15th January 2019

Stochastics II

11. Tutorial

Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,\infty)}, P)$ be the underlying filtered probability space for the whole assignment.

- **Exercise 1** (3 **Points**) Let X be an \mathbb{F} -adapted and integrable stochastic process with right-continuous paths. Show that X is a submartingale, if and only if the inequality $\mathrm{E}[X_{\sigma}] \leq \mathrm{E}[X_{\tau}]$ holds for all bounded stopping times σ and τ with $\sigma \leq \tau$.
- **Exercise 2** (3 **Points**) Show that if the stochastic process W is a Brownian motion with respect to the filtration \mathbb{F} , then it is also a Brownian motion with respect to \mathbb{F}_+ .
- **Exercise 3** (3+4 **Points)** Let $X = (X_t)_{t \in [0,\infty)}$ be a stochastic process with continuous paths, starting at $X_0 = 0$.
 - (i) Show that X is a Brownian motion with respect to \mathbb{F} , if and only if X is \mathbb{F} -adapted and

$$E\left[e^{iu(X_t - X_s)}\middle|\mathcal{F}_s\right] = e^{-\frac{1}{2}u^2(t-s)}$$

for every $0 \le s < t$ and $u \in \mathbb{R}$.

- (ii) Show that X is a Brownian motion with respect to \mathbb{F}^X , if and only if X is a Gaussian process with $\mathrm{E}[X_t] = 0$ and $\mathrm{Cov}(X_t, X_s) = t \wedge s$, for $s, t \in [0, \infty)$.
- **Exercise 4** (4 **Points)** Let $X = (X_t)_{t \in [0,\infty)}$ be a Brownian motion with respect to \mathbb{F} and a, b > 0. We take a look at the Gaussian process $Y = (Y_t)_{t \in [0,\infty)}$, given by

$$\forall t \in [0, \infty) : Y_t = \sqrt{a}e^{-bt}X_{e^{2bt}}.$$

Calculate $E[Y_t]$ and $Cov(Y_t, Y_s)$ for $s, t \in [0, \infty)$.