Stochastics II

7. Tutorial

Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,\infty)}, P)$ be the underlying filtered probability space for the whole assignment.

Exercise 1 (3+3 Points) Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function.

(i) Let X be an integrable random variable, such that $f(X) \in L^1(P)$ and \mathcal{G} be a sub σ -field of \mathcal{F} . Show that,

$$\operatorname{E}[f(X)|\mathcal{G}] \ge f(\operatorname{E}[X|\mathcal{G}])$$
 P-a.s.

- (ii) Show that $(f(X_t))_{t \in [0,\infty)}$ is a submartingale, if
 - a) $(X_t)_{t \in [0,\infty)}$ is a martingale and $f(X_t) \in L^1(P)$ for every $t \in [0,\infty)$.
 - b) $(X_t)_{t \in [0,\infty)}$ is a submartingale, $f(X_t) \in L^1(P)$ for every $t \in [0,\infty)$, and f is non-decreasing.

Hint: Every convex function $f : \mathbb{R} \to \mathbb{R}$ can be expressed as the supremum over all linear functions which lie completely below the graph of f.

- **Exercise 2** (2 Points) Suppose $M = (M_t)_{t \in [0,\infty)}$ is a martingale such that $E[M_t^2] < \infty$ for every $t \ge 0$. Show that $E[(M_t M_s)(M_v M_u)] = 0$ for every $u \le v \le s \le t$.
- **Exercise 3** (3 Points) Let J be a arbitrary index set and $X := (X_j)_{j \in J} \subset L^1(P)$ be a family of random variables. Show that X is uniformly integrable, if there exists a measurable function $f : \mathbb{R}_+ \to \mathbb{R}_+$ such that

$$\lim_{t \to \infty} \frac{f(t)}{t} = \infty \text{ and } \sup_{j \in J} \mathbb{E}[f(|X_j|)] < \infty$$

- **Exercise 4** (2 Points) Let $X = (X_k)_{k \in \mathbb{N}}$ a sequence of real and independent random variables with $E[X_k] = 0$ for every $k \in \mathbb{N}$ and $\sum_{k \in \mathbb{N}} E[X_k^2] < \infty$. Furthermore define the sequence $(M_n)_{n \in \mathbb{N}}$ with $M_n = \sum_{k=1}^n X_k$. Show that $(M_n)_{n \in \mathbb{N}}$ converges *P*-a.s. and in $L^1(P)$ for $n \to \infty$.
- **Exercise 5** (5 Points) Let $W = (W_t)_{t \in [0,\infty)}$ be a Brownian motion and

$$\forall t \in [0,\infty): \quad X_t := \exp\left(W_t - \frac{t}{2}\right).$$

Check if the stochastic process $X := (X_t)_{t \in [0,\infty)}$ converges for $t \to \infty$ *P*-a.s., respectively in $L^1(P)$ and find the corresponding limit.