Stochastics II

10. Tutorial

Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,\infty)}, P)$ be the underlying filtered probability space for the whole assignment.

Exercise 1 (3+1 Points)

- (i) Let τ be a stopping time. Show that \mathcal{F}_{τ} is a σ -field and that τ is measurable with respect to \mathcal{F}_{τ} .
- (ii) Show that for every $s \in [0, \infty]$ the equality $\mathcal{F}_{\tau} = \mathcal{F}_s$ holds for the stopping time $\tau :\equiv s$.
- **Exercise 2** (4 Points) Let τ be a optional time and \mathcal{G} be the σ -field containing all the events $A \in \mathcal{F}_{\infty}$ for which $A \cap \{\tau \leq t\} \in \mathcal{F}_{t+}$ for every $t \geq 0$. Show that $\mathcal{G} = \mathcal{F}_{\tau+}$.
- **Exercise 3** (2+2+2 **Points**) Let σ and τ be stopping times.
 - (i) Show that $\mathcal{F}_{\sigma \wedge \tau} = \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$.
 - (ii) Show that

$$\{\sigma < \tau\}, \{\sigma > \tau\}, \{\sigma > \tau\}, \{\sigma \le \tau\}, \{\sigma \ge \tau\}, \{\sigma = \tau\}$$

are elements of $\mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$.

- (iii) Let Y be a \mathbb{R}^D -valued \mathcal{F}_{σ} -measurable random variable. Show that $\mathbb{1}_{\{\sigma \leq \tau\}} Y$ is $\mathcal{F}_{\sigma \wedge \tau}$ -measurable.
- **Exercise 4** (3 **Points)** Assume we are in the situation of Example 8.14, but we omit the assumption that τ is bounded. Show that $(N_t^{(\varphi,\sigma,\tau)})_{t\in[0,\infty)}$ is a martingale.

 $Hint: \mbox{You should rather use the statement of the Example 8.14, instead of modifying the corresponding calculations.}$