Stochastics II

13. Tutorial

Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,\infty)}, P)$ be the underlying filtered probability space for the whole assignment.

Exercise 1 (2+3 Points)

Let $X := (X_t)_{t \in [0,\infty)}$ a Brownian motion with respect to \mathbb{F} and let τ be an \mathbb{F} -stopping time for which one of the following conditions is satisfied,

- (i) $(|X_{t\wedge\tau}|)_{t\in[0,\infty)}$ is bounded by a P-integrable random variable,
- (ii) $E(\tau) < \infty$.

Show that $E[X_{\tau}] = 0$.

Hint: To solve (ii), take a look at the random variable

$$\sum_{k=1}^{\lceil \tau \rceil} \max_{t \in [0,1]} |X_{k+t} - X_k|.$$

Exercise 2 (1+2 **Points**) Let τ be a \mathbb{F} -stopping time. Show that

- (i) $\sigma \tau$ is a $(\mathcal{F}_{t+\tau})_{t \in [0,\infty)}$ -stopping time, if σ is a \mathbb{F} -stopping time.
- (ii) $\rho + \tau$ is a \mathbb{F} -stopping time, if ρ is a $(\mathcal{F}_{t+\tau})_{t\in[0,\infty)}$ -stopping time.

Exercise 3 (3+4 Points) Let $Y = (Y_t)_{t \in [0,T]}$ be a stochastic process defined by

$$Y_t = W_t - \frac{t}{T}W_T,$$

where $(W_t)_{t \in [0,T]}$ is a Brownian motion with respect to $\mathbb{F}' := (\mathcal{F}_t)_{t \in [0,T]}$.

- (i) How is the distribution of Y related to the distribution of the Brownian bridge X, from Assignment 12 Exercise 2.
- (ii) Calculate the quadratic variation of Y.
- **Exercise 4** (2 **Points)** Let $(\gamma_n)_{n \in \mathbb{N}}$ be a sequence in $[0, \infty)$, such that $\frac{\gamma_n}{n} \to 1$ for $n \to \infty$. Show that

$$\lim_{n \to \infty} \sup_{0 \le k \le n} \left| \frac{\gamma_k - k}{n} \right| = 0.$$