M.Sc. Steffen Meyer M.Sc. Matthias Thiel

17. April 2019

Stochastik I

2. Übung

- Aufgabe 1 (6 Punkte) Seien Ω eine abzählbare, nicht-leere Menge und 2^{Ω} die zugehörige Potenzmenge. Wir bezeichnen mit $\sharp A$ die Anzahl der Elemente einer Menge $A \in 2^{\Omega}$, wobei $\sharp \emptyset = 0$ und für abzählbar unendliche Mengen A gilt $\sharp A = \infty$. Beweisen Sie folgende Aussagen:
 - (i) Für ein $\omega_0 \in \Omega$, definiert die folgende Vorschrift ein Prämaß δ_{ω_0} auf 2^{Ω} (Dirac-Maß):

$$\delta_{\omega_0}(A) := \begin{cases} 1, & \omega_0 \in A \\ 0, & \text{sonst} \end{cases} (A \in 2^{\Omega}).$$

- (ii) Durch die Vorschrift $\varrho(A) := \sharp A, A \in 2^{\Omega}$ ist ein Prämaß ϱ auf 2^{Ω} definiert. Dieses nennt man das Zählmaß auf 2^{Ω} .
- (iii) Es gilt $\varrho(A) = \sum_{\omega \in \Omega} \delta_{\omega}(A)$ für alle $A \in 2^{\Omega}$.
- (iv) Jedes Prämaß μ auf 2^{Ω} ist von der Form $\mu(A) = \sum_{\omega \in \Omega} p_{\omega} \delta_{\omega}(A)$ mit $p_{\omega} = \mu(\{\omega\})$ für alle $A \in 2^{\Omega}$.
- **Aufgabe 2** (6 Punkte) Es sei μ ein Inhalt auf einem Ring \mathcal{R} . Wir betrachten die folgenden Aussagen:
 - (a) μ ist ein Prämaß.
 - (b) Stetigkeit von unten: Für jede Folge $(A_n)_{n\in\mathbb{N}}\subset\mathcal{R}$ mit $A_n\subset A_{n+1}$ für alle $n\in\mathbb{N}$ und $A:=\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{R}$ gilt:

$$\lim_{n\to\infty}\mu(A_n)=\mu(A).$$

(c) Stetigkeit von oben: Für jede Folge $(A_n)_{n\in\mathbb{N}}\subset\mathcal{R}$ mit $A_n\supset A_{n+1}$ für alle $n\in\mathbb{N},$ $\mu(A_1)<\infty$ und $A:=\bigcap_{n\in\mathbb{N}}A_n\in\mathcal{R}$ gilt

$$\lim_{n\to\infty}\mu(A_n)=\mu(A).$$

(d) Stetigkeit von oben in \emptyset : Für jede Folge $(A_n)_{n\in\mathbb{N}}\subset\mathcal{R}$ mit $A_n\supset A_{n+1}$ für alle $n\in\mathbb{N}, \mu(A_1)<\infty$ und $\bigcap_{n\in\mathbb{N}}A_n=\emptyset$ gilt:

$$\lim_{n\to\infty}\mu(A_n)=0.$$

Zeigen Sie, dass gilt

$$(a) \Leftrightarrow (b) \Rightarrow (c) \Leftrightarrow (d).$$

Zeigen Sie weiter, dass unter der zusätzlichen Bedingung $\mu(A) < \infty$ für alle $A \in \mathcal{R}$ auch $(c) \Rightarrow (b)$ gilt.

Aufgabe 3 (6 Punkte) Seien Ω eine nicht-leere Menge, \mathcal{R} ein Ring auf 2^{Ω} und μ ein Inhalt auf \mathcal{R} . Wir definieren die Abbildungen

$$\tilde{\mu}: 2^{\Omega}: \to [0, \infty]; \ A \mapsto \inf\{\mu(B) | \ A \subset B, \ B \in \mathcal{R}\}$$

und

$$\mu^*: 2^{\Omega} \to [0, \infty]; \ A \mapsto \inf \left\{ \sum_{n \in \mathbb{N}} \mu(B_n) \middle| \ A \subset \bigcup_{n \in \mathbb{N}} B_n, \ B_n \in \mathcal{R} \ \forall n \in \mathbb{N} \right\}.$$

Zeigen Sie:

- (i) $\tilde{\mu}(A) = \mu(A)$ für alle $A \in \mathcal{R}$.
- (ii) $\mu^*(A) = \mu(A)$ für alle $A \in \mathcal{R} \Leftrightarrow \mu$ ist Prämaß auf \mathcal{R} .
- (iii) Es gelten $\tilde{\mu}(A) \leq \tilde{\mu}(C)$ und $\mu^*(A) \leq \mu^*(C)$ für $A, C \in 2^{\Omega}$ mit $A \subset C$.
- (iv) $\tilde{\mu}$ ist subadditiv: $\tilde{\mu}(A \cup C) \leq \tilde{\mu}(A) + \tilde{\mu}(C)$ für $A, C \in 2^{\Omega}$.
- (v) μ^* ist σ -subadditiv: $\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \leq \sum_{n \in \mathbb{N}} \mu^*(A_n)$ für $A_n \in 2^{\Omega}$ für alle $n \in \mathbb{N}$.