Risikomanagement

$\ddot{U}bungsblatt$ 3

Aufgabe 1 In der Datei daten.xls finden Sie zwei Zeitreihen zweier Aktien $(log(S_{1,t}))_t$ und $(log(S_{2,t}))_t$ über 250 Handelstage. Es sei angenommen, der Investor besitze 30 Aktien von S_1 und 80 Aktien von S_2 . Bestimmen Sie die log-Preise als Risikofaktoren und die log-returns $X_{i,t} = \log(S_{i,t}) - \log(S_{i,t-1})$. Führen Sie mit den log-returns eine historische Simulation durch und berechnen Sie den Value at Risk zum Konfidenzniveau 99%.

Aufgabe 2 Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $X : \Omega \to \mathbb{R}$ eine integrierbare Zufallsvariable. Sei $\mathcal{G} \subset \mathcal{F}$ eine Unter- σ -Algebra. Dann heißt die Zufallsvariable $\mathbf{E}[X|\mathcal{G}]$ bedingter Erwartungswert von X bezüglich \mathcal{G} , falls es \mathcal{G} -messbar ist und für alle $B \in \mathcal{G}$,

$$\mathbf{E}[X1_B] = \mathbf{E}[\mathbf{E}[X|\mathcal{G}]1_B]$$

erfüllt ist.

- (1) Zeigen Sie, dass für $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ die Zufallsvariable $X \mathbf{E}[X|\mathcal{G}]$ orthogonal ist zum Unterraum $L^2(\Omega, \mathcal{G}, \mathbb{P})$.
- (2) Zeigen Sie: Für eine weitere Unter- σ -Algebra $\mathcal{H} \subset \mathcal{G}$ gilt $\mathbf{E}[\mathbf{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbf{E}[X|\mathcal{H}]$.
- (3) Sei nun $(D_i)_{i\in\mathbb{N}}\subset\mathcal{F}$ eine Familie von disjunkten Mengen, die Ω überdecken und $\mathcal{G}:=\{\bigcup_{i\in M}D_i,M\subset\mathbb{N}\}$. Dann gilt $\mathbf{E}[X|\mathcal{G}]=\sum_{i\in\mathbb{N}}d_i1_{D_i}$, wobei $d_i=0$ falls $\mathbb{P}(D_i)=0$ und sonst $d_i = \mathbf{E}^{\mathbb{P}(\cdot|D_i)}[X]$ definiert ist.

Aufgabe 3

- (1) Bestimmen Sie zu den beiden Portfolios A und B in Aufgabe 2, Blatt 2 die Expected
- Shortfall contributions $AC_i^{L_A}$ und $AC_i^{L_B}$, $i=1,\ldots,100$. (2) Seien drei Bonds der Automobilindustrie $X_i^t:\Omega\to\{0,1\},\ i=1,2,3$ und $t=t_1,t_2$ mit $0 < t_1 < t_2$ gegeben. Für den ersten Zeitraum bis t_1 haben alle drei Bonds die Ausfallwahrscheinlichkeit p=0.05. Es gilt also $\mathbb{P}(X_i^{t_1}=1)=p$. Für den darauffolgenden Zeitraum von t_1 bis t_2 ist die Ausfallwahrscheinlichkeit für jeden Bond abhängig von der Anzahl der Ausfälle im ersten Intervall. Es ist nun p(0 Ausfälle) = p, p(1 Ausfall) = 0.8p,p(2 Ausfälle) = 0.6p. Es ist also $X_i^{t_2} = 1$, wenn $X_i^{t_1} = 1$ und ansonsten

$$\mathbb{P}(X_i^{t_2} = 1) = p\left(\sum_{i=1}^3 X_i^{t_1}\right)$$

Bestimmen Sie für das Portfolio $S_2 = \sum_{i=1}^3 X_i^{t_2}$ den bedingten Erwartungswert

$$\mathbf{E}[S_2|(X_1^{t_1},X_2^{t_1},X_3^{t_1})]$$

(3) Wir betrachten nun zwei Automobilfirmen A und B und eine Zuliefererfirma für B. Die drei Bonds dieser Firmen verhalten sich bis zum Zeitpunkt t_1 wie in der vorigen Situation. Die Verteilungen der Bonds zum Zeitpunkt t_2 sind nun: $X_i^{t_2} = 1$, wenn $X_i^{t_1} = 1$ und ansonsten

$$\mathbb{P}(X_1^{t_2} = 1) = p\left(\sum_{i=1}^2 X_i^{t_1}\right)$$

$$\mathbb{P}(X_2^{t_2} = 1) = p\left(\sum_{i=1}^2 X_i^{t_1}\right) - 0.01pX_3^{t_1}$$

Wenn $X_1^{t_1}=0$ und $X_2^{t_1}=0$ gilt, dann ist $\mathbb{P}(X_3^{t_2}=1)=p$ ansonsten ist $X_3^{t_2}=1$. Bestimmen Sie für das Portfolio $S_2=\sum\limits_{i=1}^3 X_i^{t_2}$ den bedingten Erwartungswert

$$\mathbf{E}[S_2|(X_1^{t_1},X_2^{t_1},X_3^{t_1})].$$

Die Übungen können bis Donnerstag vor der nächsten Übung am 28.5.10 zur Korrektur in E2 4, Zimmer 208 abgegeben werden.