Stochastics II

8. Tutorial

- **Exercise 1** (6 Points) Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,\infty)}, P)$ be a filtered probability space and $X = (X_t)_{t \in [0,\infty)}$ be a \mathbb{F} -adapted and integrable stochastic process. Show that the following statements are equivalent.
 - (i) X is a supermartingale.
 - (ii) For all $s, t \in [0, \infty)$ and every $A \in \mathcal{F}_s$, we have

 $P(A) > 0 \Rightarrow \mathbb{E}^{P(\cdot | A)}[X_{s+t}] \le \mathbb{E}^{P(\cdot | A)}[X_s].$

(iii) For all $s, t \in [0, \infty)$ and every $A \in \mathcal{F}_s$, we have

$$\int_A X_{s+t} \, dP \le \int_A X_s \, dP.$$

(iv) For all $s, t \in [0, \infty)$ and every bounded, non-negative and \mathcal{F}_s measurable function Y, we have

$$\mathbb{E}[YX_{s+t}] \le \mathbb{E}[YX_s].$$

Exercise 2 (3 Points) Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}, P)$ be a filtered probability space, $X = (X_n)_{n \in \mathbb{N}_0}$ be a \mathbb{F} -adapted stochastic process, and $a, b \in \mathbb{R}$ such that a < b. Define

$$\tau_k := \min\{n \ge \sigma_{k-1} : X_n \le a\}, \quad k \in \mathbb{N}$$

$$\sigma_k := \min\{n \ge \tau_k : X_n \ge b\}, \quad k \in \mathbb{N}, \quad \sigma_0 := 0,$$

and show that τ_k and σ_k are \mathbb{F} -stopping times for every $k \in \mathbb{N}$.

Exercise 3 (3 Points) We define the graph $Z^2 := (V, E)$, where the set of vertices V and the set of edges E are given by

$$V := \mathbb{Z}^2$$

$$E := \{\{u, v\} | u, v \in V, ||u - v||_2 = 1\}.$$

Here we call $e := \{u, v\}$ the edge between u and v. Now we go through each edge of the grid and decide, by a coin toss, if we remove the edge (heads) or not (tails). Here the coin shows heads with probability p. We denote the resulting random graph by \tilde{Z}^2 . Show that the probability for the existence of an infinitely large connected component in \tilde{Z}^2 is either 1 or 0.

Exercise 4 (4+2 Points)

(i) Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}}, P)$ be a filtered probability space, $X = (X_n)_{n \in \mathbb{N}}$ be a \mathbb{F} -submartingale and σ be a \mathbb{F} -stopping time satisfying $\mathbb{E}[\sigma] < \infty$. Furthermore there exists a constant C > 0 such that

$$|X_{n+1} - X_n| \le C$$

P-a.s. for every $n \in \mathbb{N}_0$. Show that

$$\operatorname{E}[X_{\sigma}] \ge \operatorname{E}[X_0]$$

(ii) Let $(\xi_n)_{n\in\mathbb{N}}$ a sequence of independent random variables with

$$P(\{\xi_n = -1\}) = P(\{\xi_n = 1\}) = \frac{1}{2}.$$

Moreover define $S_n := \sum_{k=1}^n \xi_k$ and $\tau := \inf\{n \in \mathbb{N} | S_n = 1\}$. Show that $\mathbb{E}[\tau] = \infty$.