9th November 2018

Stochastics II

4. Tutorial

Exercise 1 (4+2 Points) Let $(\mathbb{R}, \mathcal{B}(\mathbb{R}^n), P)$ be a probability space, $B \in \mathcal{B}(\mathbb{R}^n)$ and $\varepsilon > 0$ arbitrary.

- (i) Use the principle of appropriate sets to show that there exists a closed set F and an open set G such that $F \subset B \subset G$ and $P(G \setminus F) < \varepsilon$.
- (ii) Show that there exists a compact subset $A \subset B$, such that $P(B \setminus A) \leq \varepsilon$.
- **Exercise 2** (4 Points) Let $X = (X_t)_{t \in [0,\infty)}$ and $Y = (Y_t)_{t \in [0,\infty)}$ be real-valued processes with *P*-a.s. rightcontinuous paths. Furthermore X and Y are modifications of each other. Show that X and Y are indistinguishable.
- **Exercise 3** (7 **Points)** Let $X := (X_t)_{t \in [0,\infty)}$ be a stochastic process and $(\mathcal{F}_t^X)_{t \in [0,\infty)}$ the filtration generated by X. Show that $X_t X_s$ is independent of \mathcal{F}_s^X for all $0 \le s < t$ if and only if X has independent increments, i.e. the family $(X_{t_k} X_{t_{k-1}})_{k=1,\dots,n}$, where $X_{t_0} := 0$ is independent for all $n \in \mathbb{N}$ and $0 \le t_1 < \cdots < t_n \in [0,\infty)$.