04. Dezember 2014

Stochastik II

7. Übung

Allen Aufgaben liegt ein filtrierter W-Raum $(\Omega, \mathcal{F}, \mathbb{F}, P)$ zugrunde, wobei $\mathbb{F} = (\mathcal{F}_t)_{t \in \mathcal{T}}$.

Aufgabe 1 (6 Punkte) Es sei $X := (X_t)_{t \in [0,\infty)}$ ein \mathbb{F} -adaptierter und integriebarer stochastischer Prozess. Zeigen Sie, dass folgende Aussagen äquivalent sind.

- (i) X ist ein Supermartingal.
- (ii) Für alle $s, t \in [0, \infty)$ und alle $A \in \mathscr{F}_s$ gilt:

$$E^{P(\cdot|A)}(X_{s+t}) \le E^{P(\cdot|A)}(X_s).$$

(iii) Für alle $s,t\in[0,\infty)$ und alle $A\in\mathscr{F}_s$ gilt:

$$\int_{A} X_{s+t} dP \le \int_{A} X_{s} dP.$$

(iv) Für alle $s, t \in [0, \infty)$ und jede beschränkte und \mathscr{F}_s -messbare Zufallsvariable Y gilt:

$$E(Y \cdot X_{s+t}) \le E(Y \cdot X_s).$$

Aufgabe 2 (2 Punkte) Sei $(X_n)_{n\in\mathbb{N}}$ eine unabhängige Folge reeller Zufallsvariablen und sei $\mathscr{H} := \bigcap_{n\in\mathbb{N}} \sigma(X_k, k \geq n)$. Zeigen Sie, dass

$$P\left(\left\{\lim_{n\to\infty}\sum_{k=1}^n X_k \text{ existient}\right\}\right) \in \{0,1\}.$$

Aufgabe 3 (4+1 Punkte)

(i) Sei $(X_n)_{n\in\mathbb{N}_0}$ ein Submartingal und sei σ eine Stoppzeit mit $E(\sigma)<\infty$. Außerdem existiere eine Konstante C>0, so dass

$$|X_{n+1} - X_n| \le C$$

P-f.s. für alle $n \in \mathbb{N}_0$ gilt. Zeigen Sie, dass

$$E(X_{\sigma}) \geq E(X_0)$$
.

(ii) Sei $(\xi_n)_{n\in\mathbb{N}}$ eine Folge unabhängiger Zufallsvariablen mit $P(\{\xi_n=-1\})=P(\{\xi_n=1\})=1/2$. Außerdem seien $S_n:=\sum_{k=1}^n \xi_k$ und $\tau:=\inf\{n\in\mathbb{N}:S_n=1\}$. Zeigen Sie, dass $E(\tau)=\infty$.

Aufgabe 4 (5 Punkte) Es seien \mathscr{G} und \mathscr{H} Unter- σ -Algebren von \mathscr{F} und es sei X eine P-integriebare Zufallsvariable, so dass \mathscr{H} unabhängig von $\sigma(\sigma(X) \cup \mathscr{G})$ ist. Zeigen Sie, dass

$$E(X|\sigma(\mathcal{G}\cup\mathcal{H}))=E(X|\mathcal{G}) \qquad \textit{P-f.s.}$$