Stochastik

7. Übungsblatt

Aufgabe 1 Es sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum. Zeigen Sie:

a) Seien X, Y sowie $(X_n)_{n \in \mathbb{N}}, (Y_n)_{n \in \mathbb{N}}, \overline{\mathbb{R}}$ -wertige Zufallsvariablen mit $X_n \to X$, $Y_n \to Y$ μ -fast sicher und $|X_n| \leq Y_n$ μ -fast sicher für alle $n \in \mathbb{N}$. Sind Y und Y_n für alle $n \in \mathbb{N}$ μ -integrierbar und gilt

$$\lim_{n \to \infty} \int Y_n d\mu = \int Y d\mu,$$

so sind X und X_n für alle $n \in \mathbb{N}$ μ -integrierbar, und es gilt:

$$\lim_{n \to \infty} \int X_n d\mu = \int X d\mu.$$

b) Sei $X, (X_n)_{n \in \mathbb{N}} \subset L^p(\mu)$ für ein $p \geq 1$, so dass $X_n \to X$ μ -fast sicher. Dann ist $X_n \xrightarrow{L^p} X$ genau dann, wenn $||X_n||_p \to ||X||_p$.

Hinweis: Zeigen Sie, dass $Y_n := 2^p(|X_n|^p + |X|^p)$, $n \in \mathbb{N}$, μ -fast sicher gegen $Y := 2^{p+1}|X|^p$ konvergiert.

7 Punkte

Aufgabe 2 Es seien $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $[X], [Y] \in \mathcal{L}^2(\mu)$. Zeigen Sie, dass durch

$$\langle [X], [Y] \rangle := \int_{\Omega} X(\omega) Y(\omega) d\mu(\omega)$$

ein Skalarprodukt auf $\mathcal{L}^2(\mu)$ definiert ist.

4 Punkte

Aufgabe 3 Es seien $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $Y, Z \in \mathcal{E}^*$ μ -integrierbar. Zeigen Sie, dass X := Y - Z μ -integrierbar ist.

3 Punkte

Aufgabe 4 Es sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum, $X \in \mathcal{E}^*$ und ν das Maß auf (Ω, \mathcal{A}) mit Dichte X bezüglich μ . Zeigen Sie: $\mu(A) = 0 \Rightarrow \nu(A) = 0$, $A \in \mathcal{A}$.

2 Punkte

Abgabe Freitag, den 04.12.09 in der Übung.