxiliary

lemmas. We remark that the method of proof is based on ideas of [AH77] and [Olo96].

Let J be some index set which is at most countably infinite and consider a random

sequence v := (vj)j∈J ∈ S.
In view of (4.4) we assume that

∑

j∈J

E

(

v
1+p∗j
j

)

<∞ (4.6)

Let Π(j), j ∈ J , be independent homogenous standard P–fragmentation processes

rescaled such that |Π(j)| = vj P–almost surely. In addition, assume that the evolution

of Π(j) is independent of vj and that Π(j) satisfies Hypothesis 3.2, Hypothesis 1.1,

Hypothesis 3.1 as well as Hypothesis 1.2.

Bearing in mind (4.2) set

〈ρvt , ·〉 :=
∑

j∈Jt

v
1+p∗j
j

〈

ρjt , ·
〉

,

where the 〈ρjt , ·〉 are defined analogously to (4.3) with respect to Π(j). Further, for

every t ∈ R+
0 set

Jt := {j ∈ J : vj ≥ e−t} as well as J ∁
t := {j ∈ J : vj < e−t}. (4.7)

For every j ∈ J and t ∈ R+
0 let (λ

(j)
t )t∈R+

0
be the stopped fragmentation process,

see Definition 2.2, associated with Π(j). In addition, let (H
(j)
t )t∈R+

0
, j ∈ J , be the

filtration generated by the stopped process (λ
(j)
t )t∈R+

0

H
(j)
t = σ

(

{λ(j)s : s ≤ t}
)

and note that vj is H
(j)
t –measurable for each t ∈ R+

0 . Furthermore, consider the

filtration H J := (H J
t )t∈R+

0
given by

H
J
t := σ





⋃

j∈Jt

H
(j)
t




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for any t ∈ R+
0 .

According to Lemma 2.3 we have that Λ(j)(p∗j ) := (〈ρjt ,1〉)t∈R+
0
, j ∈ J , is a nonnegative

uniformly integrable H (j)–martingale with unit mean and with P–a.s. limit

Λ(j)
∞ (p∗j) := lim

t→∞
〈ρjt ,1〉. (4.8)

Lemma 4.5 There exists a ΛJ
∞ ∈ L 1(P) such that 〈ρvt ,1〉 → ΛJ

∞ P–a.s. as t→ ∞.

Proof By means of the MCT and independence we infer from (4.6) that

sup
t∈R+

0

E(〈ρvt ,1〉) = sup
t∈R+

0

∑

j∈J

E

(

v
1+p∗j
j

)

E

(

〈ρjt ,1〉
)

=
∑

j∈J

E

(

v
1+p∗j
j

)

<∞. (4.9)

Moreover, the MCT for conditional expectations in conjunction with the martingale

property of (〈ρjt ,1〉)t∈R+
0
for any j ∈ J yields that

E
(〈

ρvt+s,1
〉∣

∣H
J
t

)

=
∑

j∈J

v
1+p∗j
j E

(〈

ρjt+s,1
〉∣

∣

∣
H

(j)
t

)

≥
∑

j∈Jt

v
1+p∗j
j E

(〈

ρjt+s,1
〉∣

∣

∣H
(j)
t

)

=
∑

j∈Jt

v
1+p∗j
j

〈

ρjt ,1
〉

= 〈ρvt ,1〉

P–a.s. for all s, t ∈ R+
0 , which shows that under P the process (〈ρvt ,1〉)t∈R+

0
is a

nonnegative H J –submartingale. Note that here we have used the independence of

(Π(j))j∈J . In view of (4.9) the submartingale convergence theorem thus ensures that

P–a.s. there exists a ΛJ
∞ ∈ L 1(P) such that 〈ρvt ,1〉 → ΛJ

∞ P–a.s. as t → ∞. �

The previous lemma can be strengthened in the sense that the obtained limiting ran-

dom variable can be described explicitly. This claim is the statement of the following

proposition.

Proposition 4.6 We have

〈ρvt ,1〉 →
∑

j∈J

v
1+p∗j
j Λ(j)

∞ (p∗j )

P–a.s. as t→ ∞.
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Proof As a consequence of the MCT and (4.6) we obtain that

E





∑

j∈J

v
1+p∗j
j Λ(j)

∞ (p∗j )



 =
∑

j∈J

E

(

v
1+p∗j
j

)

E

(

Λ(j)
∞ (p∗j)

)

=
∑

j∈J

E

(

v
1+p∗j
j

)

<∞, (4.10)

where we have used independence and the fact that the unit–mean martingale Λ(j)(p∗j )

is uniformly integrable. Further, let ΛJ
∞ be given by Lemma 4.5 and recall the definition

of Jt as well as J ∁
t in (4.7). Observe that for any 0 ≤ s ≤ t we have

ΛJ
∞ −

∑

j∈J

v
1+p∗j
j Λ(j)

∞ (p∗j )

= ΛJ
∞ − 〈ρvt ,1〉 +

∑

j∈Js

v
1+p∗j
j

(〈

ρjt ,1
〉

− Λ(j)
∞ (p∗j)

)

(4.11)

+
∑

j∈J ∁
s

v
1+p∗j
j

〈

ρjt ,1
〉

−
∑

j∈J ∁
s

v
1+p∗j
j Λ(j)

∞ (p∗j ).

According to Lemma 4.5 we have that ΛJ
∞−〈ρvt ,1〉 → 0 P–a.s. as t→ ∞. Furthermore,

by means of (4.6) the third term converges to zero P–a.s. as t → ∞. Indeed, notice that

the sum in the third term has only finitely many summands as infinitely many j ∈ J
with vj ≥ e−s would contradict (4.6). Hence, we can take the limit inside the sum.

Moreover, resorting to (4.10) we obtain that the last term above tends to zero P–a.s. as

s→ ∞. Let us now consider the fourth term, and note that limt→∞
∑

j∈J ∁
s
v
1+p∗j
j 〈ρjt ,1〉

exists P–a.s., since, according to Lemma 4.5, limt→∞〈ρvt ,1〉 exists P–a.s. and also

limt→∞
∑

j∈Js
v
1+p∗j
j 〈ρjt ,1〉 exists because the sum is taken over only finitely many

summands. Since

s 7→ lim
t→∞

∑

j∈J ∁
s

v
1+p∗j
j

〈

ρjt ,1
〉

is monotonically decreasing in s, we infer that the limit as s → ∞ exists P–a.s., and

thus we deduce from Fatou’s lemma that

E



 lim
s→∞

lim
t→∞

∑

j∈J ∁
s

v
1+p∗j
j

〈

ρjt ,1
〉



 ≤ lim inf
s→∞

lim inf
t→∞

∑

j∈J ∁
s

v
1+p∗j
j E

(〈

ρjt ,1
〉)

= lim
s→∞

∑

j∈J ∁
s

v
1+p∗j
j = 0
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P–a.s., since
∑

j∈J v
1+p∗j
j <∞ P–almost surely. Consequently, as

lim
s→∞

lim
t→∞

∑

j∈J ∁
s

v
1+p∗j
j

〈

ρjt ,1
〉

≥ 0,

this implies that

lim
s→∞

lim
t→∞

∑

j∈J ∁
s

v
1+p∗j
j

〈

ρjt ,1
〉

= 0.

Hence, all the terms in (4.11) converge to 0 as first t → ∞ and then s → ∞, which

proves the assertion. �

We are now in a position to prove Theorem 4.4.

Proof of Theorem 4.4

Observe that Theorem 3.2 in conjunction with Fatou’s lemma yields that

lim inf
t→∞

〈ρvt , fv〉 ≥
∑

j∈J

v
1+p∗j
j 〈ρj , f (j)〉Λ(j)

∞ (p∗j ) (4.12)

P–a.s., where 〈ρj , f (j)〉 := limt→∞ E(〈ρjt , f (j)〉). As a consequence of the additivity of

〈ρj , ·〉 and 〈ρj ,1〉 = 1 for all j ∈ J , we infer from Proposition 4.6 and (4.12) that

lim sup
t→∞

〈ρvt , fv〉 ≤ lim
t→∞

〈ρvt ,1〉 − lim inf
t→∞

〈ρvt ,1− fv〉

≤
∑

j∈J

v
1+p∗j
j 〈ρj ,1〉Λ(j)

∞ (p∗j )−
∑

j∈J

v
1+p∗j
j 〈ρj ,1− f (j)〉Λ(j)

∞ (p∗j )

=
∑

j∈J

v
1+p∗j
j 〈ρj , f (j)〉Λ(j)

∞ (p∗j)

P–a.s., which combined with (4.12) proves that

lim
t→∞

〈ρvt , fv〉 =
∑

j∈J

v
1+p∗j
j 〈ρj , f (j)〉Λ(j)

∞ (p∗j ) (4.13)

P–almost surely.

Recall the setup and notations developed in the introduction of this chapter and assume

that (4.4) is satisfied. In view of (4.4) we can replace v in (4.13) by u and (s(ti))i∈I ,

respectively, and thus we deduce that

lim
t→∞

〈ρIt , f I〉 = lim
t→∞

〈ρut , fu〉+ lim
t→∞

〈

ρ
(s(ti))i∈I

t , f (s(ti))i∈I

〉
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=
∑

n∈N

u1+p
∗

n 〈ρn, f (n)〉Λ(n)
∞ (p∗) +

∑

i∈I

∑

j∈N

s(ti)
1+p∗

j 〈ρi,j , f (i,j)〉Λ(i,j)
∞ (p∗)

= ΛI∞(f I) (4.14)

holds true P–almost surely. Note that, due to the countability of I, above we can

indeed replace v by (s(ti))i∈I , since we can interpret (s(ti))i∈I as
∑

i∈I s(ti), the de-

creasingly ordered concatenation of the sequences s(ti) ∈ S, i ∈ I, and (4.4) ensures

that
∑

i∈I s(ti) ∈ S. This argument works, because 〈ρIt , f I〉 is only concerned with the

sizes of the immigrating particles but not with the times of immigration.

The extension of (4.14) from homogenous to self–similar fragmentation processes follows

by the same reasoning as described in Part III of the proof of Theorem 3.2. �

Remark 4.7 Assume that the Π(j), j ∈ J , are identically distributed. Set p∗ := p∗j0 ,

with j0 = min J , and notice that p∗ = p∗j for all j ∈ J . Then (4.13) can be proven

without resorting to Lemma 4.5 and Proposition 4.6. Indeed, by means of Fatou’s

lemma in conjunction with Doob’s maximal inequality and Proposition 3.5 we infer

that there exists some p > 1 such that

E

(

sup
t∈R+

0

〈ρjt ,1〉p
)

≤
(

p

p− 1

)p

E

(

Λ(j)
∞ (p∗j )

p
)

<∞ (4.15)

for every j ∈ J . Set

E

(

sup
t∈R+

0

Λt(p
∗)

)

:= E

(

sup
t∈R+

0

〈ρj0t ,1〉
)

<∞ (4.16)

with j0 = minJ , where the finiteness follows from (4.15). Since the λ(j), j ∈ J , are

identically distributed we have

E

(

sup
t∈R+

0

〈ρjt ,1〉
)

= E

(

sup
t∈R+

0

Λt(p
∗)

)

(4.17)

for all j ∈ J . Therefore, resorting to the DCT we obtain that

lim
t→∞

〈ρvt ,1〉 = lim
t→∞

∑

j∈J

v1+p
∗

j 〈ρjt ,1〉

=
∑

j∈J

v1+p
∗

j lim
t→∞

〈ρjt ,1〉 (4.18)
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=
∑

j∈J

v1+p
∗

j Λ(j)
∞ (p∗j)

holds P–a.s., which proves the statement of Proposition 4.6 in this special situation.

Note that in (4.18) we can indeed resort to the DCT, since an application of the MCT

yields that

E



 sup
t∈R+

0

∑

j∈J

v1+p
∗

j 〈ρjt ,1〉



 ≤
∑

j∈J

E

(

v1+p
∗

j

)

E

(

sup
t∈R+

0

〈ρjt ,1〉
)

= E

(

sup
t∈R+

0

Λt(p
∗)

)

∑

j∈J

E

(

v1+p
∗

j

)

(4.19)

<∞.

Let us mention that the first estimate in (4.19) results from the MCT and the assump-

tion that v is independent of Π(j) for any j ∈ J . Moreover, the equality in (4.19)

follows from (4.17) and the finiteness is a consequence of (4.6) and (4.16).

4.5 Example

The aim of this section is to consider an example of a homogenous mass fragmentation

process for which we can give an alternative proof that (4.5) holds. This example is

based on the spine decomposition introduced in Section 1.9.

Throughout this section fix some p ∈ (p,∞). Let ν be an S1–dislocation measure

and let the measure µν on P be given by (1.10). In addition, let p ∈ (p,∞) and

consider the measure µ
(p)
ν on P given by µ

(p)
ν (dπ) = |π1|pµν(dπ). Let (π(t))t∈R+

0
be a

Poisson point process on P with characteristic measure µ
(p)
ν and let (ti)i∈I1 , where I1

is an at most countable index set, be the times for which this process takes a value

in P \ {(N, ∅, . . .)}. Furthermore, let Π(p) be a standard homogenous P–fragmentation

process under P with dislocation measure µ
(p)
ν and such that the Poisson point process

on P underlying (Π
(p)
1 (t))t∈R+

0
coincides with (π(t))t∈R+

0
. In addition, set

∆(t) := eln(|Π
(p)
1 (t−)|)

∣

∣(πn(t))n∈N\{1}
∣

∣

↓

for any t ∈ R+
0 . Notice that (∆(t))t∈R+

0
is a Poisson point process on S1 whose atoms in

S1\{(0, . . .)} are given by (∆(ti))i∈I1 . Let λ
∆(ti), i ∈ I1, be mutually independent frag-

mentation processes, each starting from ∆(ti), with dislocation measure ν. Consider
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the fragmentation process with immigration λI := (λI(t))t∈R+
0
defined by

λI(t) =
∑

i∈I1:ti≤t

λ∆(ti)(t− ti) (4.20)

for all t ∈ R+
0 . Observe that this process starts from u = (0, . . .), that is to say λI is a

pure immigration process.

Lemma 4.8 Let f ∈ B+. If ν satisfies Hypothesis 3.1 and Hypothesis 3.2, then the

process λI constructed in (4.20) satisfies (4.5), where f (i,j) :≡ f for all i ∈ I1 and

j ∈ N.

Proof Let Π be a standard homogenous P–fragmentation process under P with dis-

location measure µν . Further, recall the change of measure in (1.19), that is

dP(p)

dP

∣

∣

∣

∣

∣

Ft

= eΦ(p)t−pξ(t).

In view of (1.22) in Section 1.9, consider the following spine decomposition:

|Π(t)| = (|Π1(t)|, 0, . . .) +
∑

i∈I1:ti≤t

∑

j∈N\{1}

∣

∣

∣
Π(i,j)(t− ti)

∣

∣

∣

P(p)–a.s., where the Π(i,j) are independent and satisfy

P(p)
(

|Π(i,j)(u)| ∈ ·
∣

∣

∣F
1
ti

)

= P(p) (xi,j|Π(u)| ∈ ·)

P(p)–a.s. with xi,j = |Π1(ti−) ∩ πj(ti)|. Moreover, the behaviour of the block Π1 is

determined by a Poisson point process with characteristic measure µ
(p)
ν , cf. (1.21).

Recall the construction of λI in (4.20) and observe that

λ(t) = |Π1(t)|+ λI(t)

P(p)–almost surely. That is to say, under P(p) we can interpret the immigrating particles

of λI(t) as those particles that result from the fragmentation of the spine Π1 at the

jump times (ti)i∈I1 except for the tagged fragments Π1(ti), i ∈ I1, themselves.

Recall the definition of υt,1 in (2.1). Using notations introduced in Chapter 3 and

Section 4.1 we infer from Theorem 3.2 that

lim
t→∞

〈ρIt , f I〉 = lim
t→∞

〈ρt, f〉 − lim
t→∞

[

|Π1(υt,1)|1+p
∗

f
(

et|Π1(υt,1)|
)

]
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= lim
t→∞

〈ρt, f〉

= 〈ρ, f〉Λ(p∗) (4.21)

= ΛI∞(f I)

P(p)–almost surely. Note that in order to apply Theorem 3.2 we have used that P(p) and

P are equivalent measures on F∞, cf. Remark 1.37, to deduce that the convergence in

Theorem 3.2 holds true P(p)–almost surely. Since the event {limt→∞〈ρIt , f I〉 = ΛI∞(f I)}
is F∞–measurable, we conclude in view of (4.21) and resorting again to the fact that

P(p) and P are equivalent measures on F∞ that

lim
t→∞

〈ρIt , f I〉 = ΛI∞(f I)

P–almost surely. �

We remark that it follows from [BR03, Lemma 2] that (4.4) is satisfied for the process

λI given by (4.20), and thus the statement of Lemma 4.8 also follows from Theorem 4.4.

Let us now assume that the dislocation measure ν is conservative, cf. Definition 1.11,

and let us finish this chapter by having a closer look at the characteristic measure

under P(p) of the Poisson randommeasureN that describes the immigration structure of

(4.20). Note that N is a random measure on S1⊗R+
0 with atoms (|(πj(ti))j∈N\{1}|↓)i∈I1

in S1 \ {(0, . . .)}. The first thing to mention is that under P(p) the intensity of N is of

the form I⊗dt, where, for the time being, I is a σ–finite measure on S1 and dt denotes

the Lebesgue measure on R+
0 . Further, recall that the Poisson point process on P with

atoms (π(ti))i∈I1 in P \ (N, ∅, . . .) has characteristic measure µ
(p)
ν . Hence, since ν is

conservative, the measure I is the projection of µ
(p)
ν on S1 and in view of (1.12) we

thus infer that

∫

S1

g(s)I(ds) =

∫

P
g(|π|↓)µ(p)ν (dπ) =

∫

P
g(|π|↓)|π1|pµν(dπ) =

∫

S1

g(s)
∑

n∈N

s1+pn ν(ds)

holds for any nonnegative test function g : S1 → R+
0 , which results in

I(ds) =
∑

n∈N

s1+pn ν(ds)

for all s ∈ S1.
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4.6 Concluding remarks

Fragmentation processes with immigration were introduced in [Haa05]. There Haas was

interested in a stationary distribution of such processes. The definition of the immi-

gration process in [Haa05] is similar to our definition, cf. Definition 4.2. One difference

is that in [Haa05] Haas requires the Poisson random measure N , that describes the

immigration, to be of the form I · dt, where I is a σ–finite measure on S and dt is the

Lebesgue measure on R+
0 . In Definition 4.2 we allow the Poisson random measure to

be of the form I ⊗ dt, that is the distribution of the immigrating particles can depend

on the time at which the particles are immigrating.

The main theorem of this chapter is a natural extension of Theorem 3.2. However, the

difficulty arises that in general neither the DCT nor the MCT can be applied in order

to deduce the statement of Theorem 4.4 directly from Theorem 3.2. A similar issue

lies at the heart of [Olo96, Theorem 4.2], where Olofsson extends an L 1–convergence

limit theorem, obtained for Crump–Mode–Jagers processes in [Ner81], to such processes

with immigration. However, his techniques do not yield almost sure convergence. The-

orem 4.4 is also similar to more classical results on branching processes. In particular

we refer to [AH77] for a result on supercritical immigration–branching pocessers that

is in the spirit of Theorem 4.4.
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Part II

Killed fragmentation processes
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CHAPTER 5

MARTINGALES ASSOCIATED WITH KILLED

FRAGMENTATION PROCESSES

This chapter is devoted to the study of fragmentation processes that

exhibit a specific kind of killing. Our goal is to derive various proper-

ties regarding these killed fragmentation processes.

5.1 Introduction

In this chapter we introduce a new class of fragmentation processes. Recall that in

Chapter 1 we considered various types of self–similar standard fragmentation processes.

In Chapter 2 and Chapter 3 we were concerned with so–called stopped fragmentation

processes and in Chapter 4 this was extended to fragmentations with immigration. The

goal of the present chapter is to introduce a certain kind of killing in the context of

homogenous fragmentation processes. Here we kill blocks when they are sufficiently

small relative to their time of creation. This description will be made rigorous below.

Throughout this chapter we consider a homogenous fragmentation process Π with Bn,

n ∈ N, and λ being defined as on page 16 and on page 20 respectively. Furthermore,

we assume that Hypothesis 1.1 and Hypothesis 1.2 hold.

5.2 Killed fragmentation processes

Let c > 0, x ∈ R and introduce killing of Π upon hitting the space–time barrier

{

(y, t) ∈ R+
0 × R+

0 : y < e−(x+ct)
}

.
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That is, a block Πn(t) is killed at the moment of its creation t ∈ R+
0 if |Πn(t)| < e−(x+ct),

see Figure 5-1. A block that is killed is set to be ∅.
.
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(a) Realisation of a fragmentation process with-
out killing.
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(b) Realisation of the killed fragmentation process
corresponding to (a).

Figure 5-1: Realisation of a fragmentation process with finite dislocation measure without
killing, cf. (a), and with killing, cf. (b).

Definition 5.1 The resulting killed process, denoted by Πx := (Πxn)n∈N, is called killed

fragmentation process and (∅, . . .) can be interpreted as a cemetery state for Πx.

Notice that Πx is not necessarily P–valued, since the killing may result in the union of

it blocks being a strict subset of N. That is to say, Πx takes values in the set of ordered

partitions of subsets of N.

Remark 5.2 Let us emphasise that the killed fragmentation process Πx depends on

the constant c > 0. In order to keep the notation as simple as possible we do not

include the parameter c in the notation of this chapter, because this constant does

not change within results or proofs. However, the reader should keep in mind that all

notions related to killed fragmentation processes depend on c. ♦

Definition 5.3 For any x ∈ R+
0 we refer to the space–time barrier with initial value

x as x–killing line.

Clearly, the jump times of the killed fragmentation process Πx are a subset of the jump

times of Π as every block still alive evolves synchronously to the unkilled version until
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it gets killed. In this regard we adopt the following definition:

Definition 5.4 Let Ix ⊆ I be the index set of the jump times pertaining to Πx.

That is, the jump times of the killed process Πx are given by (ti)i∈Ix . Moreover, let

Ix1 := {i ∈ Ix : k(ti) = 1}. Thus, (ti)i∈Ix
1
are the jump times of the block containing 1

in the killed fragmentation process Πx.

For each n ∈ N the block of Πx containing n has a killing time that may be finite or

infinite. In this chapter we shall answer the question whether it is possible that the

supremum over all the respective individual killing times is finite.

Definition 5.5 We say that Πx becomes extinct if there exists some finite time after

which all its blocks are killed.

In the course of our analysis of killed fragmentation processes it turns out that there is

a critical drift for the killing line such that for all smaller drifts (including the critical

drift) the killed process becomes extinct P–a.s. and for all larger drifts the extinction

probability is less than 1. The forthcoming Theorem 5.11 shows that the critical drift

is given by the following definition. Recall the definition of p̄ in Definition 1.30.

Definition 5.6 Set

cp̄ := Φ′(p̄), (5.1)

where Φ′ is the derivative of Φ.

5.3 An associated spectrally negative Lévy process

In this section we introduce a spectrally negative Lévy process, that is a Lévy process

with no upwards jumps and non–monotone paths, cf. Definition 1.5. This process is

closely related to the subordinator introduced in Section 1.7. The spectrally negative

Lévy process considered here is of bounded variation, and thus it enables us to make

use of the well–established theory for this class of Lévy processes, see Section 1.2.2.

Recall that Bn(t) denotes the block in Π(t) which contains the element n ∈ N, see

Figure 5-2(a), and recall that under P the process ξn = (− ln(|Bn(t)|)1{|Bn(t)|>0})t∈R+
0

is a killed subordinator.

Definition 5.7 For every n ∈ N let the process Xn := (Xn(t))t∈R+
0
be defined by

Xn(t) := ct− ξn(t)
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for all t ∈ R+
0 .

Notice that under P the process Xn is a spectrally negative Lévy process of bounded

variation. Moreover, the jump times ofXn are exactly (ti)i∈In , that isXn jumps exactly

when the subordinator ξn jumps. Observe that under Pex , cf. (1.6), the process Xn(t)

is shifted by x ∈ R+
0 , that is Xn(0) = x Pex–almost surely. Hence, Xn(t) under Pex

is equivalent to x + Xn(t) under P. The two processes ξn and x + Xn under P are

illustrated in Figure 5-2.
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0

(a) Illustration of ξn under P.

x

Xn + x

τ−n,x

time
0

(b) Illustration of x+Xn under P.

Figure 5-2: Illustration of the shifted spectrally negative Lévy process x+Xn, cf. (b), associated
with a fragmentation process with finite dislocation measure. The randomness of Xn(t) is
entirely determined by the subordinator ξn, cf. (a). Note that the drift of Xn is the constant c,
that is it coincides with the slope of the dashed line in (a).

For any n ∈ N and x ∈ R+
0 consider the following F–stopping times:

τ+n,x := inf{t ∈ R+
0 : Xn(t) > x} as well as τ−n,x := inf{t ∈ R+

0 : Xn(t) < −x}.

Let ψ be the Laplace exponent of X1 under P, that is

ψ(β) = ln
(

E

(

eβX1

))

= ln
(

E

(

eβc+β ln(|B1(1)|)1{|B1(1)|>0}

))

= ln
(

eβc
)

+ ln
(

E
(

e−βξ(1)
))

= βc− Φ(β)
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holds for all β ∈ R+
0 .

For the time being, let p ∈ (p,∞) and recall the change of measure in (1.19) given by

dP(p)

dP

∣

∣

∣

∣

∣

Ft

= eΦ(p)t−pξ(t) = epX1(t)−ψ(p)t.

Corollary 3.10 in [Kyp06] shows that under the measure P(p) the process X1 is a spec-

trally negative Lévy process with Laplace exponent ψp that satisfies

ψp(β) = ψ(p+ β)− ψ(p)

for any β ∈ R+
0 . Let W and Wp be the scale functions, see Definition 1.6, of the

spectrally negative Lévy process X1 under P and P(p) respectively. Further, let ψ′
p

denote the derivative of ψp and recall from (1.1) and (1.2) that

P(p)(τ−n,x <∞) = P
(p)
ex (τ

−
n,0 <∞) =







1− ψ′
p(0+)Wp(x), ψ′

p(0+) > 0

1, ψ′
p(0+) ≤ 0.

(5.2)

as well as

P
(

τ−n,x > τ+n,y
)

= Pex
(

τ−n,0 > τ+n,x+y

)

=
W (x)

W (x+ y)
(5.3)

for all x, y ∈ R+
0 .

Remark 5.8 Let p ∈ (p, p̄) and let Φ′
p denote the derivative of Φp. In view of (5.2) we

are interested in the situation that ψ′
p(0+) > 0. In this regard we remark that

ψ′
p(0+) = E(p)(X1(1)) = c+ E(p)(ln(|B1(1)|)) (5.4)

is positive if and only if

c > E(p)(− ln(|B1(1)|)) = Φ′
p(0+) = Φ′(p),

where in the light of Corollary 3.10 in [Kyp06] the final equality follows from

Φp(β) = Φ(p+ β)− Φ(p)

for all β ∈ R+
0 . However, since Φ is concave we have in particular that Φ′(p̄) ≤ Φ′(p),

and thus ψ′
p(0+) may be nonpositive for c ≥ cp̄ = Φ′(p̄). For a given c ≥ cp̄ we thus

frequently choose some p ∈ (p, p̄) such that c > Φ′(p) in order to have ψ′
p(0+) > 0.
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Note that such a choice is possible as c > Φ′(p̄) and Φ′ is continuous. ♦

In what follows, the killed version of Xn, killed upon hitting (−∞,−x) for a given

x ∈ R+
0 , plays a crucial role.

Definition 5.9 Let n ∈ N and x ∈ R+
0 . We define a killed and shifted spectrally

negative Lévy process Xx
n := (Xx

n(t))t∈R+
0
as follows: For t ∈ R+

0 ∪ {∞} set

Xx
n(t) := (Xn(t) + x)1{τ−n,x>t}

= (x+ ct+ ln(|Bn(t)|))1{τ−n,x>t}
.

The killed process Xx
n(t) defined above is depicted in Figure 5-3.

0

Xx
n + x

τ−n,x

time

x

Figure 5-3: Illustration of Xx
n + x, killed upon hitting (−∞, 0), under P. Observe that the

graph of Xx
n coincides with the one of Xn + x, cf. Figure 5-2(b), up to the time τ−n,x, which is

the hitting time of the negative half–line (−∞, 0) by the process Xn + x. After the killing time
τ−n,x the killed process Xx

n remains forever in the so–called cemetery state {0}.

For the time being, fix some x ∈ R+
0 . Notice that Xx

n , n ∈ N, is killed upon hitting the

open interval (−∞, 0). Further, note that the killing time of Xx
n is τ−n,x and that this

is also the killing time of the block of Πx containing n ∈ N. Hence, the extinction time

of Πx, which is the time after which all the blocks of Πx are killed, is given by

ζx := sup
n∈N

τ−n,x. (5.5)

Let us point out that ζx is not necessarily finite. In particular, the killed fragmentation

process Πx becomes extinct if and only if ζx < ∞. If ζx = ∞, then we say that Πx

survives. Note that the irregularity with respect to X0
1 of 0 for (−∞, 0), see (1.3),

implies that

P(ζ0 = 0) ≤ P(τ−1,0 = 0) = 0.

This means the probability that Πx dies out instantaneously is 0.
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For any c, t ∈ R+
0 and n ∈ N define

λxn(t) :=
[

(|Πxk(t)|)↓k∈N
]

n
.

That is to say, λxn(t) denotes the size of the nth–largest block alive in the killed frag-

mentation process Πx at time t ∈ R+
0 . In particular, notice that

λx1(t) = sup
k∈N

(|Πxk(t)|)

is the size of the largest block alive at time t and λx1(t) = 0 for all t ≥ ζx. In addition,

for every t ∈ R+
0 we let Rx1(t) denote the largest value that any of the killed spectrally

negative Lévy processes attains at time t, that is we set

Rx1(t) := sup
k∈N

Xx
k (t) = x+ ct+ ln (λx1(t)) .

We refer to Figure 5-4 for an illustration of λx1(t) and R
x
1(t) in the finite activity case.

0

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .

x

x+ ct

. . .

λx1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

ti1 ti2 ti3 ti4 ti5 ti6

− ln(size)

time

(a) Illustration of λx
1 .

0

x

ti1 ti2 ti4 ti5 ti6ti3

time

Rx
1

(b) Illustration of Rx
1 .

Figure 5-4: Illustration of the largest fragment at time t ∈ R+
0 in the killed fragmentation

process, cf. (a), and the largest value that any of the processes Xn, n ∈ N, attains at time t,
cf. (b). Here the times tik , k ∈ N, form a subset of the jump times (ti)i∈Ix . More precisely,
the sequence (tik )k∈N consists of all those jump times of Πx at which the currently largest block
dislocates. Observe that the drift of the process Rx

1 is the constant c, that is it coincides with the
slope of the x–killing line at which the process Xx

n is killed. Further, note that in this illustration
Rx

1 remains positive as λx1 remains below the killing line.
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Definition 5.10 For every t ∈ R+
0 ∪ {∞} set

N x
t :=

{

n ∈ N :
[

t < τ−n,x
]

∧ [∃ k ∈ N : n = minΠxk(t)]
}

.

The above definition says that N x
t consists of all the indices of blocks Bn that are not

yet killed by time t. Let us remark that the first condition “t < τ−n,x” in the definition

of N x
t ensures that Bn, the block containing n ∈ N, is still alive at time t and the

second condition “∃ k ∈ N : n = min (Πxk(t))” is used to avoid considering the same

block multiple times. That is, for a block Bn(t) that is alive at time t ∈ R+
0 only its

least element is an element of N x
t . Without the second condition all elements of Bn(t)

would be in N x
t .

5.4 Main results on killed fragmentation processes

Our goal in the present chapter is to use the shifted and killed spectrally negative

Lévy process Xx
n , that was defined in Definition 5.9, to obtain results which are related

to certain additive and multiplicative martingales. The main results in this chapter

make use of the extinction probability P(ζx < ∞) of the killed fragmentation process

Πx. To begin with, the following theorem establishes some properties of the extinction

probability that will be useful later on. Recall the constant cp̄ that we defined in

Definition 5.6.

Theorem 5.11 For all c ≤ cp̄ we have P(ζx <∞) = 1 for any x ∈ R+
0 . If c > cp̄, then

x 7→ P(ζx < ∞) is a continuous and strictly monotonically decreasing (0, 1)–valued

function on R+
0 .

We shall prove this theorem in Section 5.5.

Note that as a consequence of Theorem 5.11 we obtain that the conditional probability

P(·|ζx = ∞) is well defined if c > cp̄. This turns out to be useful in what follows. The

continuity established in Theorem 5.11 will be needed in Chapter 6.

For any function f : R → [0, 1] and x ∈ R+
0 let Zx,f := (Zx,ft )t∈R+

0
be given by

Zx,ft =
∏

n∈Nx
t

f (Xx
n(t))

for every t ∈ R+
0 . The question for which functions f the process Zx,f is a prod-

uct martingale is partially answered by the following theorem that will be proven in
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Section 5.6.

Theorem 5.12 Let c > cp̄ and let f : R → [0, 1] be a monotone function. Then the

following two statements are equivalent

• For any x ∈ R+
0 the process Zx,f is a martingale with respect to the filtration F

and

lim
x→∞

f(x) = 0.

• For all x ∈ R+
0 :

f(x) = P (ζx <∞) .

Let us consider the process Mx(p) := (Mx
t (p))t∈R+

0
, p ∈ (p,∞), defined by

Mx
t (p) :=

∑

n∈Nx
t

Wp (X
x
n(t)) e

Φ(p)t|Bn(t)|1+p. (5.6)

The process Mx(p) is defined in the spirit of similar stochastic processes for branching

processes and non–killed fragmentations. In this respect note its similarity with the

intrinsic additive martingales M(p) and Λ(p) that we introduced in Section 1.8 and

Section 2.4 respectively. The following theorem states in particular that for certain

values of c and p the process Mx(p) is an intrinsic additive martingale in the setting

of killed fragmentation processes.

Theorem 5.13 Let c > cp̄ and let p ∈ (p, p̄) be such that c > Φ′(p). Then the pro-

cess Mx(p) is a nonnegative F–martingale with P–a.s. limit Mx
∞(p). Moreover, this

martingale limit satisfies

P ({Mx
∞(p) = 0}△{ζx <∞}) = 0, (5.7)

where △ denotes the symmetric difference.

The proof of Theorem 5.13 will be provided in Section 5.7 and relies on Theorem 5.12.

The final main result of this chapter is concerned with the asymptotic speed of the

largest fragment λx1(t) in the killed fragmentation conditional on the event of survival

of the killed fragmentation process.

Theorem 5.14 Let c > cp̄ and x ∈ R+
0 . Then we have

lim
t→∞

− ln(λx1(t))

t
= cp̄
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P(·|ζx = ∞)–almost surely.

Since the killing of blocks in Πx results in having less blocks that may constitute

the largest fragment at a given time, one may expect that the killing increases the

asymptotic speed of the largest fragment. However, comparing Theorem 5.14 with (2.6)

shows that the asymptotic speed of the largest fragment in the killed fragmentation

is exactly the same as the asymptotic speed of the largest fragment in the non–killed

fragmentation process. We shall prove Theorem 5.14 in Section 5.8.

The above results show that the map x 7→ P(ζx < ∞) plays a crucial role in this

chapter. For this reason we adopt the following definition:

Definition 5.15 We define a function ϕ : R → [0, 1] by

ϕ(x) = P(ζx <∞) (5.8)

for all x ∈ R.

Let us point out that ϕ, as the extinction probability on the right–hand side of (5.8),

depends on the drift c > 0 of the x–killing line. In this regard see Remark 5.2.

5.5 Properties of the extinction probability

In this section we prove various properties of ϕ in separate lemmas, which combined

constitute the proof of Theorem 5.11.

Let us first deal with the easier, but less interesting, case of drifts, that is with c ∈ (0, cp̄].

Lemma 5.16 Let c ∈ (0, cp̄]. Then P(ζx <∞) = 1 for all x ∈ R+
0 .

Proof Let p ≥ p̄ be such that

c = cp :=
Φ(p)

1 + p
. (5.9)

In view of (1.15) the constant cp in (5.9) concurs for p = p̄ with cp̄ as defined in

Definition 5.6. Note that such a p ≥ p̄ satisfying (5.9) does indeed exist, since according

to Lemma 1 in [Ber03] the mapping p 7→ Φ(p)/(1+p) is continuous and decreasing to 0 as

p→ ∞. Recall that Mt(p) denotes the martingale for fragmentation processes without
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killing, see Section 1.8. That is,

Mt(p) = eΦ(p)t
∑

n∈N

λ1+pn (t) ≥ eΦ(p)tλ1+p1 (t) (5.10)

for all t ∈ R+
0 . Since p ≥ p̄, we have that Mt(p) → 0 P–a.s. as t→ ∞, cf. Remark 1.34.

Hence, we deduce from (5.10) that

Φ(p)t+ ln
(

λ1(t)
1+p
)

→ −∞

as t→ ∞. By the choice of p this is equivalent to

(1 + p) (ct+ ln(λ1(t))) → −∞

as t→ ∞. Moreover, in view of the fact that p ≥ p̄ > p > −1 this implies that

(ct+ ln(λ1(t))) → −∞

as t → ∞. This implies that P(ζx < ∞) = 1 for any x ∈ R+
0 , and thus it proves the

the assertion. �

Notice that the statement of the previous lemma is obvious for c ∈ (0, cp̄) as the

asymptotic speed of the largest fragment in the non–killed setting is given by cp̄, see

(2.6), and thus the fragmentation process eventually crosses the killing line almost

surely. However, for the critical value c = cp̄ this argument does not work as the

largest fragment could approach the killing line from below without intersecting it.

Recall that I1 = {i ∈ I : k(ti) = 1}, that is (ti)i∈I1 consists of the jump times of the

block containing 1 in the (unkilled) fragmentation process Π. For any x ∈ (0, 1) set

τ(x) := inf {ti ∈ (ti)i∈I1 : |π1(ti)| ≤ x} (5.11)

Remark 5.17 Observe that

ν(s ∈ S1 : s1 ∈ (0, x]) <∞

for every x ∈ (0, 1) as otherwise

∫

S1

(1− s1)ν(ds) ≥
∫

{s∈S1:s1∈(0,x]}
(1− s1)ν(ds) ≥ (1− x)ν(s ∈ S1 : s1 ∈ (0, x]) = ∞,
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which contradicts (1.7). Further, note that there exists some x ∈ (0, 1) such that

ν(s ∈ S1 : s1 ∈ (0, x]) > 0, (5.12)

as otherwise ν(s ∈ S1 : s1 = 1) = ν(S1) which contradicts (1.7). Moreover, for all

x ∈ (0, 1) with ν(s ∈ S1 : s1 ∈ (0, x]) > 0 [Ber96, Proposition 2 in Section 0.5] implies

that under P the stopping time τ(x) is exponentially distributed. In particular, for

any such x ∈ (0, 1) the infimum in (5.11) is actually a minimum and τ(x) ∈ (0,∞)

P–almost surely. ♦

Lemma 5.18 Let x ∈ R+
0 and y ∈ (1/2∨(1−e−x), 1) be such that ν(s ∈ S1 : s1 ∈ (0, y]).

Then

N x
ti ∈ {∅, {1}}

P–a.s. on {x+ cτ(y) < − ln(1− y)} for all i ∈ Ix1 with ti < τ(y).

Lemma 5.18 says that up to time τ(y) the block in Πx containing 1 is the only block

that may be alive on the event {x+ cτ(y) < − ln(1− y)}.

Proof As y > 1/2 we obtain

s2 ≤ 1− s1 < 1− y < y (5.13)

P–a.s. for any s ∈ S1 with s1 > y. Moreover, since ∆1(ti) > y for all ti < τ(y), we have

− ln(∆2(ti)) ≥ − ln(1−∆1(ti)) ≥ − ln(1− y) > x+ cτ(y) > x+ cti

P–a.s. on {x + cτ(y) < − ln(1 − y)} for all i ∈ Ix1 with ti < τ(y). Notice that this

implies that on the event {x+cτ(y) < − ln(1−y)} up to time τ(y) only the largest block

can possibly survive as at each jump time before τ(y) the second–largest block in the

resulting dislocation is killed instantaneously. However, bearing in mind the definition

of τ(y) in (5.11) it follows from (5.13) that the block containing 1 is larger than the

second–largest block resulting from any dislocation before time τ(y). Consequently, on

the event {x + cτ(y) < − ln(1 − y)} the block containing 1 is the only block that is

possibly alive at some time t ∈ [0, τ(y)). �

All the following results in this chapter deal with the more interesting case that c > cp̄.

That the case c > cp̄ is indeed more interesting becomes already obvious if one compares

Lemma 5.16 with the following lemma.
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Lemma 5.19 Let c > cp̄. Then

P(ζx <∞) ∈ (0, 1)

for all x ∈ R+
0 .

Proof The proof is divided into two parts. The first part shows that P(ζx <∞) < 1

and the second part proves that P(ζx <∞) > 0 for all x ∈ R+
0 .

Part I Let us first show that P(ζx < ∞) < 1 for all x ∈ R+
0 . To this end, choose

some p ∈ (p, p̄) such that c > Φ′(p). As mentioned in Remark 5.8 we then have that

ψ′
p(0+) > 0. Hence, we deduce from (5.2) that

P(p)(τ−1,0 <∞) = 1− ψ′
p(0+)Wp(0) = 1−

ψ′
p(0+)

c
∈ (0, 1), (5.14)

where the last equality is a consequence of Lemma 1.8 and ψ′
p(0+) < c results from

(5.4). Note that above we can resort to Lemma 1.8 , since X1 is of bounded variation.

By means of the nondecreasingness of P(ζ(·) = ∞), equation (5.14) implies that

P(p)(ζx = ∞) ≥ P(p)(τ−1,0 = ∞) =
ψ′
p(0+)

c
∈ (0, 1)

for all x ∈ R+
0 . According to Remark 1.37 this results in

P(ζx = ∞) > 0, i.e. P(ζx <∞) < 1. (5.15)

Part II For any n ∈ N and z ∈ (0, 1) define inductively

τ(z, n) := inf {ti > τ(z, n − 1) : i ∈ I1, |π1(ti)| ≤ z} ,

where τ(z, 0) := 0. In order to show that P(ζx <∞) > 0 for every x ∈ R+
0 we fix some

arbitrary y0 ∈ (1/2 ∨ (1− e−x), 1) satisfying

ν(s ∈ S1 : s1 ≤ y0) > 0.

Note that y0 > 1−e−x implies that − ln(1−y0) > x. Furthermore, let ǫ ∈ (0,− ln(y0)].

The idea to prove P(ζx < ∞) > 0 is based on bounding below by a positive constant

the probability of the event that X1 moves downwards by at least ǫ between the times

τ(y0, n−1) and τ(y0, n) for all n ≤ ⌊x/ǫ⌋+1, so that after ⌊x/ǫ⌋+1 steps X1 takes a value

in (−∞,−x) and thus Xx
1 (τ(y0, ⌊x/ǫ⌋+ 1)) = 0, i.e. on this event the block containing
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1 is killed by time τ(y0, ⌊x/ǫ⌋+1) at the latest. To obtain a lower bound for extinction

we intersect the aforementioned event with the event that for any t ≤ τ(y0, ⌊x/ǫ⌋ + 1)

only the block containing 1 may be alive.

For every n ∈ N set

E1
n := {c(τ(y0, n)− τ(y0, n− 1)) + ln(y0) < −ǫ} ∪ {τ−1,x ≤ τ(y0, n)}

and

E2
n := {Xx

1 (τ(y0, n− 1)) + c(τ(y0, n)− τ(y0, n− 1)) < − ln(1− y0)} ∪ {τ−1,x ≤ τ(y0, n)}

as well as

E3
n := {λx1(τ(y0, n)) = Xx

1 (τ(y0, n)} ∩ {λx2(τ(y0, n)) = 0}.

Note that X1(τ(y0, n)) − X1(τ(y0, n − 1)) < −ǫ or X1(τ(y0, n)) = 0 on E1
n. That

is, on the event E1
n the size of Xx

1 is decreased by at least ǫ during the time period

[τ(y0, n−1), τ(y0, n)], unlessX
x
1 is killed before or at time τ(y0, n). Moreover, according

to Lemma 5.18, on the event
⋂k
n=1(E

2
n ∩E3

n) only the block containing 1 may be alive

at any time t ≤ τ(y0, k). Recall τ(y0) from (5.11) and observe that

E2
1 = {x+ cτ(y0) < − ln(1− y0)}.

Further, notice that for any k ∈ N we have Xx
1 (τ(y0, k)) ≤ (x−kǫ)∨0 ≤ x on

⋂k
n=1E

1
n,

and thus

E2
k+1 ∩

k
⋂

n=1

E1
n ⊇ {x+ c(τ(y0, k + 1)− τ(y0, k)) < − ln(1− y0)} ∩

k
⋂

n=1

E1
n.

Therefore, by means of the extended fragmentation property we infer that

P(ζx <∞)

≥ P





⌊x/ǫ⌋+1
⋂

n=1

(

E1
n ∩ E2

n ∩ E3
n

)





=

⌊x/ǫ⌋+1
∏

n=1

P

(

E1
n ∩ E2

n ∩ E3
n

∣

∣

∣

∣

∣

n−1
⋂

k=1

(

E1
k ∩ E2

k ∩ E3
k

)

)

≥ P(E1
1 ∩E2

1)
⌊x/ǫ⌋+1P(E3

1)
⌊x/ǫ⌋+1
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= P

({

τ(y0) <

[− ln(y0)− ǫ

c

]

∧
[− ln(1− y0)− x

c

]}

∪ {τ−1,x ≤ τ(y0)}
)⌊x/ǫ⌋+1

· P(E3
1)

⌊x/ǫ⌋+1

> 0,

where the final positivity is a consequence of τ(y0) being exponentially distributed. �

The following auxiliary lemma will be used to prove continuity and strict monotonicity

of ϕ. In the proof of that lemma we need to consider all the fragments at a given time,

and for this purpose we need a deterministic estimate of the number of fragments alive

at that time. To this end, set Nx
t := card(N x

t ) and observe that Nx
t < ∞ P–a.s. for

any t ∈ R+
0 . Indeed, as

∑

n∈N |Πn(t)| ≤ 1 we infer that |Πn(t)| ≥ e−(x+ct) for at most

ex+ct–many n ∈ N. That is

Nx
t ≤ ex+ct (5.16)

for all t ∈ R+
0 .

Lemma 5.20 Let c > cp̄. For all 0 ≤ x < y <∞ there exists some αx,y > 0 such that

P(ζx <∞)− P(ζx+h <∞) ≥ αx,y

(

P(ζy <∞)− P(ζy+h <∞)
)

for all h > 0.

Proof In the first part of the proof we show that for every deterministic time t > 0

the probability that X1 reaches level x > 0 before time t is positive. In the second

part we use this fact in order to obtain a lower bound of the probability that for some

n ∈ N the process Xx
n hits a given level y > x before some deterministic time s > 0.

Subsequently we combine this lower bound with the previously shown estimate of the

number of blocks that are alive at a given time, see (5.16), and with the positivity of

the probability of extinction, which enables us to prove the assertion.

Part I According to Corollary 3.14 in [Kyp06] we have that (τ1,x)x∈R+
0
is a subordinator

with either killing at an independent exponential time τe or with no killing in which

case we set τe := ∞. Moreover, by means of Proposition 1.7 in [Ber99] we thus infer

that

P

(

τ+1,x < t
)

= P

(

{τ̃+1,x < t} ∧ {x < τe}
)

= P

(

τ̃+1,x < t
)

P (x < τe) > 0 (5.17)
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holds for all t > 0, where τ̃+1,x is some non–killed subordinator satisfying

τ̃+1,x1{x<τe} = τ+1,x1{x<τe}.

Let us now show that

∀ t > 0 : P(τ+1,x < τ−1,0 ∧ t) > 0. (5.18)

To this end, assume we had P(τ+1,x < τ−1,0∧ t0) = 0 for some t0 > 0. Our goal is to show

that this results in a contradiction. For this purpose, set τ
(2)
0 := 0 and for every n ∈ N

define

τ (1)n := inf
{

t > τ
(2)
n−1 : X1(t) < 0

}

,

τ (2)n := inf
{

t > τ (1)n : X1(t) = 0
}

.

In view of (1.3) there exists some δ > 0 such that P(τ−1,0 ≥ δ) > 0, and consequently

we obtain by means of the strong Markov property that

∑

n∈N

P

(

τ (1)n − τ
(2)
n−1 ≥ δ

∣

∣

∣

∣

F
τ
(2)
n−1

)

=
∑

n∈N

P

(

τ−1,0 ≥ δ
)

= ∞ (5.19)

P–almost surely. Since {τ (1)n − τ
(2)
n−1 ≥ δ} is F

τ
(2)
n−1

–measurable, we can apply an ex-

tended Borel–Cantelli lemma (see e.g. [Dur91, (3.2) Corollary in Chapter 4] or [Bre92,

Corollary 5.29]) to deduce that

{

{τ (1)n − τ
(2)
n−1 ≥ δ} happens infinitely often

}

=

{

∑

n∈N

P

(

τ (1)n − τ
(2)
n−1 ≥ δ

∣

∣

∣

∣

F
τ
(2)
n−1

)

= ∞
}

,

and thus (5.19) implies that τ
(1)
n → ∞ P–a.s. as n→ ∞. Since, by [Ber96, Theorem 12

in Section VI.3], we have that τ+1,x ∧ τ−1,0 < ∞ P–a.s., an application of the strong

Markov property therefore yields that

P

(

τ+1,x < t0

)

≤
∑

n∈N

P

(

τ (3)n,x < τ (1)n ∧ t0
∣

∣

∣

∣

F
τ
(2)
n−1

)

=
∑

n∈N

P(τ+1,x < τ−1,0 ∧ t0) = 0, (5.20)

where

τ (3)n,x := inf{t > τ
(2)
n−1 : X1(t) > x}

for all n ∈ N. As (5.20) contradicts (5.17), we conclude that (5.18) does indeed hold
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true.

Part II Let 0 ≤ x < y <∞ as well s > 0 and set

τ+y (x) := inf
{

t ∈ R+
0 : Rx1(t) ≥ y

}

.

Note that Rx1(τ
+
y (x)) = y, since Rx1 does not jump upwards and thus creeps over the

value y. Hence,

τ+y (x) = inf
{

t ∈ R+
0 : Rx1(t) = y

}

. (5.21)

Set

αx,y := P
(

τ+y (x) < ζx ∧ s
)

P(ζy+h <∞)x+cs.

Observe that (5.18) and Lemma 5.19 imply that

αx,y > 0, (5.22)

since

P
(

τ+y (x) < ζx ∧ s
)

≥ P

(

τ+1,y−x < τ−1,0 ∧ s
)

.

Setting γ := ex+cs − 1 we then have by means of the extended fragmentation property

and (5.21) that

P(ζx <∞)− P(ζx+h <∞)

(∗)
≥ P

(

τ+y (x) < ζx ∧ s
)

P(ζy <∞)γ
(

P(ζy <∞)− P(ζy+h <∞)
)

(5.23)

= αx,y

(

P(ζy <∞)− P(ζy+h <∞)
)

holds true for any h > 0, where the exponent γ in (∗) results from the estimate

Nx
s ≤ ex+cs = γ + 1 P–a.s., cf. (5.16). Notice that in (∗) we have used that the size

of each block alive at time τ+y (x) is less than or equal to y as well as the monotonicity

of ϕ. Let us remark that the estimate in (5.23) says the following: By the extended

fragmentation property the difference in the probability of survival with respect to the

x–killing line and the probability of survival with respect to the (x+h)–killing line can

be bounded below by the product of

• the probability that Rx1 reaches the value y ≥ x at a finite time τ+y (x) before Πx

becomes extinct,

• the probability that all the blocks, except for the one with size y, alive (with

respect to the x–killing line) at time τ+y (x) (there are at most γ–many such blocks)

93



die out eventually, that is the independent copies of the killed fragmentation

initiated by these blocks become extinct (with respect to the y–killing line),

• the difference in the probabilities of survival with respect to the y–killing line and

with respect to the (y + h)–killing line respectively.

In view of (5.22) the estimate in (5.23) completes the proof. �

The following two lemmas establish some analytical properties of the function ϕ.

Lemma 5.21 Let c > cp̄. Then the function ϕ|
R
+
0
is continuous.

Proof We prove the assertion by contradiction. To this end, let x ∈ R+ and assume

that ϕ is not continuous at x. Then there exists a sequence (xn)n∈N ⊆ R+ with

xn → x (5.24)

and

ϕ(xn) 6→ ϕ(x) (5.25)

as n→ ∞.

Notice that, due to monotonicity, ϕ is continuous almost everywhere and thus we can

choose some y ∈ (0, x) such that ϕ is continuous at y. Further, define a sequence

(yn)n∈N ⊆ R+
0 by

yn := y + xn − x

and note that (5.24) implies that yn → y as n→ ∞.

According to Lemma 5.20 there exists some αy,x > 0 such that

|ϕ(y)− ϕ(yn)| ≥ αy,x |ϕ(x)− ϕ(xn)|

Therefore, we deduce from (5.25) that

lim sup
n→∞

|ϕ(y) − ϕ(yn)| > 0,

which contradicts ϕ being continuous at y.

In order to show right–continuity of ϕ at 0 recall from (1.3) that for X1 the point 0 is

irregular for (−∞, 0), i.e. P(τ−0 > 0) = 1. Hence, we have X1(τ
−

0 /2) > 0 P–a.s., and

thus

ϕ(0) = ϕ(X1(τ
−

0 /2)) ≤ lim
x↓0

ϕ(x).
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On the other hand, the montonicity of ϕ entails ϕ(0) ≥ limx↓0 ϕ(x), which proves that

ϕ is right–continuous at 0. �

Lemma 5.22 Let c > cp̄. Then ϕ is strictly monotonically decreasing on R+
0 .

Proof For any x ∈ R+
0 set

γx := ln
(

∆1(ζ
x)
∣

∣

∣Πxk(ζx)(ζ
x−)

∣

∣

∣

)

.

According to Lemma 5.19 we have P(ζx <∞) > 0, x ∈ R+
0 , and hence

P

(

{ζx <∞} ∩
⋃

n∈N

{x+ cζx + γx ∈ (−n, 0)}
)

= P({ζx <∞} ∩ {x+ cζx + γx ∈ (−∞, 0)})

= P(ζx <∞)

> 0.

Therefore, for every x ∈ R+
0 there exists some z > 0 such that

P ({ζx <∞} ∩ {x+ cζx + ln(∆1(ζ
x)) ∈ (−z, 0)}) > 0, (5.26)

and thus the extended fragmentation property, in conjunction with Lemma 5.19, yields

that

P(ζx+z <∞) < P(ζx <∞). (5.27)

Indeed, we have

P({ζx <∞} ∩ {ζx+z = ∞})

≥ E

(

P

(

{ζx <∞} ∩ {x+ cζx + γx ∈ (−z, 0)} ∩ {ζ̃ = ∞}
∣

∣

∣Fζx

))

≥ P({ζx <∞} ∩ {x+ cζx + γx ∈ (−z, 0)})P(ζ0 = ∞) (5.28)

> 0,

where conditional on Fζx the random variable ζ̃ is independent of Π and satisfies

P

(

ζ̃ ∈ ·
∣

∣

∣Fζx

)

= P (ζy ∈ ·)|y=x+z+cζx+γx

P–almost surely. The first estimate in (5.28) is a consequence of the extended fragmen-

tation property and the final positivity results from Lemma 5.19 and (5.26). Conse-
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quently, for each x ∈ R+
0 there exists some z > 0 such that

P(ζx <∞) = P({ζx <∞} ∩ {ζx+z = ∞}) + P({ζx <∞} ∩ {ζx+z <∞})

> P(ζx+z <∞),

where the final estimate follows from (5.28) and {ζx+z < ∞} ⊆ {ζx < ∞}. Hence, we

have shown that (5.27) holds true.

Observe that (5.27) implies that for any h > 0 and x ∈ R+
0 there exists some y ≥ x

such that

ϕ(y) > ϕ(y + h). (5.29)

Consequently, according to Lemma 5.20 there exists some αx,y > 0 such that

ϕ(x)− ϕ(x+ h) ≥ αx,y (ϕ(y) − ϕ(y + h)) > 0

for any h > 0, x ∈ R+
0 and y ≥ x satisfying (5.29), where the positivity follows from

(5.29). Note that the value y depends on the choice of h and x. This shows that ϕ is

monotonically decreasing, and thus the assertion of the lemma is proven. �

5.6 A product martingale associated with killed fragmen-

tation processes

The goal of this section is to prove Theorem 5.12. We split the proof of Theorem 5.12

into two propositions, each dealing with one of the two directions of the equivalence in

Theorem 5.12.

5.6.1 Uniqueness of a product martingale inducing function

The first implication of Theorem 5.12 is established in the following proposition that

is the subject of the present section. The converse implication will be dealt with in the

subsequent section.

Proposition 5.23 Let c > cp̄. Furthermore, let f : R → [0, 1] be a monotone function

that satisfies limx→∞ f(x) = 0 and assume that the process Zx,f is an F–martingale

under P. Then f(x) = ϕ(x) for all x ∈ R+
0 .

Before we can tackle the proof of proposition 5.23 we need to develop several auxiliary

results.
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Recall the notation Nx
t := card(N x

t ) and recall from (5.16) that Nx
t ≤ ex+ct for all

t ∈ R+
0 . However, notice that ex+ct is an upper bound of Nx

t , but the actual value of

Nx
t may possibly be below that bound. Hence, a nontrivial question is whether Nx

t

remains finite as t tends to ∞. The following lemma shows that this is not the case, a

fact that we make use of later on.

Lemma 5.24 Let c > cp̄. Then we have that

lim sup
t→∞

Nx
t = ∞

holds true P(·|ζx = ∞)–a.s. for any x ∈ R+
0 .

In order to prove Lemma 5.24 we need the following auxiliary lemma which states that

for any n ∈ N there exists a stopping time such that with positive probability there

are at least n blocks alive at that stopping time. More precisely, we have the following

result:

Lemma 5.25 Let c > cp̄ and x ∈ R+
0 . Then for any n ∈ N there exists some t > 0

such that

P (Nx
t ≥ n) > 0. (5.30)

Proof In the first part of the proof we show that the probability of the event {Nx
t ≥ 2}

is positive for some t ∈ R+
0 and in the second part we use this in conjunction with an

induction argument to prove the assertion.

Part I Since, by Hypothesis 1.2, in the unkilled fragmentation process there are at least

two blocks at the jump time, it follows from (1.7) that there exists some y0 ∈ (1/2, 1)

such that

ν(s ∈ S1 : s2 ≥ 1− y0) > 0.

Indeed, assume ν(s ∈ S1 : s2 ≥ a) = 0 for all a ∈ (0, 1). Then ν(s ∈ S1 : s1 6= 1) = 0,

which contradicts (1.7). Furthermore, in the light of (5.12) we assume that

ν(s ∈ S1 : s1 ∈ (0, y0]) > 0.

We have

ν(s ∈ S1 : s2 ≥ 1− y0) ≤ ν(s ∈ S1 : s1 ≤ y0) <∞,

and thus [Ber96, Proposition 2 in Section 0.5] shows that

P (∆2(τ(y0)) ≥ 1− y0) =
ν(s ∈ S1 : s2 ≥ 1− y0)

ν(s ∈ S1 : s1 ≤ y0)
> 0, (5.31)
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where τ(y0) is given by (5.11). Consider the fragmentation processes Π̃ obtained from

the restricted dislocation measure

ν̃ := ν|{s∈S1:s1>y0}.

According to [Ber96, Proposition 2 in Section 0.5] the stopping time τ(y0) is expo-

nentially distributed with parameter q ∈ R+ and independent of Π̃. Let X̃0
1 be the

spectrally negative Lévy process, starting from 0 and killed at the negative half–line,

corresponding to Π̃ and let R̃(q)(0, ·) be the associated q–resolvent measure, see e.g. the

proof of Theorem 8.7 in [Kyp06]. Resorting to Corollary 8.8 in [Kyp06] and to (5.31)

we thus have that

P

(

N0
τ(y0)

≥ 2
)

= P
(

X0
1 (τ(y0−) ∈ (− ln(y0),− ln(1− y0))

)

P (∆2(τ(y0)) ≥ 1− y0)

= P

(

X̃0
1 (τ(y0) ∈ (− ln(y0),− ln(1− y0))

)

P (∆2(τ(y0)) ≥ 1− y0)

= qR̃(q) (0, (− ln(y0),− ln(1− y0)))P (∆2(τ(y0)) ≥ 1− y0) (5.32)

> 0.

Moreover, this results in

P
(

N0
t ≥ 2

)

> 0 (5.33)

for some t > 0. Indeed, by means of the extended fragmentation property and

Lemma 5.19 the positivity in (5.32) implies that

P
(

N0
t ≥ 2

)

≥ P

({

N0
τ(y0)

≥ 2
}

∧ {τ(y0) ≤ t)}
)

P
(

ζ0 > t
)2
> 0

for some t > 0.

Part II We prove (5.30) by resorting to the principle of mathematical induction, see

Figure 5-5. To this end, let n ∈ N∪{0} and in view of (5.33) fix some u0 > 0 such that

P
(

N0
u0 ≥ 2

)

> 0. (5.34)

As the induction hypothesis assume that

P
(

N0
nu0 ≥ n+ 1

)

> 0.
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time

− ln(size)

ξ(1)

α2

λ
(2)
1

y

α3

t 7→ y + c(t − 3u0)

3u0

α4

α1

λ
(3)
1

λ
(4)
1

4u0τ4(y0)

.

.

.
λ
(1,1)
1

λ
(1,2)
1

Figure 5-5: Illustration of the induction argument based on (5.33) for n = 3 and with
y := c3u0 in the case of a finite dislocation measure. By induction hypothesis N0

3u0
≥ 4. The

fragmentation property implies that the blocks alive at time 3u0 start independent copies of
Πx (with different initial configurations). In this illustration we depict a realisation of these
independent copies. For k ∈ {1, . . . , 4} set αk := − ln(λ0k(3u0)). Then ξ(1) is an independent

copy of the subordinator ξ, shifted by α1, and λ
(k)
1 , k ∈ {2, 3, 4}, is an independent copy of

(λαk

1 (t))t∈[0,u0]. Further, the random variable τ4(y0) − 3u0 is an independent copy of τ(y0).

In view of the extended fragmentation property, λ
(1,1)
1 and λ

(1,2)
1 are independent copies of λ1,

starting at τ4(y0) and shifted by ξ(1)(τ4(y0))∆1(τ4(y0)) and ξ
(1)(τ4(y0))∆2(τ4(y0)) respectivey.

By the fragmentation property and (5.34) as well as Lemma 5.19 this yields that

P

(

Nx
(n+1)u0

≥ n+ 2
)

≥ P
(

Nx
nu0 ≥ n+ 1

)

P

(

N (n) ≥ 2
∣

∣

∣Fnu0

)

n+1
∏

k=2

P

(

ζ
(n)
k > u0

∣

∣

∣Fnu0

)

≥ P
(

N0
nu0 ≥ n+ 1

)

P
(

N0
u0 ≥ 2

)

P
(

ζ0 > u0
)n

> 0

holds P–a.s., where conditional on Fnu0 the N (n) and ζ
(n)
k are independent of any

random variable involved and satisfy

P

(

N (n) ∈ ·
∣

∣

∣Fnu0

)

= P
(

Ny
u0 ∈ ·

)∣

∣

y=x+cnu0+ln(λx1 (nu0))
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as well as

P

(

ζ
(n)
k ∈ ·

∣

∣

∣Fnu0

)

= P (ζy ∈ ·)|y=x+cnu0+ln(λx
k
(nu0))

P–almost surely. As P (Nx
0 ≥ 1) = 1, this completes the induction argument. �

Having established the previous lemma we are now in a position to tackle the proof of

Lemma 5.24.

Proof of Lemma 5.24 Fix some k ∈ N and in view of Lemma 5.25 let t0 > 0 be such

that

P(N0
t0 ≥ k) > 0. (5.35)

Furthermore, for every n ∈ N define

En :=
{

ω ∈ Ω : N0
nt0(ω) ≥ k

}

.

By means of the fragmentation property and (5.35) we have for any n ∈ N that

P
(

En
∣

∣F(n−1)t0

)

≥ P

(

N (n) ≥ k
∣

∣F(n−1)t0

)

≥ P(N0
t0 ≥ k) > 0 (5.36)

holds P–a.s. on {ζ0 = ∞}, where conditional on F(n−1)t0 the N (n) are independent

and satisfy

P

(

N (n) ∈ ·
∣

∣

∣
F(n−1)t0

)

= P
(

Ny
t0 ∈ ·

)∣

∣

y=X0
jn

((n−1)τ0)

P–a.s. with jn = mini∈N 0
(n−1)τ0

. As a consequence of (5.36) we obtain that

∑

n∈N

P
(

En|F(n−1)t0

)

= ∞ (5.37)

P–a.s. on {ζ0 = ∞}.
Since En is Fnt0–measurable, we can apply an extended Borel–Cantelli lemma (see e.g.

[Dur91, (3.2) Corollary in Chapter 4] or [Bre92, Corollary 5.29]) to deduce that

{En happens infinitely often} =

{

∑

n∈N

P
(

En|F(n−1)t0

)

= ∞
}

,

and thus (5.37) shows that on the event {ζ0 = ∞} the event En happens for infinitely

many n ∈ N. Therefore,

P

(

lim sup
n→∞

En

∣

∣

∣

∣

ζ0 = ∞
)

= 1,
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where

lim sup
n→∞

En :=
⋂

n∈N

∞
⋃

m=n

Em.

Consequently, we infer that

P

(

lim sup
t→∞

N0
t ≥ k

∣

∣

∣

∣

ζ0 = ∞
)

= 1,

which proves the assertion by letting k → ∞. �

The next lemma, which is not used anywhere else in this thesis, shows that P–a.s. there

is no accumulation of all the mass against the killing line, i.e. the largest fragment is

bounded away from the killing line. Let Nx
t (ǫ), ǫ ∈ (0, x), denote the number of blocks

of Πx whose size is a value in (e−(x+ct−ǫ), 1], see Figure 5-6.

time

− ln(size)

0

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

x + ct

x

. . .

x + ct − ǫ

x − ǫ

. . .

. . .

. . .

. . .
. . .

Figure 5-6: Illustration of Nx
t (ǫ), that is the number of particles that at time t are below the

lower dotted line. In this picture these particles are indicated by a black–coloured dot.

Lemma 5.26 Let c > cp̄. For any x ∈ R+ there exists some R+–valued random

variable ǫ such that

inf
t∈R+

0

Nx
t (ǫ) ≥ 1

holds true P(·|ζx = ∞)–almost surely.

Proof Observe that the assertion is proven once we have shown that

inf
t∈R+

0

((x+ ct) + ln(λx1(t))) > 0 (5.38)
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holds P(·|ζx = ∞)–a.s. for any x ∈ R+. Recall that Lemma 5.21 shows that the

mapping ϕ = P(ζ(·) = ∞) is continuous. In addition, let x ∈ R+
0 and define the event

A := {ζx = ∞} ∩
{

inf
t∈R+

0

((x+ ct) + ln(λx1(t))) = 0

}

.

Furthermore, let (xn)n∈N be a sequence in R+
0 with xn ↑ x as n→ ∞. As

{ζxn = ∞} ∩
{

inf
t∈R+

0

((x+ ct) + ln(λx1(t))) = 0

}

= ∅

and {ζxn = ∞} ⊆ {ζx = ∞}, we infer that P(ζxn = ∞) ≤ P({ζx = ∞}\A). By means

of the continuity of P(ζ(·) = ∞) at x we thus have

P(ζx = ∞) = lim
n→∞

P(ζxn = ∞) ≤ P({ζx = ∞} \A),

which implies that P(A) = 0. Thus, inft∈R+
0
((x + ct) + ln(λx1(t))) 6= 0 P(·|ζx = ∞)–

a.s., but clearly we can’t have inft∈R+
0
((x + ct) + ln(λx1(t))) < 0 on {ζx = ∞} as

− ln(λx1(t)) < x + ct for all t ∈ R+
0 on {ζx = ∞}. We conclude that (5.38) holds true

for any x ∈ R+
0 , and thus for each x ∈ R+

0 there exists some R+–valued random variable

ǫ such that

inf
t∈R+

0

Nx
t (ǫ) ≥ 1

P(·|ζx = ∞)–almost surely. �

Let us now turn to the crucial lemma that we need in order to prove Proposition 5.23.

Lemma 5.27 Let c > cp̄ and x ∈ R+
0 . Then we have

lim sup
t→∞

Rx1(t) = ∞

P(·|ζx = ∞)–almost surely.

Proof Let z > x and set

Γxz := {ω ∈ Ω : inf{t ∈ R+
0 : Xx

n(t)(ω) 6∈ [0, z)} = ∞∀n ∈ N}.

Observe that [Ber96, Theorem 12 in Section VI.3] shows that the probability that the

process Xn stays inside the interval (0, z) for an infinitely long time without leaving
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the interval is zero. Consequently, we have that

τ−n,x < τ+1,z−x = ∞ on Γxz .

For each n ∈ N set

τn := inf{t ∈ R+
0 : Nx

t ≥ n}

and note that Lemma 5.24 implies that τn is a P–a.s. finite stopping time. By means

of Lemma 1.8, we thus infer from the extended fragmentation property and (5.3) that

P(Γxz |Fτn) ≤
∏

n∈Nx
τn

P(Γyz)|y=Xx
n(τn)

≤
∏

n∈Nx
τn

Pey(τ
−
n,0 < τ+1,z)

∣

∣

∣

y=Xx
n(τn)

≤
∏

n∈Nx
τn

(

1− W (Xx
n(τn))

W (z)

)

≤
(

1− 1

cW (z)

)Nx
τn

≤
(

1− 1

cW (z)

)n

P–a.s. on {ζx = ∞} for any n ∈ N. Therefore, since {Rx1(s) < z ∀ s ∈ R+
0 } = Γxz ,we

have

P

({

sup
s∈R+

0

Rx1(s) < z

}

∩ {ζx = ∞}
)

= P (Γxz ∩ {ζx = ∞})

= lim
n→∞

E (P (Γxz ∩ {ζx = ∞}|Fτn))

= E

(

lim
n→∞

P (Γxz ∩ {ζx = ∞}|Fτn)
)

= 0.

Because Rx1(s) ≤ x+ cs for all s ∈ R+
0 , we thus deduce that

P

({

sup

{

Rx1(s) : s ≥
z − x

c

}

< z

}

∩ {ζx = ∞}
)

= 0.

Consequently, resorting to the DCT and recalling that z > x was chosen arbitrarily we
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conclude that

P

(

lim sup
s→∞

Rx1(s) = ∞
∣

∣

∣

∣

ζx = ∞
)

= lim
z→∞

P

(

sup

{

Rx1(s) : s ≥
z − x

c

}

≥ z

∣

∣

∣

∣

ζx = ∞
)

= 1,

which proves the assertion. �

We are now in a position to prove Proposition 5.23.

Proof of Proposition 5.23 By the martingale convergence theorem we have that

Zx,f being a nonnegative martingale implies that Zx,f∞ := limt→∞ Zx,ft exists P–almost

surely. Since the empty product equals 1 it is immediately clear that

Zx,f∞ = 1 (5.39)

holds P–a.s. on {ζx < ∞}. Moreover, according to Lemma 5.27 we have that

lim supt→∞Rx1(t) = ∞ P–a.s. on {ζx = ∞}. Since limy→∞ f(y) = 0, we thus de-

duce that

0 ≤ Zx,f∞ ≤ lim inf
t→∞

f(Rx1(t)) = 0 (5.40)

P–a.s. on {ζx = ∞}. Hence, in view of (5.39) and (5.40) we infer that

Zx,f∞ = 1{ζx<∞} (5.41)

holds true P–almost surely. As a consequence of Zx,f being a bounded, thus uniformly

integrable, martingale we conclude by means of (5.41) that

f(x) = E(Zx,f0 ) = E(Zx,f∞ ) = P(ζx <∞).

�

5.6.2 Existence of a product martingale

This section is concerned with proving the second implication of Theorem 5.12, which

is the content of the following proposition:

Proposition 5.28 Let c > cp̄. Then the process Zx,ϕ is an F–martingale under P

and limx→∞ ϕ(x) = 0.
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Recall that the first implication of Theorem 5.12 was established in Proposition 5.23

in the previous section. Combining Proposition 5.28 with Proposition 5.23 thus proves

Theorem 5.12.

We shall use the following lemma:

Lemma 5.29 Let x ∈ R+
0 and let f : R → R+

0 be some function. Further, assume that

E
(

Zx,ft

)

= f(x). (5.42)

holds for all t ∈ R+
0 . Then Zx,f is a martingale with respect to the filtration F .

Proof Let s, t ∈ R+
0 . In view of the fragmentation property of Π we have that

E

(

Zx,ft+s

∣

∣

∣Ft

)

=
∏

n∈Nx
t

E

(

Z(n)
∣

∣

∣Ft

)

=
∏

n∈Nx
t

f(Xx
n(t)) = Zx,ft , (5.43)

P–a.s., where conditional on Ft the Z
(n) are independent and satisfy

P

(

Z(n) ∈ ·
∣

∣

∣Ft

)

= P

(

Zy,fs ∈ ·
)∣

∣

∣

y=Xx
n(t)

P–almost surely. Note that the second equality in (5.43) follows from (5.42). �

Proof of Proposition 5.28 Since ϕ is monotone and bounded, the limit limx→∞ ϕ(x)

exists in [0, 1]. Furthermore, for any t ∈ R+
0 we have N x

t ↑ N P–a.s. as x → ∞, that

is limx→∞ 1Nx
t
(n) = 1 P–a.s. for every n ∈ N. In addition, we have that Xx

n(t) ↑ ∞
P–a.s. for any n ∈ N and t ∈ R+

0 as x → ∞. Resorting to the fragmentation property

we deduce that

ϕ(x) = E (P (ζx <∞|Ft)) = E





∏

n∈Nx
t

ϕ (Xx
n(t))



 = E (Zx,ϕt ) (5.44)

holds for all t ∈ R+
0 . Hence, it follows from Lemma 5.29 that Zx,ϕ is a P–martingale.

Moreover, by the DCT we deduce from (5.44) that

lim
x→∞

ϕ(x) = lim
x→∞

E





∏

n∈Nx
t

ϕ(Xx
n(t))





= E



 lim
y→∞

∏

n∈N y
t

lim
x→∞

ϕ(x)




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= E

(

lim
y→∞

lim
x→∞

ϕ(x)N
y
t

)

.

Consequently,

lim
x→∞

ϕ(x) ∈ {0, 1}.

Since ϕ is monotonically decreasing and ϕ(x) ∈ (0, 1) for all x ∈ R+
0 , this results in

limx→∞ ϕ(x) = 0. �

5.7 The intrinsic additive martingale for killed fragmen-

tation processes

In this section we aim at proving Theorem 5.13.

Let c > cp̄ and recall that for any x ∈ R+
0 the processes Mx(p) := (Mx

t (p))t∈R+
0
,

p ∈ (p,∞), was defined in (5.6) and note that

Mx
t (p) =

∑

n∈Nx
t

Wp (X
x
n(t)) e

Φ(p)t|Bn(t)|1+p

=
∑

n∈N

Wp (X
x
n(t)) e

Φ(p)t|Bn(t)|1+p1{t<τ−n,x}
1{n=minBn(t)}.

Moreover, recall that in Remark 5.8 we mentioned that ψ′
p(0+) > 0 for all p ∈ (p, p̄)

with Φ′(p) < c. The following lemma shows that under P the process Mx(p) is a

martingale for suitable c and p.

Lemma 5.30 Let c > cp̄ and let p ∈ (p, p̄) be such that c > Φ′(p). Further, let x ∈ R+
0 .

Then the process Mx(p) is a P–martingale with respect to the filtration F .

Proof Let us first show that for any t ∈ R+
0 the process (Wp(X

x
1 (s))1{s<τ−1,x}

)s∈R+
0
is

a P(p)–martingale with respect to F . To this end, recall that P(τ−1,y ∈ ·) = Pey(τ
−
1,0 ∈ ·)

for all y ∈ R+
0 . By the Markov property of X1 under P(p) we then infer from (5.2) that

E(p)
(

1{τ−1,x=∞}

∣

∣

∣Fs

)

= P(p)
(

τ−1,x+X1(s)
= ∞

)

1{s<τ−1,x}

= P
(p)

ex+X1(s)

(

τ−1,0 = ∞
)

1{s<τ−1,x}
(5.45)

= ψ′(0+)Wp(x+X1(s))1{s<τ−1,x}

holds P(p)–a.s. for any s ∈ R+
0 . Note that the left–hand side of (5.45) defines a closed

P(p)–martingale. Further, observe that x+X1(s) = Xx
1 (s) on the event {s < τ−1,x}.
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By means of Lemma 2.6 we deduce that

E (Mx
s (p)) = eΦ(p)sE

(

∑

n∈N

|Bn(s)|1+pWp(X
x
n(s))1{t<τ−n,x}

1{n=min(Bn(s))}

)

= E

(

Wp(X
x
1 (s))1{s<τ−1,x}

eΦ(p)s−pξ(s)
)

= E(p)
(

Wp(X
x
1 (s))1{s<τ−1,x}

)

(5.46)

= E(p)
(

Wp(X
x
1 (0))1{0<τ−1,x}

)

=Wp(x)

for all t ∈ R+
0 , where the penultimate equality is a consequence of the martingale

property of (Wp(X
x
1 (s))1{s<τ−1,x}

)s∈R+
0
. Notice further that the last equality in (5.46)

follows from Xx
1 (0) = x and τ−1,x > 0 P(p)–almost surely. In view of (5.46) we infer from

the fragmentation property of Π that

E
(

Mx
t+s(p)

∣

∣Ft

)

=
∑

n∈N

eΦ(p)t|Bn(t)|1+pE
(

M (n)
∣

∣

∣
Ft

)

1{t<τ−n,x}
1{n=min(Bn(t))}

=
∑

n∈N

eΦ(p)t|Bn(t)|1+pWp(X
x
n(t))1{t<τ−n,x}

1{n=min(Bn(t))}

=Mx
t (p)

P–a.s. for all s, t ∈ R+
0 , where conditional on Ft the M

(n) are independent and satisfy

P

(

M (n) ∈ ·
∣

∣

∣Ft

)

= P (My
s (p) ∈ ·)|y=Xx

n(t)

P–almost surely. �

According to Lemma 5.30 we have that Mx(p) is a nonnegative martingale and by

the martingale convergence theorem we thus infer that Mx
∞(p) := limt→∞Mx

t (p) exists

P–almost surely.

The second auxiliary result that we use to prove Theorem 5.13 is the following lemma.

Lemma 5.31 Let c > cp̄ and let p ∈ (p, p̄) be such that c > Φ′(p). Furthermore, let

x > 0. Then limt→∞
∑

n∈Nx
t
eΦ(p)t|Bn(t)|1+p exists P–a.s. and Mx

∞(p) satisfies

Mx
∞(p) =

1

ψ′
p(0+)

lim
t→∞

∑

n∈Nx
t

eΦ(p)t|Bn(t)|1+p
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P–almost surely.

Proof In view of the monotonicity of Wp and (1.5) we have

sup
y∈R+

0

Wp(y) = lim
y→∞

Wp(y) =
1

ψ′
p(0+)

, (5.47)

and thus

Mx
t (p) =

∑

n∈Nx
t

Wp (X
x
n(t)) e

Φ(p)t|Bn(t)|1+p

≤ sup
y∈R+

0

Wp(y)
∑

n∈Nx
t

eΦ(p)t|Bn(t)|1+p

=
1

ψ′
p(0+)

∑

n∈Nx
t

eΦ(p)t|Bn(t)|1+p

holds true for all t ∈ R+
0 . Consequently,

Mx
∞(p) ≤ 1

ψ′
p(0+)

lim inf
t→∞

∑

n∈Nx
t

eΦ(p)t|Bn(t)|1+p. (5.48)

The remainder of the proof is concerned with the lower bound. For this purpose we fix

some η ∈ (0, c − Φ′(p)). At first we show that

Mx
∞(p) (5.49)

= lim
t→∞

∑

k∈Nx
t

Wp(x+ ct+ ln(|Bk(t)|))eΦ(p)t|Bk(t)|1+p1{|−ln(|Bk(t)|)−Φ′(p)t|≤ηt}.

P–almost surely. To this end, let ε ∈ (0, η) and observe that for every ε > 0 there

exists some δε ∈ (0, p − p) such that −Φ′(p) ≤ δ−1(Φ(p − δ) − Φ(p)) + ε as well as

Φ′(p) ≤ δ−1(Φ(p+ δ)− Φ(p)) + ε for all δ ∈ (0, δε]. Therefore, we have that

Φ(p)− δΦ′(p)− δη = Φ(p)− δ(Φ′(p) + ε)− δ(η − ε) ≤ Φ(p− δ)− δ(η − ε) (5.50)

and

Φ(p) + δΦ′(p)− δη = Φ(p) + δ(Φ′(p)− ε)− δ(η − ε) ≤ Φ(p+ δ)− δ(η − ε) (5.51)

holds true for all δ ∈ (0, δε]. Moreover, note that

1{ln(|Bn(t)|+Φ′(p)t+ηt<0} ≤ e−δ(ln(|Bn(t)|+Φ′(p)t+ηt)),
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which yields that

∑

n∈Nx
t

eΦ(p)t|Bn(t)|1+p1{ln(|Bn(t)|+Φ′(p)t+ηt<0} ≤
∑

n∈Nx
t

e(Φ(p)−δΦ′(p)−δη)t|Bn(t)|1+p−δ

≤ e−δ(η−ε)t
∑

n∈Nx
t

eΦ(p−δ)t|Bn(t)|1+p−δ

≤ e−δ(η−ε)tMx
t (p − δ) (5.52)

for all δ ∈ (0, δε], where in the penultimate inequality we have used (5.50). Since

Mx(p − δ) is a nonnegative martingale, and hence has a P–a.s. limit, we deduce from

(5.2) and (5.52) that

∑

n∈Nx
t

Wp(x+ ct+ ln(|Bn(t)|))eΦ(p)t|Bn(t)|1+p1{ln(|Bn(t)|+Φ′(p)t<−ηt}

≤ ψ′
p(0+)−1e−δ(η−ε)tMx

t (p − δ) (5.53)

→ 0

P–a.s. as t→ ∞. Similarly, resorting to (5.51), we conclude that

∑

n∈Nx
t

eΦ(p)t|Bn(t)|1+p1{− ln(|Bn(t)|−Φ′(p)t+ηt<0}

≤
∑

n∈Nx
t

e(Φ(p)+δΦ′(p)−δη)t|Bn(t)|1+p+δ

≤ e−δ(η−ε)t
∑

n∈Nx
t

eΦ(p+δ)t|Bn(t)|1+p+δ

≤ e−δ(η−ε)tMx
t (p+ δ)

holds for all δ ∈ (0, δε]. Since Mx(p + δ) is a nonnegative martingale, and thus has a

P–a.s. limit, we obtain that

∑

n∈Nx
t

Wp(x+ ct+ ln(|Bn(t)|))eΦ(p)t|Bn(t)|1+p1{− ln(|Bn(t)|)−Φ′(p)<−ηt}

≤ ψ′
p(0+)−1e−δ(η−ε)tMx

t (p+ δ) (5.54)

→ 0

P–a.s. as t → ∞. In view of (5.53) and (5.54) we deduce that (5.49) holds true. Since

109



η < c− Φ′(p), we infer from (5.47) that

lim
t→∞

Wp

(

x+ (c− Φ′(p)− η)t
)

= lim
y→∞

Wp(y) =
1

ψ′
p(0+)

P–almost surely. Hence, for any γ > 0 there exists some tγ ∈ R+
0 with

Wp

(

x+ (c− Φ′(p)− η)t
)

≥ 1

ψ′
p(0+)

− γ

P–a.s. for all t ≥ tγ . Resorting to (5.49) we thus obtain that

Mx
∞(p) ≥

(

1

ψ′
p(0+)

− γ

)

lim sup
t→∞

∑

n∈Nx
t

eΦ(p)t|Bn(t)|1+p

P–a.s. for every γ > 0. Letting γ ↓ 0, this results in

Mx
∞(p) ≥ 1

ψ′
p(0+)

lim sup
t→∞

∑

n∈Nx
t

eΦ(p)t|Bn(t)|1+p

P–a.s., which in view of (5.48) proves the assertion. �

Let us now tackle the proof of Theorem 5.13.

Proof of Theorem 5.13 Recall first that the martingale property of Mx(p) was

established in Lemma 5.30.

It remains to show that the symmetric difference of {Mx
∞(p) = 0} and {ζx < ∞}

coincide. In view of Lemma 5.31 define a function φp : R
+
0 → R+

0 by

φp(x) = lim
t→∞

∑

n∈Nx
t

eΦ(p)t|Bn(t)|1+p

for all x ∈ R+
0 and consider the function gp : R

+
0 → [0, 1] given by

gp(x) = P(φp(x) = 0)

for any x ∈ R+
0 . Resorting to the fragmentation property we deduce that

gp(x) = E(P(φp(x) = 0|Ft)) = E





∏

n∈Nx
t

gp (X
x
n(t))



 = E
(

Z
x,gp
t

)

holds for all t ∈ R+
0 . Hence, it follows from Lemma 5.29 that Z

x,gp
t is a P–martingale.
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In view of Proposition 5.23 we thus deduce that

P(φp(x) = 0) = gp(x) = P(ζx <∞).

Since {ζx <∞} ⊆ {φp(x) = 0} for each x > 0, as the empty sum equals 0, this implies

that

P ({ζx <∞}△{φp(x) = 0}) = 0

for every x > 0, and thus it follows from Lemma 5.31 that

P ({ζx <∞}△{Mx
∞(p) = 0}) = 0.

�

5.8 Asymptotic speed of the largest fragment

The final section of this chapter is devoted to the proof of Theorem 5.14. That is, in

this section we deal with the asymptotic behaviour of the largest fragment in the killed

fragmentation process.

Proof of Theorem 5.14 Our approach is based on the method of proof for Corol-

lary 1.4 in [Ber06].

For the time being, let p ∈ (p,∞). In view of Wp(x) ≥ c−1 for all x ∈ R+
0 , see

Lemma 1.8 , we deduce that

c−1eΦ(p)t(λx1(t))
1+p ≤ c−1eΦ(p)t

∑

n∈Nx
t

|Bn(t)|1+pn (t)

≤ eΦ(p)t
∑

n∈Nx
t

Wp (X
x
n(t)) |Bn(t)|1+pn (t)

=Mx
t (p) (5.55)

Since according to Lemma 5.30 the process Mx(p) is a nonnegative P–martingale,

we have in particular that limt→∞Mx
t (p) ∈ R+

0 P–almost surely. Hence, taking the

logarithm and taking the limit superior as t→ ∞ we deduce from (5.55) that

lim sup
t→∞

1

t
ln(λx1(t)) ≤ − Φ(p)

1 + p
,
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and thus, since p ∈ (p,∞) was chosen arbitrarily,

lim sup
t→∞

1

t
ln(λx1(t)) ≤ − Φ(p̄)

1 + p̄
= −Φ′(p̄), (5.56)

P–a.s., where the final equality follows from the definition of p̄.

In order to show the converse inequality, recall that in the proof of Theorem 5.13 we

defined φp : R
+
0 → R+

0 by

φp(y) = lim
t→∞

∑

n∈N y
t

eΦ(p)t|Bn(t)|1+p

and showed that

φp(y) > 0 (5.57)

P (·|ζy = ∞)–a.s. for all y ∈ R+
0 . Further, let p ∈ (p, p̄) as well as ǫ ∈ (0, p − p) and

observe that

c−1eΦ(p)t
∑

n∈Nx
t

|Bn(t)|1+p(t)

≤ e(Φ(p)−Φ(p−ǫ))t[λx1(t)]
ǫeΦ(p−ǫ)t

∑

n∈Nx
t

Wp−ǫ (X
x
n(t)) |Bn(t)|1+p−ǫ(t)

= e(Φ(p)−Φ(p−ǫ))t[λx1(t)]
ǫMx

t (p − ǫ). (5.58)

According to Theorem 5.13 we have limt→∞Mx
t (p − ǫ) ∈ (0,∞) P(·|ζx = ∞)–almost

surely. Consequently, taking the logarithm and taking the limit superior as t→ ∞ we

thus deduce from (5.58) in conjunction with (5.57) that

lim sup
t→∞

1

t
ln(λx1(t)) ≥ −Φ(p)− Φ(p− ǫ)

ǫ

P(·|ζx = ∞)–almost surely. Therefore, we have

lim sup
t→∞

1

t
ln(λx1(t)) ≥ − lim

ε→0

Φ(p)−Φ(p− ε)

ε
= −Φ′(p) (5.59)

P(·|ζx = ∞)–almost surely. Letting p → p̄ and resorting to the convexity of Φ, which

ensures the continuity of Φ′, (5.59) results in

lim sup
t→∞

1

t
ln(λx1(t)) ≥ −Φ′(p̄)
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P(·|ζx = ∞)–almost surely. Recalling from (5.1) that cp̄ = Φ′(p̄), and bearing in mind

(5.56), this proves the assertion. �

In particular, Theorem 5.14 shows that for c > cp̄ the asymptotic speed of the largest

fragment λx1(t) in the killed fragmentation process is of order t on the event of survival

of this process. Note that this result concurs with the asymptotic speed of the right–

most particle for killed branching Brownian motions, see Lemma 2 in [HHK06] . As a

corollary of Theorem 5.14 we obtain the asymptotic speed of Rx1(t) on survival of Πx.

Corollary 5.32 Let c > cp̄. Then we have that

lim
t→∞

Rx1(t)

t
= c− cp̄

P(·|ζx = ∞)–a.s. for all x > 0.

Proof Let x > 0. According to Theorem 5.14 we have that

lim
t→∞

ln(λx1(t))

t
= −cp̄

P(·|ζx = ∞)–almost surely. Hence, we infer that

lim
t→∞

Rx1(t)

t
= lim

t→∞

x+ ct+ ln(λxn(t))

t
= c+ lim

t→∞

ln(λx1(t))

t
= c− cp̄

P(·|ζx = ∞)–almost surely. �

5.9 Concluding remarks

In this chapter we introduced killed fragmentations. These processes form a new class

of fragmentation processes that was not considered in the literature so far. Our ap-

proach follows the spirit of related considerations for other killed branching processes,

in particular with regard to branching Brownian motion as in [HHK06]. In the context

of branching Brownian motions several results which are comparable to those obtained

here for fragmentations follow from the positive time between subsequent jumps as

well as from the spatial behaviour between jumps and from well–known properties of

Brownian motions. Our method is based on the close relationship between fragmenta-

tion processes and Lévy processes. Indeed, many tools that we used in this chapter are

borrowed from the theory of Lévy processes as compiled in Section 1.2.

We believe that the results of this chapter are of intrinsic interest as they shed light on

an interesting class of fragmentation processes. However, our main motivation for the
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considerations here stems from the close connection of killed fragmentations with the

one–sided FKPP travelling wave equation in the context of fragmentation processes.

This connection will be explained in the following chapter, where we shall use the

results of the present chapter in order to obtain existence and uniqueness results for

one–sided FKPP travelling waves in the setting of fragmentation processes.
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CHAPTER 6

THE FKPP EQUATION FOR KILLED FRAGMENTATION

PROCESSES

In this chapter we prove existence and uniqueness of solutions of the

one–sided FKPP travelling wave equation in the setting of fragmen-

tation processes.

6.1 Introduction

This chapter is devoted to the study of one–sided FKPP travelling waves in the set-

ting of fragmentation processes. More precisely, we aim at studying the existence and

uniqueness of solutions of the one–sided FKPP travelling wave equation for fragmen-

tation processes. This equation, which turns out to be an integro–differential equation

using the dislocation measure as integrator, has a similar interpretation as the classical

FKPP travelling wave equation whose probabilistic interpretation is related to branch-

ing Brownian motion. Our main result states that there exists a constant such that for

any wave speed greater than that constant there exists a unique travelling wave with

thwith wave speed and for any wave speed less than or equal to that constant there is

no such travelling wave. The one–sided FKPP travelling wave solutions that we obtain

show similar resemblances with the one–sided solutions in the classical FKPP equation

as do the two–sided travelling wave solutions for fragmentations obtained in [BHK10]

with the two–sided solutions in the classical case.

Our approach is based on using killed fragmentation processes. In this respect the

notions and results of Chapter 5 are crucial for our considerations here.

As in the previous chapter we consider a homogenous fragmentation process Π, satis-
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fying Hypothesis 1.1 and Hypothesis 1.2, with Bn, n ∈ N, and λ being defined as on

page 16 and on page 20 respectively.

Throughout the present chapter we use the terminology f : R → [0, 1] as an abbreviated

form for writing f : R ∪ {−∞} → [0, 1] with f(−∞) = 1, and similarly we interpret

u : R+
0 × R → [0, 1]. In addition, we adopt ln(0) := −∞.

In this chapter we prove existence and uniqueness of one–sided travelling waves for

fragmentation processes within a certain regime of wave speeds. More specifically, the

problem we are concerned with in this chapter can be roughly described as follows.

Consider the following integro–differential equation

cf ′(x) +

∫

S1

(

∏

n∈N

f(x+ ln(sn))− f(x)

)

ν(ds) = 0

for certain c > 0 and all x ∈ R+
0 . We are interested in solutions f : R → [0, 1] of this

equation that satisfy

f |
R
+
0
∈ C1(R+

0 , [0, 1]) and f |(−∞,0) ≡ 1

as well as the boundary condition

lim
x→∞

f(x) = 0.

Roughly speaking, our main result states that there is some constant c0 > 0 such that

there exists a unique solution of the above boundary value problem for every c > c0

and there does not exist such a solution for any c ≤ c0. More precisely, it turns out

that this constant is given by c0 = cp̄, where cp̄ > 0 is the constant that was defined

in Definition 5.6 and that played an important role in Chapter 5. In fact, that this

constant appears in the present chapter as well is a consequence of the significance of

killed fragmentation processes for the problem considered here.

6.2 Motivation – The classical FKPP equation

Let us first briefly mention related results in order to present the framework in which

our main result should be seen. To this end we denote by C1,2(R+
0 ×A, [0, 1]), A ⊆ R,

the space of all functions f : R+
0 × A → [0, 1] such that f(x, ·) ∈ C2(A, [0, 1]) and

f(·, y) ∈ C1(R+
0 , [0, 1]) for all x ∈ R+

0 and y ∈ A.

The classical FKPP equation in the form that is of most interest for us, cf. [McK75],
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is the following nonlinear, parabolic partial differential equation:

∂u

∂t
=

1

2

∂2u

∂x2
+ β(u2 − u) (6.1)

with u ∈ C1,2(R+
0 ×R, [0, 1]). This equation, originally introduced by Fisher (see [Fis30]

and [Fis37]) as well as by Kolmogorov, Petrovskii and Piscounov (cf. [KPP37]), has

attracted much attention by analysts and probabilists alike. This kind of equation

first arose in the context of a genetics model for the spread of an advantageous gene

through a population and it is also satisfied by the maximal displacement of branching

Brownian motion (see e.g. [McK75]). Several authors showed that this equation is

closely related to dyadic branching Brownian motions, thus establishing a probabilistic

link of this analytical problem. In this probabilistic interpretation the term “1
2
∂2u
∂x2

”

corresponds to the motion of the underlying Brownian motion, the “β” is the rate at

which the particles split and the term “u2−u” results from the binary branching, that

is two particles replace one particle at each branching time.

A solution u of equation (6.1) can be interpreted in different ways. The classical

work concerning this partial differential equation, such as [Fis30], [Fis37] and [KPP37],

describes the wave of advance of advantageous genes. More precisely, there are two

types of individuals (or genes) in a population, and u(t, x) measures the frequency or

concentration of the advantageous type at the space–time point (x, t). In McKean’s

interpretation [McK75] the function u(t, x) is related to a branching Brownian motion.

Let u(t, x) be the probability that at time t the largest particle of the branching Brow-

nian motion has a value less than x. Then u satisfies equation (6.1). In [Fis30], [Fis37]

and [KPP37] the equation describes the bulk of the population, in [McK75] it describes

the most advanced particle.

The classical FKPP travelling waves are solutions of (6.1) of the form

u(t, x) = f(x− ct)

for some f ∈ C2(R, [0, 1]) and some constant c ∈ R. This leads to the so–called FKPP

travelling wave equation with wave speed c ∈ R and β > 0

1

2
f ′′ + cf ′ + β(f2 − f) = 0

lim
x→−∞

f(x) = 0 (6.2)

lim
x→∞

f(x) = 1,
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This travelling wave boundary value problem was studied by various authors, using

both analytic as well as probabilistic techniques, and it is known that is has a unique

(up to additive translation) solution f ∈ C2(R, [0, 1]) if |ρ| ≥ √
2β. In the opposite case

that 0 ≤ |ρ| < √
2β there is no travelling wave solution. For probabilistic approaches

we refer for instance to [McK75] (cf. also [McK76]), [Bra78], [Bra83], [Uch77], [Uch78],

[Nev87] as well as [CR88] and [CR90]. For our considerations the expositions in [Har99]

and [Kyp04] are particularly interesting with regard to probabilistic methods dealing

with the classical FKPP travelling wave equation.

More interesting with regard to our work is that the above boundary value problems

was extended to continuous–time branching random walks (cf. [Kyp99]) and recently

to fragmentation processes (see [BHK10]). In the setting of fragmentation processes

the corresponding partial integro–differential equation is defined a follows:

∂u

∂t
(t, x) =

∫

S

(

∏

n∈N

u(t, x+ ln(sn))− u(t, x)

)

ν(ds) (6.3)

for certain u : R+
0 ×R → [0, 1] for which the above objects exist. We call equation (6.3)

FKPP equation for fragmentation processes. Of particular interest are the so–called

FKPP travelling waves to (6.3) with wave speed c ∈ R, that is solutions of (6.3) which

are of the form u(t, x) = f(x − ct) for all t ∈ R+
0 and x ∈ R. These travelling wave

solutions are functions f ∈ C1(R, [0, 1]) that satisfy the following FKPP travelling wave

equation

cf ′(x) +

∫

S

(

∏

n∈N

f(x+ ln(sn))− f(x)

)

ν(ds) = 0

for all x ∈ R with boundary conditions

lim
x→−∞

f(x) = 0 and lim
x→∞

f(x) = 1.

For every p ∈ (p, p̄] let T2(p) denote the space of monotonically increasing functions

f ∈ C1(R, [0, 1]) satisfying the boundary conditions limx→−∞ f(x) = 0 as well as

limx→∞ f(x) = 1 and such that e(1+p)x(1 − f(x)) is monotonically increasing. In

[BHK10, Theorem 1] Berestycki et. al. show that for p ∈ (p, p̄] and

cp :=
Φ(p)

1 + p
(6.4)

there exists a unique (up to additive translation) travelling wave solution in T2(p) with
wave speed cp. Note that in view of (1.15) the definition of cp in (6.4) concurs for p = p̄
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with the definition of cp̄ in (5.1).

Remark 6.1 Though not mentioning it directly, it results from [BHK10, Theorem 3

(ii)] in conjunction with the first part of the proof of [BHK10, Theorem 1] that mono-

tone travelling waves do not exist for wave speeds larger than cp̄. Indeed, according to

Lemma 1 in [Ber03] the mapping p 7→ Φ(p)
1+p = cp is monotonically increasing on (p, p̄],

and thus it follows from [BHK10] that cp̄ is the maximal travelling wave speed in this

situation. ♦

In this chapter we are interested in the one–sided versions of the FKPP equation. In

the classical setting the one–sided FKPP equation is the following partial differential

equation
∂u

∂t
=

1

2

∂2u

∂x2
+ β(u2 − u)

on R+ × R+ with u ∈ C1,2(R+
0 × R+

0 ). Observe that this equation is the analogue of

(6.1) for functions defined on R+
0 ×R+

0 . The corresponding one–sided FKPP travelling

wave equation with wave speed c ∈ R is given by the differential equation

1

2
f ′′ + cf ′ + β(f2 − f) = 0 (6.5)

on R+ for f ∈ C2(R+
0 , [0, 1]) satisfying the boundary conditions

lim
x→0

f(x) = 1 as well as lim
x→∞

f(x) = 0. (6.6)

By considering killed branching Brownian motion, killed upon hitting the origin, Harris

et. al. proved in [HHK06] that solutions of the one–sided FKPP travelling wave

boundary value problem (6.5) and (6.6) exist and are unique (up to translation) for

all c ∈ (−√
2β,∞) and there is no such travelling wave solution for c ∈ (−∞,−√

2β].

Notice that the one–sided travelling wave solutions for negative c are precisely those

wave speeds for which there does not exist a two–sided travelling wave. For results

regarding the one–sided FKPP travelling wave equation see also [Wat65], concerning

existence of a solution, as well as [Pin95] for existence and uniqueness of a solution of

(6.5) and (6.6) obtained by means of analytic techniques.

Let us remark that the methods of proof for the classical FKPP travelling wave equation

make use of the facts that for branching Brownian motions the time between successive

jumps is exponentially distributed with a finite parameter and that branching Brownian

motions have a spatial behaviour between successive jump times. For fragmentation

processes the path behaviour is very different in this regard, and thus new methods
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need to be developed. Note further that standard stochastic analysis that is applicable

for branching Brownian motions is not applicable for fragmentation processes.

6.3 The one–sided FKPP equation for fragmentations

Our goal is to complete the picture described in the previous section. More precisely,

the problem addressed in the present chapter is to find a regime of travelling waves

for which we can prove the existence of a unique one–sided FKPP travelling wave for

fragmentation processes as described below.

6.3.1 Set–up

Consider the following initial value problem for u : R+
0 × R → [0, 1]:

∂u

∂t
(t, x) =

∫

S1

(

∏

n∈N

u(t, x+ ln(sn))− u(t, x)

)

ν(ds) (6.7)

for all t ∈ R+ and x ∈ R+
0 as well as u(t, ·)|(−∞,0) ≡ 1 and u(0, ·)|

R
+
0

= g for some

measurable function g : R+
0 → [0, 1].

Definition 6.2 We call equation (6.7) one–sided FKPP equation for fragmentation

processes.

Note that (6.7) looks quite different from the classical FKPP equation. This differ-

ence results from the fact that fragmentation processes have no spatial motion except

at jump times and from the more complicated jump structure of fragmentations in

comparison with dyadic branching Brownian motions.

We are mainly interested in the so–called FKPP travelling wave solutions of (6.7) with

wave speed c ∈ R+
0 , that is in solutions of (6.7) which are of the form u(t, x) = f(x−ct)

for all t, x ∈ R+
0 .

Definition 6.3 A one–sided FKPP travelling wave is a function f : R → [0, 1], with

f |
R
+
0
∈ C1(R+

0 , [0, 1]) and f |(−∞,0) ≡ 1, for which the mapping

s 7→
∏

n∈N

f(x+ ln(sn))− f(x)

is integrable with respect to ν and that satisfies the following one–sided FKPP travelling
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wave equation

cf ′(x) +

∫

S1

(

∏

n∈N

f(x+ ln(sn))− f(x)

)

ν(ds) = 0 (6.8)

for all x ∈ R+ with the boundary condition

lim
x→∞

f(x) = 0. (6.9)

Remark 6.4 Observe that the function f ≡ 1 solves the integro–differential equa-

tion (6.8) but does not solve the boundary condition (6.9). In fact, the motivation

for this boundary condition is to exclude the trivial solution f ≡ 1 in order to ob-

tain uniqueness of a solution for the equation in question. The same reasoning applies

to the equations of FKPP–type considered in the previous section. The two bound-

ary conditions there exclude the solutions f ≡ 1 and f ≡ 0 respectively. Note that

here we do not need a second boundary condition in order to exclude f ≡ 0 as this

function is not a solution of (6.8). Indeed, let f |
R+
0

≡ 0 and let x > 0 be such that

ν(s ∈ S1 : − ln(s1) > x) > 0. Then

cf ′(x) +

∫

S1

(

∏

n∈N

f(x+ ln(sn))− f(x)

)

ν(ds) = ν(s ∈ S1 : − ln(s1) > x) > 0,

and thus f ≡ 0 does not solve (6.8). ♦

Below we shall need the following generalisation of the notion of a derivative for a

continuous function.

Definition 6.5 The upper Dini derivative f ′+ and the lower Dini derivative f ′− of a

continuous function f : R → R are defined by

f ′+(x) := lim sup
h↓0

f(x+ h)− f(x)

h
and f ′−(x) := lim inf

h↓0

f(x+ h)− f(x)

h

respectively for all x ∈ R.

Note that f ′+(x) and f
′
−(x) are well defined for any x ∈ R, but may take the value ∞

or −∞.

Let us now introduce three operators acting on a certain set of monotone functions.

The definitions of these operators are inspired by the integro–differential equation (6.8).
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Definition 6.6 Let DL be the set of all functions f : R → [0, 1], with f |(−∞,0) ≡ 1,

for which the integral

∫

S1

(

∏

n∈N

f(x+ ln(sn))− f(x)

)

ν(ds)

exists, that is its positive part or negative part is finite. Then we define an integral

operator L with domain DL by

Lf(x) =

∫

S1

(

∏

n∈N

f(x+ ln(sn))− f(x)

)

ν(ds)

for each f ∈ DL and all x ∈ R+
0 . Further, let us define integro–differential operators

T+ and T− on DL by

T+f(x) = cf ′+(x) + Lf(x)

as well as

T−f(x) = cf ′−(x) + Lf(x)

for any f ∈ DL and every x ∈ R+
0 .

The following class of monotone functions plays a crucial role in the analysis of the

one–sided FKPP travelling wave equation.

Definition 6.7 For any p > −1 we denote by D(p) the set of all continuous monoton-

ically nonincreasing functions f : R → [0, 1], with f |(−∞,0) ≡ 1, that satisfy (6.9) and

for which e(1+p)xf(x) is monotonically nondecreasing.

For any f : R → [0, 1] set

Cf :=
{

x ∈ R+ : f ′(x) exists
}

. (6.10)

Remark 6.8 Let us mention that for any monotone function f : R+
0 → [0, 1] we have

that R+
0 \ Cf is a Lebesgue null set. Recall that Xx

1 has only countably many discon-

tinuities and is strictly monotone on the complement of the jump times. Therefore,

R+
0 \ Cf being a Lebesgue null set implies that Xx

1 (t) ∈ Cf for Lebesgue–almost all

t ∈ R+
0 and every f ∈ D(p), p > −1. That is, the complement of

T x
f :=

{

t ∈ R+
0 : Xx

1 (t) ∈ Cf
}

(6.11)
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is a Lebesgue null set for any f ∈ D(p) with p > −1. ♦

6.3.2 Main results

Recall the random index set N x
t defined in Definition 5.10 and furthermore recall that

in Section 5.4 the process Zx,f = (Zx,ft )t∈R+
0
was defined by

Zx,ft =
∏

n∈Nx
t

f (Xx
n(t))

for all t ∈ R+
0 .

Our first result reads as follows:

Proposition 6.9 Let c > cp̄ and let f ∈ DL be monotone. Further, assume that

T+f = T−f ≡ 0. Then Zx,ft is a martingale for all x ∈ R+
0 .

The second main result of this chapter shows in particular the more complicated con-

verse implication of Proposition 6.9.

Theorem 6.10 Let c > cp̄. In addition, let f ∈ D(p) for some p > −1 and assume

that Zx,ft is a martingale. Then f |
R
+
0
∈ C1(R+

0 , [0, 1]) and f solves (6.8).

The above two results will be proven in Section 6.5.

The main goal of this chapter is to establish the existence of a unique travelling wave

to (6.7) with wave speed c for c > cp̄ as well as the nonexistence of such a travelling

wave with wave speed c ≤ cp̄. More specifically, the following theorem states that the

extinction probability of the killed fragmentation process solves equation (6.8) with

boundary condition (6.9) for c > cp̄. Recall ϕ from Definition 5.15.

Theorem 6.11 If c > cp̄, then ϕ is the unique monotone travelling wave to (6.7) with

wave speed c, that is it satisfies (6.8) and (6.9). On the other hand, if c ≤ cp̄, then

there is no monotone travelling wave to (6.7) with wave speed c.

We shall prove this theorem in Section 6.6. In the light of Theorem 6.11 it follows

from Lemma 5.21 and Lemma 5.22 that for any c > cp̄ the unique one–sided FKPP

travelling wave with wave speed c is a continuous function that is strictly monotonically

decreasing on R+
0 . Note further that Theorem 6.11 shows that solutions of the one–sided

FKPP equation exist only for wave speeds for which there does not exist a two–sided

travelling wave, cf. Remark 6.1. In fact, for positive wave speeds a one–sided FKPP
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travelling wave solution exists if and only if there is no two–sided solution. Moreover,

in view of Proposition 5.14, Theorem 6.11 shows that travelling wave solutions exist

exactly for those wave speeds that are larger than the asymptotic speed of the largest

fragment in the killed fragmentation on the event of survival of this killed process.

Notice that all three FKPP travelling wave boundary value problems described in

Section 6.2 have initial– and final value conditions whereas here we only consider a

final value problem. This difference between our situation and the classical one–sided

FKPP travelling wave equation is addressed in the following remark:

Remark 6.12 Recall the classical one–sided FKPP travelling wave boundary value

problem described in Section 6.2. In that classical setting a travelling wave has to

satisfy boundary value conditions at both sides of the interval (0,∞). Given that the

boundary conditions are the same for the classical two–sided FKPP travelling wave

boundary value problem and for the two–sided travelling wave equation for fragmen-

tation processes, cf. Section 6.2, in our context the corresponding requirement in (6.9)

should be

lim
x→0

f(x) = 1 and lim
x→∞

f(x) = 0.

Recall that in Remark 6.4 we mentioned that in the situation considered here a con-

dition like limx→0 f(x) = 1 in order to exclude a possible trivial solution f ≡ 0 is not

necessary, since f ≡ 0 does not solve the integro–differential equation (6.8). Moreover,

Lemma 5.19 shows that

lim
x→0

ϕ(x) = P(ζ0 <∞) ∈ (0, 1) (6.12)

for every c > cp̄. Since our goal is to prove that for c > cp̄ the function ϕ is a travelling

wave to (6.7), cf. Theorem 6.11, and thus it needs to satisfy (6.9), it follows from (6.12)

that in (6.9) we cannot require limx→0 f(x) = 1.

For any c ≥ cp̄ and x ∈ R+
0 let ζxc denote the extinction time with regard to the x–

killing line with drift c. Further, let ψ′
c,p(0+) be the Laplace exponent under P(p) of

the process (ct+ ln(|B1(t)|))t∈R+
0
, that is

ψ′
c,p(0+) = c+ E(p)(ln(|B1(1)|)) = c− Φ′(p),

cf. Remark 5.8, and thus the continuity of Φ′ yields that

lim
p↑p̄

lim
c↓cp̄

ψ′
c,p(0+) = cp̄ − Φ′(p̄) = 0.
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Hence, the estimate in (6.12) now gives us the upper bound equal to 1, that is

lim
c↓cp̄

lim
x→0

P(ζxc <∞) ≤ 1,

and therefore it may be possible that

lim
c↓cp̄

lim
x→0

P(ζxc <∞) = 1. (6.13)

Let us now show that (6.13) does indeed hold true. For this purpose let x ∈ R+
0 and

assume that ζxcp̄ < ∞. Then we have that − ln(λx1(ζ
x
cp̄)) > x + cp̄ζ

x
cp̄. However, this

implies that ζxcp̄ is also the extinction time for all

c ∈
(

cp̄,
− ln(λx1(ζ

x
cp̄))− x

ζxcp̄

)

,

and since Lemma 5.16 implies that P(ζxcp̄ <∞) = 1, we thus infer that

lim
c↓cp̄

P(ζxc <∞) = P





⋃

c>cp̄

{ζxc <∞}



 = 1,

which proves (6.13). ♦

6.4 The finite activity case

An approach to solve the classical one–sided FKPP equation with boundary condition

u(0, x) = g(x) for some suitable function g : R+
0 → [0, 1] is to show that the function

u : R+
0 × R+

0 → [0, 1] given by

u(t, x) = E

(

∏

n∈N

g(x +Xn(t)))

)

for all t, x ∈ R+
0 is a solution of the considered boundary value problem, where the

Xn(t), n ∈ N, are the positions of the particles at time t in the branching Brownian

motion.

In this section we show that for fragmentations with a finite dislocation measure ν

the same approach works for the initial value problem (6.7) with boundary condition

u(0, x) = g(x). More precisely, we aim at proving that for any measurable function
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g : R+
0 → [0, 1] the function u : R+

0 × R → [0, 1] defined by

u(t, x) = E





∏

n∈Nx
t

g(x+ ln(|Bn(t)|))



 and u(t, ·)|(−∞,0) ≡ 1 (6.14)

for all t, x ∈ R+
0 solves equation (6.7) with boundary condition u(0, ·)|

R
+
0
= g.

In addition to proving that the function u defined by (6.14) solves equation (6.7), the

proposition that we shall consider in the present section also provides a relatively short

proof that the extinction probability ϕ, cf. Definition 5.15, of the killed fragmentation

process solves equation (6.8) in the special case that the dislocation measure ν is finite.

Since, according to Theorem 5.12, for c > cp̄ the function ϕ also satisfies the boundary

condition (6.9), it thus shows that ϕ is an FKPP travelling wave solution of (6.7)

with wave speed c > cp̄ in the finite activity case. The major part of this chapter, cf.

Theorem 6.11, is concerned with the proof that this latter statement holds true in the

general case of an infinite dislocation measure.

Proposition 6.13 Assume that ν(S1) < ∞ and let c > 0. Then every function

u : R+
0 ×R → [0, 1] defined by (6.14), for some measurable g : R+

0 → [0, 1], is a solution

of (6.7) with the boundary condition

u(0, ·)|
R
+
0
= g. (6.15)

Moreover, the function ϕ solves (6.8).

Proof Let g : R+
0 → [0, 1] be some measurable function and consider the function

u : R+
0 × R → [0, 1] defined by (6.14). We first aim at showing that u is a solution of

(6.7) with the boundary condition (6.15). To this end, note first that the boundary

condition (6.15) is trivially satisfied by the definition u. In order to show that u solves

(6.7), define a function us : R
+
0 × R → [0, 1], s ∈ R+

0 , by

us(t, x) = E





∏

n∈Nx
t

g(x − cs + ln(|Bn(t)|))



 and us(t, ·)|(−∞,0) ≡ 1

for every t, x ∈ R+
0 . Let Kx

t denote the set of all indices such that the block Πxk(t) is

alive at time t ∈ R+
0 for any k ∈ Kx

t . In particular, note that

k ∈ Kx
t ⇐⇒ Πxk(t) 6= ∅ ⇐⇒ min (Πxk(t)) ∈ N x

t
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holds for all k ∈ N and t, x ∈ R+
0 . Then the fragmentation property yields that

u(s+ t, x)

= E





∏

k∈Kx
s+t

g(x+ ln(|Πxk(s+ t)|))





= E



E





∏

i∈Kx
s

∏

j∈K(i)

g
(

x+ ln
(

|Πxi (s)| ·
∣

∣

∣Π
(i)
j

∣

∣

∣

))

∣

∣

∣

∣

∣

∣

Fs







 (6.16)

= E







∏

i∈Kx
s

E





∏

j∈K
yi
t

g
(

x+ ln (|Πxi (s)|) + ln
(∣

∣

∣
Πyij (t)

∣

∣

∣

))





∣

∣

∣

∣

∣

∣

yi=x+cs+ln(|Πx
i (s)|)







= E





∏

k∈Kx
s

us (t, x+ cs + ln(|Πxk(s)|))





P–a.s. for all s, t, x ∈ R+
0 , where under Fs the K(i) [resp. Π

(i)
j ] are independent and

each having the same distribution as Kyi
t [resp. Πyij (t)] with yi = x+ cs+ ln(|Πxi (s)|).

Recall from Definition 5.4 that (ti)i∈Ix are the jump times of Πx, and in view of the

finiteness of the dislocation measure we assume without loss of generality that Ix = N

and that Ix is ordered such that 0 < ti < tj for all i, j ∈ Ix with i < j. Since tx1
is exponentially distributed with parameter ν(S1) and ∆(tx1) has distribution ν(·)/ν(S1),

we infer from the compensation formula for Poisson random measures that

P(tx1 ≤ h,∆(tx1) ∈ ds) = E





∑

[0,∞)

1{t≤h}1{∆(t)∈ds}





=

∫

[0,h]
dt

∫

S1

1{u∈ds}ν(ds) (6.17)

= hν(ds).

Resorting to the extended fragmentation property we deduce from a similar argument

that

P(tx2 ≤ h) = E
(

P
(

tx2 ≤ h|Ftx1

))

≤
∫

(0,h]
P(tx1 ∈ du)P(tx1 ≤ h− u) du
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≤
∫

(0,h]
P(tx1 ∈ du)P(tx1 ≤ h) du (6.18)

=

(

∫

(0,h]
ν(S1)e

−tν(S1)

)2

=
(

1− e−hν(S1)
)2
.

Then (6.17) and (6.18) result in

lim
h→0

P(tx1 ≤ h, tx2 > h,∆(tx1) ∈ ds)

h

= lim
h→0

P(tx1 ≤ h,∆(tx1) ∈ ds)

h
− lim
h→0

P(tx2 ≤ h,∆(tx1) ∈ ds)

h
(6.19)

= ν(ds).

Observe that Fatou’s lemma for limit superiors yields that

lim sup
h↓0

(u(t, x)− uh(t, x+ ch))P(tx1 > h)

h

≤ lim sup
h↓0

E

(∏

n∈Nx
t
g(x+ ln(|Bn(t)|))−

∏

n∈Nx+ch
t

g(x + ln(|Bn(t)|))
h

)

(6.20)

≤ E

(

lim sup
h↓0

∏

n∈Nx
t
g(x+ ln(|Bn(t)|))−

∏

n∈Nx+ch
t

g(x + ln(|Bn(t)|))
h

)

Since ν is finite, for any h > 0 there are only finitely many n ∈ N x+ch
t \ N x

t . Hence,

consider

δ0 := max
n∈N

x+ch0
t \Nx

t

(

x+ cτ−n,x + ln(|Bn(τ−n,x)|)
)

∈ (−ch0, 0)

for some h0 > 0. Then we have that N x+ch
t = N x

t for all h < −δ0/c < h0, and thus

lim sup
h↓0

∏

n∈Nx
t
g(x+ ln(|Bn(t)|)) −

∏

n∈Nx+ch
t

g(x+ ln(|Bn(t)|))
h

= 0.

Consequently, it follows from (6.20) that

lim sup
h↓0

(uh(t, x)− u(t, x+ ch))P(tx1 > h)

h
= 0. (6.21)
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Since by means of (6.16) we have

u(t+ h, x) = E





∏

k∈Kx
h

uh(t, x+ ch+ ln(|Πxk(h)|))





= uh(t, x+ ch)P(tx1 > h) + E



1{tx2≤h}

∏

k∈Kx
h

uh(t, x+ ch+ ln(|Πxk(h)|))





+

∫

S1

∏

n∈N:sn>0

uh(t, x+ ch+ ln(sn))P(t
x
1 ≤ h, tx2 > h,∆(tx1) ∈ ds),

it follows that

∂u

∂t
(t, x)

= lim
h↓0

u(t+ h, x) − u(t, x)

h

=

∫

S1

(

lim
h↓0

∏

n∈N:sn>0

uh(t, x+ ch+ ln(sn))− u(t, x)

)

lim
h↓0

P(tx1 ≤ h, tx2 > h,∆(tx1) ∈ ds)

h

+ lim
h↓0

(uh(t, x+ ch)− u(t, x))P(tx1 > h)

h
(6.22)

+ lim
h↓0

E

(

1{tx2≤h}

(

∏

k∈Kx
h
uh(t, x+ ch+ ln(|Πxk(h)|)) − u(t, x)

))

h

=

∫

S1

(

∏

n∈N:sn>0

lim
h↓0

uh(t, x+ ch+ ln(sn))− u(t, x)

)

ν(ds)

=

∫

S1

(

∏

n∈N:sn>0

u(t, x+ ln(sn))− u(t, x)

)

ν(ds),

where the second equality is obtained by applying the DCT and the third equality

is a consequence of (6.17), (6.18) and (6.19). Note that in the third equality we can

interchange the limit with the product, since the product has only finitely many factors

that are not equal to 1. Indeed, since u|(−∞,0) ≡ 1 we only need to consider those factors

with − ln(sn) < x+ ch. Since
∑

n∈N sn ≤ 1, there are only at most ex+ch–many n ∈ N

satisfying sn > e−(x+ch). The final equality in (6.22) results from (6.21).

In view of (6.22) we conclude that u solves (6.7).

It remains to show that ϕ is a solution of (6.8). For this purpose, observe that the

fragmentation property, in conjunction with the tower property for conditional expec-
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tations, yields that

ϕ(x− ct) = E





∏

n∈Nx
t

P
(

ζx−ct+ct+y <∞
)∣

∣

y=ln(|Bn(t)|)





= E





∏

n∈Nx
t

ϕ(x+ ln(|Bn(t)|))



 ,

and thus u : R+
0 × R → [0, 1] given by u(t, x) := ϕ(x − ct) satisfies (6.14). Hence,

according to our above considerations u is a solution of (6.7) and consequently we

conclude that ϕ solves (6.8). �

6.5 Concurrence of FKPP travelling wave solutions and

product martingales

In this section we prove Proposition 6.9 and Theorem 6.10. For this purpose, let us

start with the following auxiliary result:

Lemma 6.14 Let (an)n∈N, (bn)n∈N ⊆ [0, 1] be sequences in [0, 1]. Then

∣

∣

∣

∣

∣

∏

n∈N

an −
∏

n∈N

bn

∣

∣

∣

∣

∣

≤
∑

n∈N

|an − bn|.

Proof We first show by induction that

∣

∣

∣

∣

∣

n
∏

i=1

ai −
n
∏

i=1

bi

∣

∣

∣

∣

∣

≤
n
∑

i=1

|ai − bi| (6.23)

for all n ∈ N. To this end, assume that |∏n
i=1 ai −

∏n
i=1 bi| ≤

∑n
i=1 |ai − bi| for some

n ∈ N. Then we have

∣

∣

∣

∣

∣

n+1
∏

i=1

ai −
n+1
∏

i=1

bi

∣

∣

∣

∣

∣

≤
n
∑

i=1

|ai − bi| =
∣

∣

∣

∣

∣

an+1

n
∏

i=1

ai − bn+1

n
∏

i=1

bi

∣

∣

∣

∣

∣

≤ |an+1 − bn+1|
n
∏

i=1

ai + bn+1

∣

∣

∣

∣

∣

∏

n∈N

an −
∏

n∈N

bn

∣

∣

∣

∣

∣

≤ |an+1 − bn+1|+
n
∑

i=1

|ai − bi| =
n+1
∑

i=1

|ai − bi|.
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Since (6.23) trivially holds for n = 1, we conclude that (6.23) holds true. Now the

assertion of the lemma follows by taking the limit as n→ ∞. �

Let us point out that according to Theorem 7.21 in [Rud87] the fundamental theorem

of calculus holds for Lebesgue integrals, that is

H(t)−H(0) =

∫

[0,t]
h(s) ds (6.24)

for all t ∈ R+
0 and any H that is differentiable on [0,1] and whose derivative h is

bounded and Lebesgue–integrable.

Proof of Proposition 6.9

Observe that the jump times of Zx,f coincide with (ti)i∈Ix , the jump times of Πx.

Consequently, the monotonicity of f implies that (Zx,ft )t∈R+
0 \(ti)i∈Ix

is monotone, and

since Ix is countable, we thus conclude that Zx,f is differentiable almost everywhere

with respect to the Lebesgue measure. That is, the complement of

T x,f
Z :=

{

t ∈ R+
0 : Zx,f is differentiable at t

}

(6.25)

is a Lebesgue null set. Let us introduce the notation

Żx,ft :=
d

ds
Zx,fs

∣

∣

∣

∣

s=t

(6.26)

for all t ∈ T x,f
Z . In view of (6.24) we then obtain that

E

(

Zx,ft

)

− E

(

Zx,f0

)

= E





∫

(0,t)
Żx,fs ds+

∑

i∈Ix:ti≤t

∆Zx,fti



 , (6.27)

where ∆Zx,ft := Zx,ft − Zx,ft− . Define a function ψ : R+
0 × S1 × N → R by

ψ(u, s, k) :=
∏

i∈Nx
u−\{k}

f(Xx
i (u−))

∏

j∈N

f(Xx
k (u−) + ln(sj))−

∏

n∈Nx
u−

f(Xx
n(u−)).

With N being the Poisson random measure associated with the underlying Poisson

point process, we deduce from (6.27), in conjunction with the DCT, the compensation

formula for Poisson point processes and Fubini’s theorem as well as Tonelli’s theorem,

that

E

(

Zx,ft

)

− E

(

Zx,f0

)

(6.28)
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= E

(

∫

(0,t)
Żx,fu− du

)

+ E

(

∫

(0,t)

∫

S1

∫

N

ψ(u, s, k)N(du,ds,dk)

)

=

∫

(0,t)
E

(

Żx,fu−

)

du+

∫

(0,t)
E

(
∫

N

∫

S1

ψ(u, s, k)ν(ds)♯(dk)

)

du.

Observe that

Żx,fu− ≤
∑

k∈Nx
u−

cf ′+(X
x
k (u−))

∏

i∈Nx
u−\{k}

f(Xx
i (u−))

=
∑

k∈Nx
u−

cf ′+(X
x
k (u−))

1

f(Xx
k (u−))

∏

i∈Nx
u−

f(Xx
i (u−)) (6.29)

=
∏

i∈Nx
u−

f(Xx
i (u−))

∑

k∈Nx
u−

cf ′+(X
x
k (u−))

f(Xx
k (u−))

,

and similarly

Żx,fu− ≥
∏

i∈Nx
u−

f(Xx
i (u−))

∑

k∈Nx
u−

cf ′−(X
x
k (u−))

f(Xx
k (u−))

, (6.30)

P–a.s. for any u ∈ T x,f
Z . Furthermore,

∑

k∈Nx
u−

∫

S1

ψ(u, s, k)ν(ds)

=
∑

k∈Nx
u−

∏

i∈Nx
u−\{k}

f(Xx
i (u−))

∫

S1





∏

j∈N

f(Xx
k (u−) + ln(sj))− f(Xx

k (u−))



 ν(ds)

=
∏

i∈Nx
u−

f(Xx
i (u−))

∑

k∈Nx
u−

1

f(Xx
k (u−))

Lf(Xx
k (u−)) (6.31)

P–a.s. for every u ∈ R+, which in conjunction with (6.28) and (6.29) results in

E

(

Zx,ft

)

− E

(

Zx,f0

)

≤
∫

(0,t)
E





∏

i∈Nx
u

f(Xx
i (u))

∑

k∈Nx
u

1

f(Xx
k (u))

T+f(Xx
k (u))



 du

= 0,
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where the final equality results from T+f ≡ 0. Analogously, making us of T− ≡ 0, we

deduce from (6.28), (6.30) and (6.31) that

E

(

Zx,ft

)

− E

(

Zx,f0

)

≥
∫

(0,t)
E





∏

i∈Nx
u

f(Xx
i (u))

∑

k∈Nx
u

1

f(Xx
k (u))

T−f(Xx
k (u))



 du = 0.

Hence, we infer that

E

(

Zx,ft

)

= E

(

Zx,f0

)

= f(x).

The assertion now follows from Lemma 5.29. �

A first approach to try proving Theorem 6.10 might be to follow the lines of the

proof of Theorem 1 in [BHK10]. However, that proof relies on f being continuously

differentiable and in order to use that idea we would at least need that the set of

discontinuities of the derivative of the differentiable function in question is a Lebesgue

null set. However, in general the set of such discontinuities may have positive Lebesgue

measure. Indeed, Example 3.5 in [WH93] shows that the derivative may not be Riemann

integrable. Nonetheless, many ideas of our method to prove Theorem 6.10 are taken

from [BHK10].

Our proof of Theorem 6.10 is based on two auxiliary results that we are now going to

develop. Afterwards, having these auxiliary results on hand, we shall tackle the proof

of Theorem 6.10.

Lemma 6.15 Let f ∈ D(p) for some p > −1 and let a, b ∈ R+
0 . Then

sup
x∈[a,b]

∣

∣

∣

∣

∣

∏

n∈N

f(x+ ln(sn))− f(x)

∣

∣

∣

∣

∣

∈ L
1(ν).

Proof We infer from Lemma 6.14 that

∫

S1

sup
x∈[a,b]

∣

∣

∣

∣

∣

∏

n∈N

f(x+ ln(sn))− f(x)

∣

∣

∣

∣

∣

ν(ds) (6.32)

≤
∫

S1

sup
x∈[a,b]

|f(x+ ln(s1))− f(x)| ν(ds) +
∫

S1

∑

n∈N\{1}

sup
x∈[a,b]

|f(x+ ln(sn))− 1| ν(ds)

Since
d

dx
[ln(x) + 2(1 − x)] =

1

x
− 2
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and ln(1) + 2(1− 1) = 0, we have that

− ln(x) ≤ 2(1 − x)

for all x ∈ [2−1, 1]. Therefore, for every ǫ ∈ (0, 2−1] we have

− ln(s1) ≤ 2(1− s1) (6.33)

for all (sn)n∈N ∈ S1 with 1− s1 ≤ ǫ.

Moreover, since x 7→ e(1+p)xf(x) is nondecreasing, we infer by taking its derivative that

0 ≤ d

dx

(

e(1+p)xf(x)
)

= (1 + p)e(1+p)xf(x) + e(1+p)xf ′(x),

and thus

− (1 + p) ≤ −(1 + p)f(x) ≤ f ′(x) ≤ 0 (6.34)

for every x ∈ Cf . Let x ∈ R+
0 as well as ǫ ∈ (0, 2−1] and recall the definition of Cf in

(6.10). By the Mean Value Theorem we have for any x ∈ R+
0 and s ∈ S1 that

|f(x+ ln(s1))− f(x)| ≤ − ln(s1) sup
y∈Cf

f ′(y) ≤ − ln(s1)(1 + p),

where the final estimate results from (6.34). Furthermore, let ǫ > 0 and notice that

ν({s ∈ S1 : 1− s1 ≥ ǫ}) <∞, cf. Remark 5.17. Hence, resorting to (6.33) we infer that

∫

S1

sup
x∈[a,b]

|f(x+ ln(s1))− f(x)| ν(ds)

≤
∫

{s∈S1:1−s1≥ǫ}
sup
x∈[a,b]

|f(x+ ln(s1))− f(x)| ν(ds)

+

∫

{s∈S1:1−s1<ǫ}
sup
x∈[a,b]

|f(x+ ln(s1))− f(x)| ν(ds)

≤ ν({s ∈ S1 : 1− s1 ≥ ǫ})− (1 + p)

∫

{s∈S1:1−s1<ǫ}
ln(s1)ν(ds)

≤ ν({s ∈ S1 : 1− s1 ≥ ǫ}) + 2(1 + p)

∫

S1

(1− s1)ν(ds)

<∞,

which shows that the first term on the right–hand side of (6.32) is finite. In order to

deal with the second term on the right–hand side of (6.32), note that f |(−∞,0) ≡ 1 and
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f |[0,∞) ∈ [0, 1] yields that

∫

S1

∑

n∈N\{1}

sup
x∈[a,b]

|1− f(x+ ln(sn))|ν(ds) ≤
∫

S1

∑

n∈N\{1}

|1− f(b+ ln(sn))|ν(ds)

≤
∫

S1

∑

n∈N\{1}

e(b+ln(sn))ν(ds)

= eb
∫

S1

∑

n∈N\{1}

snν(ds)

<∞

for all x > 0. Observe that the finiteness follows from (1.7), since

∫

S1

∑

n∈N\{1}

snν(ds) =

∫

S1

(

(1− s1) +

(

∑

n∈N

sn − 1

))

ν(ds)

≤
∫

S1

(1− s1)ν(ds)

<∞.

Consequently, we also have the finiteness of the second term on the right–hand side in

(6.32). �

Note that

|Lf(x)| ≤
∫

S1

∣

∣

∣

∣

∣

∏

n∈N

f(x+ ln(sn))− f(x)

∣

∣

∣

∣

∣

ν(ds)

for any f ∈ D(p), and thus Lemma 6.15 implies that Lf is bounded for every f ∈ D(p).

Lemma 6.16 Let f ∈ D(p) for some p > −1. Then the function Lf is continuous.

Proof Let (xk)k∈N be a sequence in R+
0 with xk → x as k → ∞. Observe that

∫

S1

sup
k≥k0

∣

∣

∣

∣

∣

∏

n∈N

f(x− ln(sn))− f(x)−
∏

n∈N

f(xk − ln(sn)) + f(xk)

∣

∣

∣

∣

∣

ν(ds)

≤
∫

S1

∣

∣

∣

∣

∣

∏

n∈N

f(x− ln(sn))− f(x)

∣

∣

∣

∣

∣

ν(ds) (6.35)

+

∫

S1

sup
δ∈(0,ǫ)

∣

∣

∣

∣

∣

∏

n∈N

f(x+ δ − ln(sn))− f(x+ δ)

∣

∣

∣

∣

∣

ν(ds),
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where k0 ∈ N is chosen such that |x−xk| ≤ ǫ for all k ≥ k0. According to Lemma 6.15

both of the integrals on the right–hand side of (6.35) are finite. Hence, the DCT is

applicable to deduce that

lim
k→∞

|Lf(x)− Lf(xk)|

≤
∫

S1

lim
k→∞

∣

∣

∣

∣

∣

∏

n∈N

f(x− ln(sn))− f(x)−
∏

n∈N

f(xk − ln(sn)) + f(xk)

∣

∣

∣

∣

∣

ν(ds)

≤
∫

S1

lim
k→∞

∣

∣

∣

∣

∣

∏

n∈N

f(x− ln(sn))−
∏

n∈N

f(xk − ln(sn))

∣

∣

∣

∣

∣

ν(ds)

+

∫

S1

lim
k→∞

|f(x)− f(xk)| ν(ds)

(∗)
≤
∫

S1

∣

∣

∣

∣

∣

∏

n∈N

f(x− ln(sn))−
∏

n∈N

lim
k→∞

f(xk − ln(sn))

∣

∣

∣

∣

∣

ν(ds)

+

∫

S1

lim
k→∞

|f(x)− f(xk)| ν(ds)

= 0,

where the final equality from the continuity of f . Notice that as in (6.22) we can

interchange the limit and the product in (∗), since only finitely many factors of the

product differ from 1. This proves the continuity of Lf . �

Below we shall make frequent use of the deterministic estimate Nx
t ≤ ex+ct on the

number of particles alive at time t ∈ R+
0 , cf. (5.16). Moreover, for any x ∈ R+

0 recall

the stopping time τ(x) that was defined in (5.11) by

τ(x) = inf {ti ∈ (ti)i∈I1 : |π1(ti)| ≤ x} .

Proof of Theorem 6.10 The proof is divided into three parts. In Part I we provide

an equivalent characterisation of f ′ on Cf and in the second part we give an estimate of

Lf . Finally, in the third part we combine the first two parts to show that −cf ′ = Lf

on Cf . Having shown this equality on Cf we can then deduce that the assertion of

Theorem 6.10 holds true.

Part I Fix some x ∈ Cf and let τ : Ω → (0, 1] be an F–stopping time.

Observe that z 7→ e(1+p)zf(z) being nondecreasing implies that

e(1+p)(z+h)f(z + h) ≥ e(1+p)zf(z),
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which is equivalent to

f(z + h) ≥ e−(1+p)hf(z),

for all h, z ∈ R+
0 . Consequently, we have

f(z)− f(z + h) ≤ f(z)
(

1− e−(1+p)h
)

≤ 1− e−(1+p)h. (6.36)

for all z ∈ R+
0 .

By means of the extended fragmentation property we have

f(x)− f(x+ h)

h

=
1

h
P

(

{ζx <∞} ∩
{

ζx+h = ∞
})

=
1

h
E

(

P

(

{ζx <∞} ∩
{

ζx+h = ∞
}∣

∣

∣
Fτ

))

(6.37)

=
1

h
E



P









⋂

n∈Nx
τ

{

ζ(n,0) <∞
}



 ∩





⋃

n∈Nx+h
τ

{

ζ(n,h) = ∞
}





∣

∣

∣

∣

∣

∣

Fτ









=
1

h
E



P





⋃

n∈Nx+h
τ





{

ζ(n,h) = ∞
}

∩
⋂

k∈Nx
τ

{

ζ(k,0) <∞
}





∣

∣

∣

∣

∣

∣

Fτ









for any h > 0, where conditional on Fτ the ζ(n,r), r ∈ {0, h}, are independent and

satisfy

P

(

ζ(n,r) ∈ ·
∣

∣

∣
Fτ

)

= P
(

ζy+r ∈ ·
)∣

∣

y=Xx
n(τ)

P–almost surely. We remark that the above–mentioned independence only means that

ζ(n,r) is independent of ζ(k,r) for any k, n ∈ N with k 6= n. However, for any n ∈ N the

random variables ζ(n,0) and ζ(n,h) are not independent. Making use of the independence,

conditional on Fτ , of the sequence (ζ(k,0))k∈N we obtain from (6.36) that

P





{

ζ(n,h) = ∞
}

∩
⋂

k∈Nx
τ

{

ζ(k,0) <∞
}

∣

∣

∣

∣

∣

∣

Fτ





= P

({

ζ(n,h) = ∞
}

∩
{

ζ(n,0) <∞
}∣

∣

∣Fτ

)

∏

k∈Nx
τ \{n}

P

(

ζ(k,0) <∞
∣

∣

∣Fτ

)

≤ P

({

ζy+h = ∞
}

∩ {ζy <∞}
)∣

∣

∣

y=Xx
n(τ)

= f(Xx
n(τ))− f(Xx

n(τ) + h) (6.38)
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≤ 1− e−(1+p)h

holds P–a.s. for all h > 0 and n ∈ N. Moreover, by σ–subadditivity we have

P





⋃

n∈Nx+h
τ

{

ζ(n,h) = ∞
}

∩
⋂

k∈Nx
τ

{

ζ(k,0) <∞
}

∣

∣

∣

∣

∣

∣

Fτ





= P





⋃

n∈N

{

n ∈ N x+h
τ

}

∩
{

ζ(n,h) = ∞
}

∩
⋂

k∈Nx
τ

{

ζ(k,0) <∞
}

∣

∣

∣

∣

∣

∣

Fτ





≤
∑

n∈N

1{n∈Nx+h
τ }P





{

ζ(n,h) = ∞
}

∩
⋂

k∈Nx
τ

{

ζ(k,0) <∞
}

∣

∣

∣

∣

∣

∣

Fτ



 (6.39)

=
∑

n∈Nx+h
τ

P





{

ζ(n,h) = ∞
}

∩
⋂

k∈Nx
τ

{

ζ(k,0) <∞
}

∣

∣

∣

∣

∣

∣

Fτ





P–a.s. for every h > 0. For any h > 0 define a random variable φ≥(h, τ) by

φ≥(h, τ) :=
1

h
1{ζx<∞}∩{ζx+h=∞}1{τ≥τ−1,x∧τ(1−ε)}.

Consequently, in conjunction with (5.16) and the reasoning in (6.37), the estimates

provided by (6.38) and (6.39) result in

E (φ≥(h, τ))

= E (E (φ≥(h, τ)|Fτ ))

= E





1

h
1{τ≥τ−1,x∧τ(1−ε)}P





⋃

n∈Nx+h
τ

{

ζ(n,h) = ∞
}

∩
⋂

k∈Nx
τ

{

ζ(k,0) <∞
}

∣

∣

∣

∣

∣

∣

Fτ









≤ E



1{τ≥τ−1,x∧τ(1−ε)}
∑

n∈Nx+h
τ

1

h
P





{

ζ(n,h) = ∞
}

∩
⋂

k∈Nx
τ

{

ζ(k,0) <∞
}

∣

∣

∣

∣

∣

∣

Fτ









≤ E

(

1{τ≥τ−1,x∧τ(1−ε)}N
x+h
τ

1− e−(1+p)h

h

)

≤ ex+h+cτ
1− e−(1+p)h

h
P

(

τ ≥ τ−1,x ∧ τ(1− ε)
)
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for all h > 0. Therefore, by L’Hôpital’s rule we infer that

lim sup
h↓0

E (φ≥(h, τ)) ≤ lim sup
h↓0

(

ex+h+cτ
1− e−(1+p)h

h

)

P
(

τ ≥ τ−1,x ∧ τ(1− ε)
)

= (1 + p) lim
h↓0

e−(1+p)hex+cτP
(

τ ≥ τ−1,x ∧ τ(1− ε)
)

≤ (1 + p)ex+cP
(

τ ≥ τ−1,x ∧ τ(1− ε)
)

. (6.40)

For the time being, we fix some h ∈ (0, 1] and for the remainder of the proof let

ε ∈ (0, e−(x+1+c)). Since τ ≤ 1 we have according to Lemma 5.18 that

Nx+h
τ ≤ 1 (6.41)

on {τ < τ(1− ε)}. Hence, (6.37) results in

f(x)− f(x+ h)

h

=
1

h
E

(

P

({

ζ(1,0) <∞
}

∩
{

ζ(1,h) = ∞
}∣

∣

∣Fτ

)

1{τ<τ−1,x∧τ(1−ε)}

)

(6.42)

+
1

h
P

(

{ζx <∞} ∩
{

ζx+h = ∞
}

∩
{

τ ≥ τ−1,x ∧ τ(1− ε)
})

P–a.s., where, as above, conditional on Fτ the ζ(1,r), r ∈ {0, h}, are independent and

satisfy

P

(

ζ(1,r) ∈ ·
∣

∣

∣
Fτ

)

= P
(

ζy+r ∈ ·
)

with y = Xx
1 (τ). The reason for the appearance of τ−1,x in the indicator functions in

(6.42) will become clear below. Of course, (6.42) would hold true also without the

bound τ−1,x, but below we are going to use this decomposition in the form given here.

Furthermore, observe that

P

({

ζ(1,0) <∞
}

∩
{

ζ(1,h) = ∞
}∣

∣

∣
Fτ

)

= P

(

{ζy <∞} ∩
{

ζy+h = ∞
})∣

∣

∣

y=Xx
1 (τ)

= f(Xx
1 (τ)) − f(Xx

1 (τ) + h) (6.43)

P–almost surely. In the light of the definition of φ≥(h, τ) and (6.42) as well as (6.43)

let us define for any h > 0 a random variable φ<(h, τ) by

φ<(h, τ) :=
f(Xx

1 (τ))− f(Xx
1 (τ) + h)

h
1{τ<τ−1,x∧τ(1−ε)}.
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Resorting to Fatou’s lemma we infer from (6.42) and (6.43) that

−f ′(x) = lim
h↓0

f(x)− f(x+ h)

h

≥ E

(

lim inf
h↓0

f(Xx
1 (τ)) − f(Xx

1 (τ) + h)

h
1{τ<τ−1,x∧τ(1−ε)}

)

+ lim inf
h↓0

E (φ≥(h, τ)) (6.44)

≥ E

(

lim inf
h↓0

φ<(h, τ)

)

Moreover, we have

− lim inf
h↓0

φ<(h, τ) = − lim inf
h↓0

f(Xx
1 (τ))− f(Xx

1 (τ) + h)

h
1{τ<τ−1,x∧τ(1−ε)}

= lim sup
h↓0

f(Xx
1 (τ) + h)− f(Xx

1 (τ))

h
1{τ<τ−1,x∧τ(1−ε)}

(6.45)

= f ′+(X
x
1 (τ))1{τ<τ−1,x∧τ(1−ε)}

and analogously

lim sup
h↓0

φ<(h, τ) = −f ′−(Xx
1 (τ))1{τ<τ−1,x∧τ(1−ε)}

. (6.46)

Using (6.45) we deduce from (6.44) that

f ′(x) ≤ E

(

− lim inf
h↓0

φ<(h, τ)

)

= E
(

f ′+(X
x
1 (τ))

)

. (6.47)

Notice that (6.36) yields that

sup
h∈R+

f(z)− f(z + h)

h
≤ sup

h∈R+

1− e−(1+p)h

h
<∞ (6.48)

as well as

∣

∣f ′+(z)
∣

∣ = lim sup
h↓0

f(z)− f(z + h)

h

≤ lim
h↓0

1− e−(1+p)h

h

= lim
h↓0

(

(1 + p)e−(1+p)h
)

(6.49)

= 1 + p
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for any z ∈ R+
0 . Therefore, we can apply Fatou’s lemma for limit superiors in order to

obtain by means of (6.40) and (6.42) as well as (6.43) that

−f ′(x) = lim
h↓0

f(x)− f(x+ h)

h

≤ E

(

lim sup
h↓0

f(Xx
1 (τ))− f(Xx

1 (τ) + h)

h
1{τ<τ−1,x∧τ(1−ε)}

)

(6.50)

+ lim sup
h↓0

(

1

h
P
(

{ζx <∞} ∩
{

ζx+h = ∞
}

∩
{

τ ≥ τ−1,x ∧ τ(1− ε)
})

)

= E

(

lim sup
h↓0

φ<(h, τ)

)

+ lim sup
h↓0

E (φ≥(h, τ))

Recall the definitions of T x
f and T x,f

Z in (6.11) and (6.25) respectively. Let (an)n∈N be

a random (0, 1]–valued sequence with an ↓ 0 as n → ∞ and such that x+ an ∈ Cf as

well as

τ+1,an ∈ T x
f ∩ T x,f

Z

for any n ∈ N. Note that such a sequence exists, since the complement of T x
f ∩ T x,f

Z

is a Lebesgue null set, see (6.25) and Remark 6.8, and T x
f ∩ T x,f

Z is therefore dense in

R+
0 . The requirement τ+1,an ∈ T x,f

Z on the event {τ+1,an ≤ 1} will be needed in Part II of

this proof. Furthermore, define a positive F–stopping time τN : Ω → R+ by

τN := τ+1,an1{τ+1,an≤1} + τ(1 − ε)1{τ+1,an>1}
∣

∣

∣

n=N
(6.51)

for all N : Ω → N. Because Xx
1 cannot jump upwards, it is necessarily creeping over

the level x+ an, if it ever hits the interval [x+ an,∞), and thus we have

Xx
1 (τn) = x+ an ∈ Cf (6.52)

P–a.s. on {τn < τ−1,x}.
In view of (6.40), (6.46), (6.47), (6.49), (6.50) and (6.52) we conclude that

∣

∣E
(

f ′+(X
x
1 (τn))

)

− f ′(x)
∣

∣

≤
∣

∣

∣

∣

∣

E

(

f ′+(X
x
1 (τn))1{τn<τ

−

1,x∧τ(1−ε)}
+ lim sup

h↓0
φ<(h, τn)

)∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

E

(

f ′+(X
x
1 (τn))1{τn≥τ

−

1,x∧τ(1−ε)}

)

+ lim sup
h↓0

E (φ≥(h, τn))

∣

∣

∣

∣

∣
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≤
∣

∣

∣E

(

f ′+(X
x
1 (τn))1{τn<τ

−

1,x∧τ(1−ε)}
− f ′−(X

x
1 (τn))1{τn<τ

−

1,x∧τ(1−ε)}

)∣

∣

∣

E

(

∣

∣f ′+(X
x
1 (τn))

∣

∣1{τn≥τ
−

1,x∧τ(1−ε)}

)

+ lim sup
h↓0

E (φ≥(h, τn))

≤ E

(

∣

∣f ′+(X
x
1 (τn))− f ′−(X

x
1 (τn))

∣

∣1{τn<τ
−

1,x∧τ(1−ε)}

)

(6.53)

+ 2(1 + p)ex+cP
(

τn ≥ τ−1,x ∧ τ(1− ε)
)

= 2(1 + p)ex+cP
(

τn ≥ τ−x ∧ τ(1− ε)
)

holds for all n ∈ N. Note that for the final equality above we have used (6.52) as well

as

f ′+(X
x
1 (τn)) = f ′(Xx

1 (τn)) = f ′−(X
x
1 (τn)) (6.54)

on {τn < τ−1,x ∧ τ(1− ε)}.
Theorem 6.5 in [Kyp06] shows that for X1 the point 0 is regular for (0,∞), that is

inf{t ∈ R+
0 : X1(t) ∈ (0,∞)} = 0 P–almost surely. Hence, it is immediately clear

that τ+1,an ↓ 0, and thus τn ↓ 0, P–a.s. as n → ∞. Let us further point out that by

means of the right–continuity of X1 we have that τ−1,x > 0 P–almost surely. Moreover,

Remark 5.17 shows that τ(1−ε) is exponentially distributed, and therefore τ(1−ε) > 0

P–almost surely. Consequently, we deduce from (6.53) and the DCT that

lim
n→∞

∣

∣−f ′(x) + E
(

f ′+(X
x
1 (τn))

)∣

∣ ≤ 2(1 + p)ex+c lim
n→∞

P
(

τn ≥ τ−x ∧ τ(1− ε)
)

= 0 (6.55)

for every x ∈ Cf .
Part II Let g1 be some function that is almost everywhere, with respect to the Lebesgue

measure, differentiable and whose derivative is bounded. In addition, let G2 be the

antiderivative of some bounded function g2. Then

g′1 − g2 ≡ 0 (6.56)

if
∫

[0,t](g
′
1 − g2)(s) ds = 0 for all t ∈ R+

0 . Indeed, let H = g1 − G2 and set h := H ′,

where H ′ denotes the derivative of H. Since g′1 and g2 are bounded, the assumption

∫

[0,t]
h(s) ds =

∫

[0,t]
(g′1 − g2)(s) ds = 0
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for all t ∈ R+
0 does then yield by means of (6.24) that H ≡ H(0), i.e. H is constant.

Consequently,

g′1 − g2 = h = H ′ ≡ 0,

which proves (6.56).

Let x > 0 and consider a function κ defined on the space of bounded positive F–

stopping times by

κ(τ) = E

(

Zx,fτ 1
{τ∈T x,f

Z }

)

for every bounded positive F–stopping time τ . Further, denote the derivative of κ by

κ′ and recall from (6.25) and (6.26) the notations T x,f
Z as well as

Żx,ft =
d

ds
Zx,fs

∣

∣

∣

∣

s=t

for any t ∈ T x,f
Z .

Observe that by the DCT and (5.16) as well as (6.36) we have

sup
t∈[0,1]

∣

∣

∣Ż
x,f
t 1

{t∈T x,f
Z

}

∣

∣

∣ ≤ sup
t∈[0,1]

∑

n∈Nx
t

∣

∣cf ′−(X
x
n(t))

∣

∣

∏

k∈Nx
t \{n}

f(Xx
k (t))

≤ c(1 + p) sup
t∈[0,1]

ex+ct (6.57)

≤ c(1 + p)ex+c,

where we have used that f ≤ 1. In view of (6.28) and (6.31) it thus follows from the

martingale property of Zx,f , Fubini’s theorem and the DCT that

0 = E(Zx,ft )− E(Zx,f0 )

=

∫

[0,t]
E



Żx,fu 1
{u∈T x,f

Z }
+
∑

n∈Nx
u

∏

k∈Nx
u \{n}

f(Xx
k (u))Lf(X

x
n((u)−))



 du

=

∫

[0,t]
κ′(u) du (6.58)

−
∫

[0,t]
E



−
∑

n∈Nx
u

∏

k∈Nx
u \{n}

f(Xx
k ((τ ∧ t− u)))Lf(Xx

n((u)−))



 du

holds for all t ∈ [0, 1].
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We aim at applying (6.56) to (6.58). For this purpose we need to show that the two

integrands on the right–hand side in (6.58) are bounded. To this end, observe first that

by the DCT and (6.57) we have

sup
t∈[0,1]

∣

∣κ′(t)
∣

∣ ≤ E

(

sup
t∈[0,1]

∣

∣

∣
Żx,ft 1

{t∈T x,f
Z }

∣

∣

∣

)

<∞. (6.59)

Moreover, Lemma 6.15 in conjunction with (5.16) yields that

sup
t∈[0,1]

∣

∣

∣

∣

∣

∣

E





∑

n∈Nx
t

∏

k∈Nx
t \{n}

f(Xx
k ((t)))Lf(X

x
n((t)−))





∣

∣

∣

∣

∣

∣

≤ sup
t∈[0,1]

E

(

Nx
t sup
y∈[0,x+c(t)]

Lf(y)N
x
t −1

)

≤ ex+c sup
y∈[0,x+c]

Lf(y)e
x+c ∨ 1

<∞.

Hence, we deduce from (6.56) and (6.58) that

E

(

Żx,ft 1
{t∈T x,f

Z }

)

= κ′t = −E





∑

n∈Nx
t

∏

k∈Nx
t \{n}

f(Xx
k (t))Lf(X

x
n(t−))



 (6.60)

for all t ∈ [0, 1]. As the complement of T x,f
Z is P–a.s. a Lebesgue null set, we in-

fer in view of [Kyp06, Corollary 8.8] that there exists some deterministic Lebesgue

null set T0 ⊆ [0, 1] such that P(t ∈ T x,f
Z ) = 1 for every t ∈ [0, 1] \ T0. There-

fore, since (Zx,ft )t∈[0,1] is a uniformly integrable martingale, (6.57) yields that also

(Żx,ft 1
{t∈T x,f

Z }
)t∈[0,1]\T0 is a martingale. Hence, (6.60) shows that on [0, 1] \ T0 the

map t 7→∑

n∈Nx
t

∏

k∈Nx
t \{n} f(X

x
k (t))Lf(X

x
n(t−)) has constant expectation. Moreover,

since (
∑

n∈Nx
t

∏

k∈Nx
t \{n} f(X

x
k (t))Lf(X

x
n(t−)))t∈[0,1]\T0 has independent increments,

this process thus is a martingale. Consequently, it follows from (6.60) in conjunction

with the optional sampling theorem that

E

(

Żx,fτ

)

= −E





∑

n∈Nx
τ

∏

k∈Nx
τ \{n}

f(Xx
k (τ))Lf(X

x
n(τ−))



 (6.61)

for any F–stopping time τ : Ω → (0, 1] ∩ T x,f
Z \ T0.
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Consider a sequence (τn)n∈N of positive F–stopping times defined as in (6.51) with the

additional assumption on the sequence (an)n∈N that

τ+1,an1{τ+1,an≤1} ∈ T x
f ∩ T x,f

Z \ T0,

which is possible because T0 is a Lebesgue null set. In addition, let ǫ > 0 as well as

ε ∈ (0, e−(x+c)). Since, according to Lemma 6.16, Lf is a continuous function and

because Xx
n(t) → x as t → 0, it follows from (5.16) and τn ↓ 0 as n → ∞ that there

exists some random variable N : Ω → N such that

Lf(x) ≥ E





∑

i∈Nx
τn∧N

∏

j∈Nx
τn∧N

\{i}

f(Xx
j (τn∧N ))Lf(X

x
i (τn∧N−))



− ǫ (6.62)

and

Lf(x) ≤ E





∑

i∈Nx
τn∧N

∏

j∈Nx
τn∧N

\{i}

f(Xx
j (τn∧N ))Lf(X

x
i (τn∧N−))



+ ǫ (6.63)

for all n ∈ N. Let N : Ω → N be a random variable satisfying (6.62) as well as (6.63).

Then (6.61) and (6.62) imply that

Lf(x) ≥ E





∑

i∈Nx
τn∧N

∏

j∈Nx
τn∧N

\{i}

f(Xx
j (τn∧N ))Lf(X

x
i (τn∧N−))



− ǫ

= −E

(

Żx,fτn∧N

)

− ǫ (6.64)

≥ −E





∑

i∈Nx
τn∧N

cf ′+(X
x
i (τn∧N ))

∏

j∈Nx
τn∧N

\{i}

f(Xx
j (τn∧N ))



 − ǫ

≥ −E
(

cf ′(Xx
1 (τn∧N ))1{τn∧N<τ

−

1,x∧τ(1−ε)}

)

− ǫ,

and similarly, resorting to (6.63) instead of (6.62), we also obtain

Lf(x) ≤ E





∑

i∈Nx
τn∧N

∏

j∈Nx
τn∧N

\{i}

f(Xx
j (τn∧N ))Lf(X

x
i (τn∧N−))



+ ǫ

≤ −E

(

cf ′−(X
x
1 (τn∧N ))1{τn∧N<τ

−

1,x∧τ(1−ε)}

)

(6.65)

+ c(1 + p)ex+cP
(

τn∧N ≥ τ−1,x ∧ τ(1− ε)
)

+ ǫ,
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where the last equality results from (6.41) and (6.59). It now follows from (6.64) as

well as (6.65) that

∣

∣Lf(x) + E
(

cf ′+(X
x
1 (τn∧N ))

)

+ ǫ
∣

∣

≤
∣

∣

∣Lf(x) + E

(

cf ′+(X
x
1 (τn∧N ))1{τn∧N<τ

−

1,x∧ρǫ∧τ(1−ε)}

)

+ ǫ
∣

∣

∣

− E

(

cf ′+(X
x
1 (τn∧N ))1{τn∧N≥τ−1,x∧ρǫ∧τ(1−ε)}

)

≤ E

(

∣

∣cf ′+(X
x
1 (τn∧N ))− cf ′−(X

x
1 (τn∧N ))

∣

∣1{τn∧N<τ
−

1,x∧ρǫ∧τ(1−ε)}

)

+ 2c(1 + p)ex+cP
(

τn∧N ≥ τ−1,x ∧ τ(1− ε)
)

+ 2ǫ

= 2c(1 + p)ex+cP
(

τn∧N ≥ τ−1,x ∧ τ(1− ε)
)

+ 2ǫ,

where we have used (6.54) as well as supy∈R+
0
|f ′+(y)| ≤ 1+ p ≤ (1 + p)ex+c, see (6.48).

Similarly to the reasoning preceding (6.55) we thus conclude that

lim
n→∞

∣

∣−E
(

cf ′+(X
x
1 (τn))

)

− ǫ− Lf(x)
∣

∣ ≤ 2ǫ. (6.66)

Part III For the time being, let x ∈ Cf and let (τn)n∈N be given by (6.51). In view of

(6.55) and (6.66) an application of the triangle inequality results in

∣

∣−cf ′(x)− Lf(x)
∣

∣

≤ c lim
n→∞

∣

∣−f ′(x) + E
(

f ′+(X
x
1 (τn))

)∣

∣+ ǫ+ lim
n→∞

∣

∣−E
(

cf ′+(X
x
1 (τn))

)

− ǫ− Lf(x)
∣

∣

≤ 3ǫ

for any ǫ > 0. Letting ǫ→ 0 this shows that

− cf ′ = Lf on Cf . (6.67)

Since Lf is continuous, cf. Lemma 6.16, this implies that

lim
t↓0

f ′(x+ t) = lim
t↑0

f ′(x+ t)

for all x ∈ R+, where the limits are taken over t ∈ R that satisfy x+ t ∈ Cf , and thus

the right–derivative and left–derivative coincide for every x ∈ R+. Hence, f ′ exits on

R+ and is continuous, that is f |
R
+
0
∈ C1(R+

0 , [0, 1]). Consequently, f ′+ = f ′− = f ′, and

thus we deduce from (6.67) that f solves (6.8). �
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6.6 Existence and uniqueness of one–sided FKPP travel-

ling waves

This section is devoted to the proof of Theorem 6.11. We break this proof down into

two sub–results dealing with the cases c ≤ cp̄ and c > cp̄ separately.

Lemma 6.17 Let c ≤ cp̄. Then there does not exist a monotone travelling wave to

(6.7) with wave speed c.

Proof Let x ∈ R+
0 and let f ∈ DL be a monotone function satisfying (6.8). Then

Proposition 6.9 yields that (Zx,ft )t∈R+
0
is a uniformly integrable martingale and hence

the martingale limit Zx,f∞ := limt→∞ Zx,ft satisfies

E

(

Zx,f∞

)

= E

(

Zx,f0

)

= f(x). (6.68)

Since c ≥ cp̄, we have according to Lemma 5.16 that P(ζx < ∞) = 1. As the empty

product equals 1, we thus infer that

Zx,f∞ = lim
t→∞

∏

n∈Nx
t

f(Xx
n(t)) = 1

P–almost surely. In view of (6.68) this implies that f ≡ 1. Consequently, there does

not exist a monotone function f ∈ DL that satisfies (6.8) and (6.9). �

Proposition 6.18 Let c > cp̄. Then ϕ is the unique monotone travelling wave to (6.7)

with wave speed c.

Proof The outline of the proof is as follows. We first show in Part I of the proof that

any travelling wave f to (6.7) with wave speed c must satisfy f = ϕ, that is if there

exists any one–sided FKPP travelling wave then it is necessarily unique. In the second

part of the proof we then show that ϕ does indeed satisfy (6.8) and (6.9).

Part I Assume that f ∈ DL is a monotone function that solves (6.8) and (6.9). Then

Proposition 6.9 shows that (Zx,ft )t∈R+
0
is a nonnegative martingale, and thus we infer

from Proposition 5.23 that f = ϕ, which proves the uniqueness part.

Part II Our goal is to apply Theorem 6.10. To this end we need to establish that

ϕ ∈ D(p) (6.69)

for some p > −1. For this purpose, observe first that ϕ is monotone and that The-

orem 5.12 yields that ϕ satisfies (6.9). Further, according to Theorem 5.11 we have
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that ϕ|
R
+
0
is continuous. Hence, in order to prove (6.69) it only remains to show that

the map x 7→ e(1+p)xϕ(x) is nondecreasing for some p > −1. To this end, fix some

p > p with Φ′(p) < c. For the time being, let x ∈ R+
0 . Since M

x
∞(p) is nonnegative, we

deduce by resorting to the DCT that

P(Mx
∞(p) = 0) = E

(

lim
y→∞

e−zyM
x
∞(p)

)

= lim
y→∞

E

(

e−zyM
x
∞(p)

)

= lim
y→∞

Ly(z),

holds for all z > 0, where Ly(·) := E(e−(·)yMx
∞(p)) is the Laplace transform of yMx

∞(p).

With z := e−(1+p)x we thus infer that

e(1+p)xP(Mx
∞(p) = 0) = lim

y→∞

Ly(z)
z

. (6.70)

According to [Fel71, (2.6) in XIII.2] we have that z 7→ Ly(z)/z, y > 0, is the Laplace

transform of the cumulative distribution function of yMx
∞(p). Hence, z 7→ Ly(z)/z is

monotonically decreasing for every y > 0, and thus also the map z 7→ limy→∞ Ly(z)/z

is monotonically decreasing. Consequently, in view of (5.7) and (6.70) this shows that

the mapping

x 7→ e(1+p)xϕ(x) = e(1+p)xP(ζx <∞) = e(1+p)xP(Mx
∞(p) = 0)

is monotonically increasing on R+
0 , and thus (6.69) holds true for any p > p with

Φ′(p) < c. Furthermore, the fragmentation property yields that

ϕ(x) = E(P(ζx <∞|Ft)) = E





∏

n∈Nx
t

ϕ(Xx
n(t))



 = E(Zx,ϕt ),

which by means of Lemma 5.29 shows that Zx,ϕ is a martingale. In view of (6.69) we

deduce from Theorem 6.10 that ϕ solves the integro–differential equation (6.8). This

proves the existence part, since ϕ satisfies (6.9). �

Theorem 6.11 can now easily be obtained by combining the previous two results.

Proof of Theorem 6.11 Lemma 6.17 proves the nonexistence of FKPP travelling

waves for speeds c ≤ cp̄ and Proposition 6.18 proves the existence and uniqueness of

such travelling waves for wave speeds above the critical value cp̄. �
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6.7 Concluding remarks

In the literature the FKPP equation is usually considered in the classical setting, that is

of the form (6.2) for the two–sided case and (6.5) for the one–sided situation. Although

looking different from the partial differential equation in (6.2), the FKPP equation for

fragmentation processes as in (6.3) is not very surprising bearing in mind the inter-

pretation of that partial differential equation as well as older work on continuous–time

branching random walks as in [Kyp99]. For fragmentation processes the FKPP equa-

tion was introduced in [BHK10] and there the existence and uniqueness of two–sided

solutions were studied. Similarly to the classical case, the one–sided case needs to be

treated differently from the two–sided one and also the resulting travelling waves are

of a different form. As in the two–sided situation it turns out that the form of the

one–sided travelling wave solutions for fragmentation processes are of a similar form to

those for the one–sided classical FKPP equation. Making use of killed fragmentation

processes to study the one–sided FKPP travelling wave equation for fragmentation

processes is motivated by the use of killed dyadic branching Brownian motion to deal

with one–sided solutions in the classical situation, cf. [HHK06]. The method of using

killed fragmentation processes is not straightforward as they have different properties

compared to branching Brownian motions. In particular the lack of a positive time

between jumps needs to be taken care of. The results on killed fragmentation processes

needed to obtain results regarding the one–sided FKPP travelling wave equation are

provided by Chapter 5.

149





BIBLIOGRAPHY
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Statist., 38, pp. 319–340, 2002

[Ber03] J. Bertoin. The asymptotic behavior of fragmentation processes, J. Europ.

Math. Soc., 5, pp. 395–416, 2003

[Ber06] J. Bertoin. Random fragmentation and coagulation Processes, Cambridge

University Press, 2006

[BHS99] J. Bertoin, K. v. Harn, F. W. Steutel. Renewal theory and level passage

by subordinators, Stat. Probab. Lett., 45, pp. 65–69, 1999

[BM05] J. Bertoin, S. Mart́ınez. Fragmentation energy, Adv. Appl. Prob., 37,

pp. 553–570, 2005

[BR03] J. Bertoin, A. Rouault. Additive martingales and probability tilting for

homogeneous fragmentations, preprint, 2003

[BR05] J. Bertoin, A. Rouault. Discritization methods for homogeneous fragmen-

tations, J. London Math. Soc., 72, pp. 91–109, 2005

[Big92] J. D. Biggins. Uniform convergence of martingales in the branching random

walk, Ann. Probab., 20 (1), pp. 137–151, 1992

[Bil95] P. Billingsley. Probability and Measure. Wiley, 1995

[BD75] N. Bingham, R. A. Doney. Asymptotic properties of supercritical branching

processes. II: Crump–Mode and Jirana processes, Adv. Appl. Probab., 7, pp. 66–82,

1975

[Bra78] M. D. Bramson. Maximal displacement of branching Brownian motion,

Comm. Pure Appl. Math., 31 (5), pp. 531–581, 1978

[Bra83] M. D. Bramson. Convergence of solutions of the Kolmogorov equation to

travelling waves, Mem. Amer. Math. Soc., 1983

[Bre92] L. Breiman. Probability, second edition, SIAM, 1992

[Cha91] B. Chauvin. Product martingales and stopping lines for branching Brownian

motion, Ann. Probab., 19, pp. 1195–1205, 1991

[CR88] B. Chauvin, A. Rouault. KPP equation and supercritical branching Brow-

nian motion in the subcritical speed area. Application to spatial trees, Probab.

Theory Related Fields 80, pp. 299–314, 1988

152



[CR90] B. Chauvin, A. Rouault. Supercritical branching Brownian motion and

KPP equation in the critical speed area, Math. Nachr. 149, pp. 41–59, 1990

[CS07] Z.–Q. Chen, Y. Shiozawa. Limit theorems for branching Markov processes,

J. Funkt. Anal., 250, pp. 374-399, 2007

[CRW08] Z.–Q. Chen, Y. Ren, H. Wang. An almost sure scaling limit theorems for

Dawson–Watanabe superprocesses, J. Funkt. Anal., 254, pp. 1988-2019, 2008

[Chu82] K. L. Chung. Lectures from Markov processes to Brownian motion, Springer,

1982

[Dur91] R. Durrett. Probability: theory and examples, Duxbury Press, 1991

[Eng09] J. Engländer. Law of large numbers for superdiffusions: the non-ergodic
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Żx,ft . . . . . . . . . . . . . . . . . . . . . . 131

Greek letters:

∆(t) . . . . . . . . . . . . . . . . . . . . . . . 12

ζx . . . . . . . . . . . . . . . . . . . . . . . . . 82

λ . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

λI . . . . . . . . . . . . . . . . . . . . . . . . . 62

λu . . . . . . . . . . . . . . . . . . . . . . . . .61

λt,n . . . . . . . . . . . . . . . . . . . . . . . .33

λxn(t) . . . . . . . . . . . . . . . . . . . . . . 83

Λ(p) . . . . . . . . . . . . . . . . . . . . . . . 35

Λ(j)(p∗j) . . . . . . . . . . . . . . . . . . . 66

ΛI(f I) . . . . . . . . . . . . . . . . . . . . 63

Λ∞(p) . . . . . . . . . . . . . . . . . . . . . 36

Λ
(j)
∞ (p∗j) . . . . . . . . . . . . . . . . . . . 66

µ(p) . . . . . . . . . . . . . . . . . . . . . . . 28

µν . . . . . . . . . . . . . . . . . . . . . . . . . 16

ν . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ξ . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ξn . . . . . . . . . . . . . . . . . . . . . . . . . 23

|πn| . . . . . . . . . . . . . . . . . . . . . . . 14
Π . . . . . . . . . . . . . . . . . . . . . . . . . 14

Πx . . . . . . . . . . . . . . . . . . . . . . . . 78

ρ . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ρt . . . . . . . . . . . . . . . . . . . . . . . . . 43

〈ρ, ·〉 . . . . . . . . . . . . . . . . . . . . . . .43
ρT(0,1) . . . . . . . . . . . . . . . . . . . . . .18

160



〈ρt, ·〉 . . . . . . . . . . . . . . . . . . . . . . 43
〈ρjt , ·〉 . . . . . . . . . . . . . . . . . . . . . . 65
〈ρvt , ·〉 . . . . . . . . . . . . . . . . . . . . . 65
〈ρIt , f I〉 . . . . . . . . . . . . . . . . . . . . 63

σt . . . . . . . . . . . . . . . . . . . . . . . . . 35

σt,n . . . . . . . . . . . . . . . . . . . . . . . .35

τ(x) . . . . . . . . . . . . . . . . . . . . . . . 87

τ+n,x . . . . . . . . . . . . . . . . . . . . . . . .80

τ−n,x . . . . . . . . . . . . . . . . . . . . . . . .80

υt,n . . . . . . . . . . . . . . . . . . . . . . . .32

ϕ . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Φ. . . . . . . . . . . . . . . . . . . . . . . . . .21

Φp . . . . . . . . . . . . . . . . . . . . . . . . .26

ψ . . . . . . . . . . . . . . . . . . . . . . . . . .80

ψp . . . . . . . . . . . . . . . . . . . . . . . . . 81

161





INDEX

asymptotic frequency, 14

change of measure, 26

Dini derivatives, 117

dislocation measure

P–dislocation measure, 15

S1–dislocation measure, 11

conservative {, 11
dissipative {, 11

Esscher transform, 26

exchangeability, 15

FKPP equation for fragmentations

one–sided {, 116
two–sided {, 114

FKPP travelling wave for fragmentations

one–sided {, 116
two–sided {, 114

fragmentation process{ with immigration, 61

interval {, 19
killed {, 75
mass {, 9
nice {, 16
partition–valued {, 14
starting from u, 60

stopped {, 34
stopped { with immigration, 61

fragmentation property

extended {, 31
for P–fragmentations, 14

for mass fragmentations, 9

intrinsic additive martingale

for fragmentation processes, 24

for killed fragmentations, 82

for stopped fragmentations, 34

killed fragmentation process, 75

cemetery state for {, 75
extinction of {, 76, 79
killing line for {, 75
survival of {, 79

Kingman’s paint–box, 15
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