Diskrete Finanzmathematik

Blatt 6

Aufgabe 1 (5 Punkte)

Es sei (Ω, \mathcal{F}, Q) ein Wahrscheinlichkeitsraum mit Filtrierung $(\mathcal{F}_t)_{t=0,\dots,T}$ und zugehörigem Atomsystem $(\mathcal{P}_t)_{t=0,\dots,T}$. Zeigen Sie, dass für alle $\eta, \xi \in L_0(\mathcal{F}_T)$ und $0 \le t \le T$ die folgenden Aussagen gelten:

- (a) $E^{Q}[\xi + \eta | \mathcal{F}_t] = E^{Q}[\xi | \mathcal{F}_t] + E^{Q}[\eta | \mathcal{F}_t].$
- (b) Für t < T, $E^{Q}[\xi | \mathcal{F}_{t}] = E^{Q}[E^{Q}[\xi | \mathcal{F}_{t+1}] | \mathcal{F}_{t}]$.
- (c) Falls $\eta \mathcal{F}_t$ -messbar ist, gilt $E^Q[\eta \xi | \mathcal{F}_t] = \eta E^Q[\xi | \mathcal{F}_t]$.
- (d) Aus $\eta \leq \xi$ folgt $E^Q[\eta | \mathcal{F}_t] \leq E^Q[\xi | \mathcal{F}_t]$.

Aufgabe 2 (3 Punkte)

Es sei (Ω, \mathcal{F}, Q) ein Wahrscheinlichkeitsraum mit Filtrierung $(\mathcal{F}_t)_{t=0,..,T}$ und zugehörigem Atomsystem $(\mathcal{P}_t)_{t=0,..,T}$. Zeigen Sie, dass für alle $\eta, \xi \in L_0(\mathcal{F}_T)$ und $0 \le t \le T$ die folgende Aussage gilt: Falls $\eta \mathcal{F}_t$ -messbar ist, so ist

$$E^{Q}[|\xi - E^{Q}[\xi|\mathcal{F}_{t}]|^{2}] \le E^{Q}[|\xi - \eta|^{2}]$$

Aufgabe 3 (3 Punkte)

Es sei $\mathcal{M} = (\Omega, \mathcal{F}, P, (S_t)_{t \in \{0,1,2\}}, (\mathcal{F}_t)_{t \in \{0,1,2\}}, \mathcal{A}^{sf})$ ein Markt mit zwei Anlagemöglichkeiten und 5 Zuständen, $\Omega = \{\omega_1, \ldots, \omega_5\}$. Es sei $S_t^0 = 1$ für t = 0, 1, 2 sowie

$$\begin{split} S_0^1 &= 10, S_1^1(\omega_1) = S_1^1(\omega_2) = 11, \\ S_1^1(\omega_3) &= S_1^1(\omega_4) = S_1^1(\omega_5) = 9 \\ S_2^1(\omega_1) &= 12, \ S_2^1(\omega_2) = S_2^1(\omega_3) = 10, \\ S_2^1(\omega_4) &= 9, \ S_2^1(\omega_5) = 8 \end{split}$$

Es gelte $P(\{\omega_n\}) > 0$ für alle n = 1, ..., N. Ferner sei

$$\mathcal{F}_0 = \{\Omega, \emptyset\}, \ \mathcal{F}_1 = \{(S_1^1)^{-1}(B); \ B \text{ Borelmenge in } \mathbb{R}\}, \ \mathcal{F}_2 = 2^{\Omega}.$$

(a) Zeigen Sie, dass ein äquivalentes Martingalmaß für dieses Modell durch $Q: 2^{\Omega} \to [0,1]$ mit $Q(\{\omega_1\}) = Q(\{\omega_2\}) = \frac{1}{4}, \ Q(\{\omega_3\}) = \frac{1}{12}$ und $Q(\{\omega_4\}) = \frac{1}{3}$ gegeben ist.

Bitte wenden

(b) Bestimmen sie den fairen Wertprozess $V_t^{\xi,Q}$ für t=0,1,2 und den Kontrakt $\xi=2Call(9,2,1)-3Put(10,2,1).$

Aufgabe 4 (2 Punkte)

Zeigen Sie, dass die σ -Algebren \mathcal{F}_t aus Kapitel 4.1 der Vorlesung äquivalent über

$$\mathcal{F}_t = \{(S_1, \dots, S_t)^{-1}(A); A \text{ Borelmenge in } \mathbb{R}^t\}$$

definiert werden können.

Bitte denken Sie daran, dass die Übung am 27.1.15 entfällt und auf den 3.2.15 verschoben wird.