24th October 2018

Stochastics II

2. Tutorial

Exercise 1 (4+4 Points)

Let $(\xi, \eta_1, \ldots, \eta_n)$, $n \in \mathbb{N}$ be an (n + 1)-variate normal distributed random vector, where die random variables η_1, \ldots, η_n are independend. Calculate

- (i) the conditional expectation $E[\xi|\eta_1,\ldots,\eta_n]$.
- (ii) the conditional variance $E[(\xi E[\xi | \eta_1, \dots, \eta_n)])^2 | \eta_1, \dots, \eta_n].$

Hint: For the calculation of (i) and (ii) use the random variable

$$(\xi - \mathrm{E}[\xi]) - \sum_{k=1}^{n} \frac{\mathrm{Cov}(\xi, \eta_k)}{\mathrm{Var}(\eta_k)} (\eta_k - \mathrm{E}[\eta_k])$$

and show that it is independent of $\eta - E[\eta]$, where $\eta := (\eta_1, \ldots, \eta_n)^{\top}$.

Exercise 2 (4 Points) Let $(\xi_n)_{n\in\mathbb{N}}$ be a sequence in $L^1(\mathcal{F}, P)$. Show that: If $\xi_n \geq 0$ and $\liminf_{n\to\infty} \xi_n \in L^1(\mathcal{F}, P)$, then it follows

$$\mathbb{E}[\liminf_{n \to \infty} \xi_n | \mathcal{G}] \le \liminf_{n \to \infty} \mathbb{E}[\xi_n | \mathcal{G}] \text{ (P-a.s.)}.$$

Exercise 3 (4 Points) Let X and Y be independent random variables on the probability space (Ω, \mathcal{F}, P) which map Ω into the measurable spaces $(\mathcal{X}, \mathcal{A})$, respectively $(\mathcal{Y}, \mathcal{G})$. Furthermore let $g : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be a measurable function, such that $g(X, Y) \in L^1(\Omega, \mathcal{F}, P)$. Show that:

$$\mathbb{E}[g(X,Y)|X] = \mathbb{E}[g(x,Y)]\Big|_{x=x} (P_X\text{-a.s.})$$

- **Exercise 4** (4 Points) Let (Ω, \mathcal{F}, P) be a probability space, $(X_i)_{i \in \mathbb{N}} \subseteq L^1(\Omega, \mathcal{F}, P)$ a sequence of i.i.d. random variables on (Ω, \mathcal{F}, P) and $N \in L^1(\Omega, \mathcal{F}, P)$ a \mathbb{N}_0 -valued random variable on (Ω, \mathcal{F}, P) that is independent of $(X_i)_{i \in \mathbb{N}}$. Furthermore set $S_N := \sum_{i=1}^N X_i$ with the convention $\sum_{i=1}^0 (\cdots) := 0$.
 - (i) Show that S_N is a random variable on (Ω, \mathcal{F}, P) , i.e. show that S_N is \mathcal{F} measurable.

Hint: Represent S_N as a limit of \mathcal{F} measurable functions.

(ii) Find the conditional expectation $E[S_N|N]$ of S_N given N.